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CROWDING OF FUNCTIONS, PARA-SATURATION
OF IDEALS, AND TOPOLOGICAL APPLICATIONS

PETER J. NYIKOS

Abstract. We study a pair of axioms that say ℵ2 functions
from ω1 to ω are crowded in a rather strong sense and discuss
a number of topological applications of the weaker one, Axiom
F. The axioms are fitted into three different axiom schema:
an old one on crowding of functions due to Donder; a modi-
fication of a still older one due to P. Erdős and R. Radó; and
one on para-saturation of pairs of ideals, which is introduced
here. The axioms in the third schema have varying status:
the most trivial ones are true in ZFC, while others are false,
and still others are independent of ZFC—but some of these
are equiconsistent with large cardinal axioms and others are
not.

Introduction

The following axiom on crowding of functions was introduced in
[11].

Axiom F. Any family of ℵ2 functions from ω1 to ω has an infinite
subfamily that is bounded on a stationary set.

It makes no difference whether “bounded” means “pointwise
bounded” or “uniformly bounded by n ∈ ω”: if a function bounds
a family on a stationary set S, there exists n so that the function
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takes on the value n on a stationary subset of S, because the union
of countably many nonstationary sets is nonstationary.

Axiom F+replaces “is bounded” with “agrees” in the foregoing
informal statement of Axiom F. Formal statements of these two
axioms are given in section 1 and the relationship between them
discussed; in particular, it is shown how Axiom F+ is implied by
Axiom F together with a ZFC-independent axiom involving the
concept of para-saturation.

Axioms F and F+ both have some large cardinal strength, and
some steps towards assessing the exact level of that strength are
taken in section 2. There we review an axiom schema due to
H.-D. Donder [1] which includes Axiom F+ as one of its members,
and we fit Axiom F snugly into it just below F+ (Theorem 2.2).
This helps to explain how both of these axioms imply the consis-
tency of some fairly large cardinals and how both are consistent
if there is a supercompact cardinal. Other axioms, mostly having
to do with concept of para-saturation of ideals, are discussed there
and in section 4 in an effort to make it easier to assess their exact
consistency strength. Although axioms F and F+ do not mention
para-saturation of ideals, Axiom F+ fits nicely between two axioms
in a general schema of axioms that do involve the concept.

I am indebted to the referee for numerous improvements.

1. Two basic axioms and the relationship between them

We begin by recalling some elementary facts about subsets of ω1.

Definition 1.1. A subset of ω1 that is closed and uncountable
(“unbounded”) is called a club. A subset of ω1 is stationary if
it meets every club, and nonstationary if it is not stationary. A
collection I of sets is an ideal (a σ-ideal , resp.) if it is downwards
closed (that is, if I ∈ I and J ⊂ I, then J ∈ I) and the union of
finitely (of countably, resp.) many members of I is again in I.

Clearly, the nonstationary subsets of ω1 form an ideal, denoted
NS(ω1). The union of countably many nonstationary subsets of
ω1 is nonstationary: this is an immediate consequence of the well-
known fact that the intersection of countably many clubs is a club.
Thus, it is easy to see that the following formal statement of Axiom
F+ is equivalent to the informal statement given in the introduction.
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Axiom F+. Given any family of functions {fα : α < ω2} from ω1

to ω, there is a stationary set E and an infinite A ⊂ ω2 and k ∈ ω
such that fζ(σ) = k for all ζ ∈ A and all σ ∈ E.

In other words, any family of ℵ2 functions from ω1 to ω has an
infinite subfamily which takes on the same constant value on some
common stationary set E. This follows from the same subfamily Z
simply agreeing on a stationary set S, because S splits up naturally
into subsets Sk such that f(σ) = k for all σ ∈ Sk and all f ∈ Z,
and at least one of the Sk has to be stationary.

Axiom F can be expressed by writing “≤ k” instead of “= k,”
as in Axiom F+. Obviously, Axiom F+ implies Axiom F, but I
do not know whether the converse is true, nor even whether the
two axioms are equiconsistent. Theorem 1.3 below shows that the
converse implication does hold if the nonstationary ideal on any
stationary subset of ω1 is (ω, n ; ω)-para-saturated for all finite n.

Definition 1.2. Let κ be a cardinal number, let E be a stationary
subset of ω1, and let n be a natural number. The ideal NS(E) of
nonstationary subsets of E is (κ, n ; ω)-para-saturated ((κ, ω ; ω)-
para-saturated , resp.) if, whenever {Mi : i ∈ κ} is a family of
partitions of E into n or fewer sets (into countably many sets, resp.),
then it is possible to choose Mi ∈ Mi for infinitely many i ∈ ω in
such a way that the intersection of the chosen sets Mi is stationary.
One can replace the third parameter by a natural number in the
obvious way. For instance, (κ, ω ; 2)-para-saturation results from
replacing “for infinitely many” with “for a pair of distinct” in the
definition of (κ, ω ; ω)-para-saturation.

These concepts generalize straightforwardly to arbitrary ideals
on arbitrary sets, and a good theory results if either one is confined
to σ-ideals or to families of finite partitions. For instance, substi-
tuting “is uncountable” for “is stationary” at the end of Axiom
F+ transfers both definitions from NS(E) to the ideal of countable
subsets of E. Further generalizations will be given in section 4.

The axiom that NS(E) is (ω, n ; ω)-para-saturated for all n and
all stationary subsets E of ω1 is implied by the axiom p > ω1,
which follows from MA(ω1). (See Definition 3.4 and Theorem 4.6
(a).) On the other hand, the axiom fails even for n = 2 and E = ω1

in any model formed by adding uncountably many Cohen reals in
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the standard way to a model of ZFC; see the discussion following
Definition 4.3.

Theorem 1.3. Axiom F+follows from Axiom F, together with the
axiom that the nonstationary ideal on every stationary subset of ω1

is (ω, n ; ω)-para-saturated for all n < ω.

Proof: Let {fα : α < ω2} be a family of functions from ω1 to ω.
Assuming Axiom F holds, let S, k, and Z be as in its conclusion.
List Z as {ζi : i ∈ ω} and for each i ∈ ω and j ≤ k, let M j

i =
{α : fζi(α) = j}. Then Mi = {M j

i : j ≤ k} is a partition of S for
each i ∈ ω. Using the para-saturation property, let M

g(i)
i be chosen

from Mi for each i in some infinite subset Z ′ of ω, so that the
intersection of all the chosen sets M

g(i)
i is stationary. Then there

exists j ≤ k such that g(i) = j for all i in some infinite subset A of
Z ′, and so Axiom F+ holds. ¤

Implicit in the foregoing proof is a natural bijection between
families 〈fα : α < τ〉 of functions from a set S of ordinals to ω, and
ω × τ matrices of sets M(n, α) in which each column is a partition
of S. (As is standard in matrix theory, and in contrast to the usual
picture of R2, rows fix the first coordinate and columns fix the
second coordinate.) Axiom F+ fails if, and only if, there is a matrix
of the following form: S = ω1, τ = ω2, and the intersection of any
family of infinitely many sets from the same row is nonstationary.
The axiom that NS(ω1) is not (ω2, ω ; ω)-para-saturated produces a
matrix of the same sort, but the infinitely many chosen sets are even
allowed to be taken from different rows, and the only restriction is
that no two are allowed to be in the same column. Matrices with
similar properties will be considered in the next section, and also
section 4, to facilitate discussion of the equiconsistency strength of
Axiom F and related axioms.

The comparison in the preceding paragraph makes clear that
Axiom F+ implies that NS(ω1) is (ω2, ω ; ω)-para-saturated. Is the
converse true? At the opposite extreme, in the light of the large
cardinal strength of axioms F and F+(see below), the following
problem is also unsolved.

Problem 1. Is it possible to show the consistency of the non-
stationary ideal being (ω2, ω ; ω)-para-saturated without using large
cardinal axioms?
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Problem 2. Is Axiom F enough to imply that NS(ω1) is (ω2, ω ; ω)-
para-saturated? to imply Axiom F+?

The remainder of this section gives yet another perspective on
axioms F and F+, this time in the partition calculus. We use the
natural bijection ψ between families F = {fα : α < κ} of functions
from λ to ρ and functions from κ × λ to ρ given by ψ(F )(α, β) =
fα(β). Thinking of ψ(F ) as a ρ-coloring of the points of κ × λ,
we see that Axiom F+ is equivalent to the following: for every ω-
coloring of ω2 × ω1, there is an infinite Z ⊂ ω1 and a stationary
E ⊂ ω1 such that all points of Z ×E get the same color. Axiom F
is equivalent to getting Z ×E to have only finitely many colors.

The following definition, generalizing the above, is a simple mod-
ification of one in [5].

Definition 1.4. Let κ, λ, and ρ be cardinal numbers and let K ⊂
P(κ), L ⊂ P(λ). We write

(
κ
λ

)
→

(K
L

)1,1

ρ

if for each partition of κ × λ into ρ subsets, there are K ∈ K and
L ∈ L such that every element of K × L is in the same member of
the partition.

P. Erdős and R. Radó defined this notation in [5] for cardinals µ
and ν in place of K and L, respectively. Their definition is equiv-
alent to putting K = [κ]µ and J = [λ]ν , and has been extended
to ordinals in the obvious way. The status of some of the resulting
axioms can be deduced from the discussion in the following section
and in section 4.

2. The status of Axioms F and F+

Large cardinal axioms are required for the consistency of Axiom
F and hence of F+. This can be seen from the fact that Axiom F
fails if there is a Kurepa tree—a tree of height ω1 in which every
level is countable and in which there are more than ℵ1 uncountable
chains. (See Theorem 2.2 below.) As is well known, the nonexis-
tence of a Kurepa tree is equiconsistent with the existence of an
inaccessible cardinal.
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Much better lower bounds on the consistency strength of Axiom
F are provided by the following axiom schema, taken from [1].

Definition 2.1. Let Pκ(ρ, τ) (P ∗
κ (ρ, τ), resp.) denote the following

statement:
There exists a sequence 〈fα : α < κ+〉 of functions fα : κ → ρ

such that, for all X ⊂ κ+ of order type ≥ τ :

|{ξ < κ : ∀α, β ∈ X fα(ξ) = fβ(ξ)}| < κ

({ξ < κ : ∀α, β ∈ X fα(ξ) = fβ(ξ)} is nonstationary in κ, resp.)

Obviously, the axioms in this schema decrease in strength with
increasing τ or ρ. In the notation of Erdős and Radó, the negation
of Pκ(ρ, τ) is equivalent to

(
κ+

κ

)
→

(
τ
κ

)1,1

ρ

and it is left as an exercise for the reader to put the negation of
P ∗

κ (ρ, τ) into the notation of Definition 1.4.

For regular κ > ω, Pκ(ρ, τ) clearly implies P ∗
κ (ρ, τ), while the

converse is true if τ is a successor ordinal and ρ|τ | ≤ ρ+ = κ
[1, Lemma 1]. Thus, P ∗

ω1
(ω, 2) is equivalent to Pω1(ω, 2), for exam-

ple. The latter axiom has been termed the transversal hypothesis
and denoted TH(ω1) in [1] and the weak Kurepa hypothesis (wKH)
in [7]. Both give fundamental set-theoretic consequences of this
axiom, which is clearly equivalent to the existence of an ω × ω2

matrix of subsets of ω1 in which the columns give partitions of ω1

and the intersection of any two distinct elements in the same row
is countable. This is clearly negated by Axiom F+, which is simply
¬P ∗

ω1
(ω, ω) in the notation of 2.1. From [3, Theorem 2.16] it also

follows that the axioms Pω1(ω, k) are equivalent for all finite k > 1.
The following theorem fits Axiom F snugly into this schema.

Theorem 2.2. Each of the following statements implies the next:
(1) KH (“There is a Kurepa tree.”)
(2) Pω1(ω, k) holds for some finite k > 1.
(3) Axiom F fails.
(4) Axiom F+fails; in other words, P ∗

ω1
(ω, ω) holds.
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Proof: (1) implies (2): Given a Kurepa tree T , index each level
of the tree by the natural numbers. Let {Bξ : ξ < ω2} be a one-
to-one indexing of ℵ2 branches of T , and let M(n, ξ) be the set of
all α < ω1 such that Bξ meets the α-th level of T in the element
indexed by n. It is easy to see that the sets M(n, ξ) give exactly
the kind of matrix described above, whose existence is equivalent
to Pω1(ω, 2).

(2) implies (3): If k ∈ ω, and E is a stationary subset of ω1, then
any family fi(i ≤ k2) of k2 + 1 functions from E to k must have a
subset of size ≥ k + 1 that agrees on a stationary set: let E0 = E
and, if Ei is stationary, let Ei+1 be a stationary subset of Ei on
which fi is constantly equal to some ji < k; by the Pigeonhole
Principle, at least k + 1 of the fi must agree on Ek2+1. From
this it easily follows that Axiom F implies ¬P ∗

ω1
(ω, k + 1), which is

equivalent to ¬Pω1(ω, k + 1). ¤

Now it is already quite difficult to negate TH(ω1): Donder and
J.-P. Levinski credit Jensen with showing, in effect, that the nega-
tion of TH(ω1) implies that a# exists for all countable a ⊂ ω1 [3].
They give a different formulation of TH(ω1) in [3]:

There exists a sequence 〈gα : α < ω2〉 of functions gα : ω1 → ω1

such that gα(ξ) ≤ ξ for all ξ, and such that whenever α 6= β,
{ξ < ω1 : gα(ξ) = gβ(ξ)} is countable.

Countability of each ξ makes it trivial to transfer the functions
from ω1ω1 to ω1ω, so to speak. For each ξ < ω1 we let ϕξ : ξ+1 → ω
be injective, and replace gα(ξ) with ϕξ(gα(ξ)); then ϕξ(gα(ξ)) =
ϕξ(gβ(ξ)) if, and only if, gα(ξ) = gβ(ξ). A similar trick is behind
Donder’s statement [1] that TH(κ+) is obviously implied by what
he there calls wCC(κ+) for all infinite κ. Donder and P. Koepke
[2] more logically attach the notation wCC(κ+) to the negations of
the respective axioms, since the negation of the one for κ = ω is
a weak form of the Chang Conjecture. A combinatorial version of
this weak form is as follows:

wCC(ω1): For every sequence 〈gα : α < ω2〉 of functions from ω1

to itself, there are indices α < β such that {ξ < ω1 : gα(ξ) < gβ(ξ)}
is nonstationary.

This axiom is equiconsistent with the existence of an almost
< ω1-Erdős cardinal [2]. This, together with the fact [7] that
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TH(ω1) is negated by Chang’s Conjecture, gives a fairly tight place-
ment for the consistency strength of ¬TH(ω1), which is further im-
proved in [3].

The consistency strength of the other Pω1(ω, τ) axioms is a dif-
ferent matter, however. Donder has shown [1] that ¬Pω1(ω, ωω)
implies the existence of an inner model with a measurable cardi-
nal, and leaves open the question whether it implies even stronger
axioms. Although axioms F and F+ are formally less strong, we
do not seem to have have any better bounds on them than we do
on ¬Pω1(ω, ωω). A (rather high!) upper bound for these three ax-
ioms is given by the following remarkable axiom, which is consistent
even for E∗ = ω1 if ZF+AD is consistent [16, Corollary 6.82]. As
is well known, ZF+AD is equiconsistent with the existence of an
inaccessible cardinal above infinitely many Woodin cardinals. This,
in turn, is consistent if it is consistent that there is a supercompact
cardinal.

Axiom 2.3. The ideal NS(E∗) is ℵ1-dense for some stationary
subset E∗ of ω1; that is, there is a family E of ℵ1 stationary subsets
of E∗ such that, given any stationary S ⊂ E∗, there exists E ∈ E
such that E \ S is nonstationary. (“E is almost inside S.”)

The following is well-known, but the proof is so short we include
it here.

Theorem 2.4. If NS(E∗) is ℵ1-dense for some stationary subset
E∗ of ω1, then P ∗

ω1
(ω, τ) fails for all countable ordinals τ . Hence,

in particular, ¬P ∗
ω1

(ω, ω) (= Axiom F+ ) holds.

Proof: Let 〈fα : α < ω2〉 be a family of functions from ω1 to
ω. Let E be as in Axiom 2.3. For each α < ω2 let Eα ∈ E and
nα ∈ ω be such that Eα\f←{nα} is nonstationary. Then there exist
E ∈ E and n ∈ ω such that E = Eα and n = nα for uncountably
many (in fact, ω2-many) α. Let X ⊂ {α : Eα = E,nα = n} be
of order type τ . Since E \ ⋂{f←α {n} : α ∈ X} is nonstationary,
{ξ ∈ E∗ : fα(ξ) = n for all α ∈ X} is a stationary subset of ω1. ¤

3. Topological applications

Our first topological application is a straightforward but quite
specialized application of ¬TH(ω1). We adopt the following termi-
nology:



CROWDING, PARA-SATURATION, AND APPLICATIONS 9

Definition 3.1. Given a function f : X → ω1, a subset of X will
be said to be unbounded if its image in ω1 is unbounded. A pair of
unbounded subsets of X is [weakly] almost disjoint if the image of
their intersection is countable (nonstationary, resp.).

Recall that a space is said to be [countably] compact if every
[countable] open cover has a finite subcover. An elementary fact is
that countable compactness implies that every infinite subset has
an accumulation point, and that the converse is true for T1 spaces.
All three properties are preserved by continuous images. Compact
subsets of Hausdorff spaces are closed, so that the compact subsets
of ω1 are precisely the countable closed subsets. Also, the countably
compact subsets of ω1 coincide with the closed subsets; therefore,
if X and f are as in 3.1 and f is continuous, then the image of any
unbounded, countably compact subset of X is a club subset of ω1.

If f : X → ω1 is continous, a pair of closed, countably compact
subsets is weakly almost disjoint iff it is almost disjoint: the in-
tersection, being closed, is also countably compact, and if it were
unbounded, its image would be a club.

Theorem 3.2. [¬ TH(ω1)] If π : X → ω1 is continuous, and
each fiber π←ξ is countable, then X cannot contain a weakly almost
disjoint family of ℵ2 unbounded countably compact subspaces.

Proof: We use the fact that TH(ω1) is equivalent to P ∗
ω1

(ω, 2).
Given a family {Wν : ν < ω2} of unbounded countably compact
subsets, let Cν = π→Wν for each ν. For each α < ω1 let hα :
π←{α} → ω be injective, let gν : ω1 → X be such that gν(α) ∈ Wν

and π(gν(α)) = α whenever α ∈ Cν , and let fν(α) = hα(gν(α)) for
α ∈ Cν and fν(α) = 0 otherwise. By ¬P ∗

ω1
(ω, 2), there is a pair of

distinct ordinals η, ν < ω2 such that fν(α) = fη(α) for all α in a
stationary set. This implies Wν and Wη are not almost disjoint. ¤

The cardinality of the family in Theorem 3.2 cannot be lowered,
as the following simple example shows: Let Y = ω2

1 with the prod-
uct topology obtained by putting the usual topology on the first
factor and the discrete topology on the second factor. Let X be
the subspace of all points below the diagonal; then X and the pro-
jection to the first coordinate satisfy the hypotheses of 3.2, and
each of the ℵ1 horizontal lines is a copy of ω1.
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The following example shows that the consistency of at least an
inaccessible is needed for Theorem 3.2.

Example 3.3. Let X be a Kurepa tree with the interval topology.
A base for this topology consists of all sets of the form (s, t] = {x :
s < x ≤ t} together with all singletons of minimal tree elements.
Every uncountable branch of T is a copy of ω1. The function f :
X → ω1 that takes each element of the αth level to α satisfies the
hypotheses of Theorem 3.2 other than ¬ TH(ω1), but the conclusion
fails because any two of the ≥ ℵ2 branches are almost disjoint.

In Theorem 3.2, the cardinality condition on the fibers of f is very
restrictive. Our next application of Axiom F will replace it with
a much weaker condition, but will also assume normality of X. It
is very similar to a theorem involving a well-known set-theoretic
axiom which requires no large cardinals and which may or may not
be compatible with Axiom F. We present this axiom and theorem
first.

Definition 3.4. If F is a collection of subsets of a set A, a pseudo-
intersection of F is a subset P of A such that P ⊂∗ F (that is,
P \ F is finite) for all F ∈ F .

The cardinal p is the minimum cardinality of a family F of sub-
sets of ω with no infinite pseudo-intersection, such that the inter-
section of every finite subfamily of F is infinite.

Given a collection F of infinite subsets of ω, a subset R of ω
reaps F if F ∩R and F \R are both infinite for all F ∈ F .

The reaping number r is the least cardinality of a collection of
infinite subsets of ω that cannot be reaped.

It is a well-known fact that ω1 ≤ p ≤ r ≤ c(= 2ω). These and
many other “small uncountable” cardinals are discussed in [15] and
[14].

In the following theorem, ÃL denotes the subspace of ω1× (ω +1)
obtained by removing the points 〈λ, ω〉 from the “top edge,” for all
limit ordinals λ. ÃL is a simple example of a non-normal subspace
of a normal space. Let

F0 = {〈α, ω〉 : α is a countable successor ordinal } and

F1 = {〈γ, n〉 : γ is a countable limit ordinal and n ∈ ω},
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respectively. If U is an open set containing F0, then U must con-
tain all but finitely many points in each vertical column of the form
{α} × ω where α is a countable successor ordinal. Consequently,
there exists n ∈ ω such that 〈α, n〉 ∈ U for uncountably many
successor α; and this implies that U has points of F1 in its clo-
sure. Similar arguments can be used to show that ÃL fails to have
quite a number of “nice” properties, some of which will be given in
Definition 3.9.

Theorem 3.5. [p > ω1] Let Y be a subspace of a normal space
X for which there is a continuous π : X → ω1 and a stationary
subset S of ω1 such that π←{σ} ∩ Y is sequentially compact for
all σ ∈ S. If Y contains an infinite family of pairwise disjoint
unbounded copies of ω1, then Y contains a copy of ÃL.

Proof: We will use normality of X to find a relatively discrete
family {Kn : n ∈ ω} of unbounded copies of ω1 in Y . (By “relatively
discrete,” we mean that no point of Kn is in the closure of

⋃{Km :
m 6= n}.) Once this is accomplished, we cut each Kn down, if
necessary, to obtain a copy Ωn of ω1 which meets each fiber π←{ξ}
in at most one point. A simple way to do the cutting down is to let
fn : ω1 → X be an embedding with range Kn, and to let Ωn be the
image of fn restricted to the club C ⊂ ω1 which is the intersection
of the club sets

Cn = {α : π(fn(ξ)) < α for all ξ < α and π(fn(α)) = α}.

` Proof that Cn is a club: It is easy to see that Cn is closed:
if αi ↗ α and αi ∈ Cn for all i ∈ ω, and ξ < α, then ξ < αi

for some i and so π(fn(ξ)) < αi < α; and since 〈fn(αi) : n ∈ ω〉
converges to fn(α), it follows from continuity of π that 〈π(fn(αi)) :
i ∈ ω〉 = 〈αi : i ∈ ω〉 converges to π(fn(α)) = α. The proof that
Cn is unbounded is done by a standard leapfrog argument using
unboundedness of Kn. To wit, given α ∈ ω1, let α0 = α; then,
with αi defined, let βi = sup{π(fn(ξ)) : ξ < αi} and let αi+1 be a
countable ordinal γ such that both π(f(γ)) and γ are greater than
both αi and βi. Such a γ exists since Kn meets each set of the form
π←[0, η] in a countable set: Kn ∩ π←[0, η] is relatively clopen in
Kn and so it must be either countable or co-countable in Kn. Let
δ = sup{αi : i ∈ ω}. Then π(fn(αi)) converges to π(f(δ)) and its
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terms are sandwiched in between the αi, so it converges to δ; and
the other criterion for δ being in Cn is trivially satisfied. a

Let D denote the derived set of C ∩S in ω1 and let {γξ : ξ < ω1}
list the club C ∩ S = (C ∩ S) ∪D in its natural order while {αη :
η < ω1} lists (C∩S)\D in its natural order. For each ξ ∈ ω1 let xξ

n

be the unique point of Ωn ∩ π←{γξ} while wξ
n denotes the unique

point of Ωn∩π←{αξ}, so that if νξ is the ξth nonlimit ordinal then
wξ

n = x
νξ
n .

Let Z =
⋃

n∈ω Ωn and let A0 be an infinite subset of ω such that
{w0

n : n ∈ A0} converges to some point z0 of Y ∩ Z. This is made
possible by the fact that Y ∩ π←{α0} is sequentially compact. By
relative discreteness of {Ωn : n ∈ ω}, z0 /∈ Z. Suppose infinite
subsets Aξ have been defined for all ξ < η in such a way that if
ν > ξ then Aν ⊂∗ Aξ. Let Bη be an infinite subset of ω such that
Bη ⊂∗ Aξ for all ξ < η. Let Aη be an infinite subset of Bη such
that {wη

n : n ∈ Aη} converges to some point zη (of Y ∩ Z \ Z). If
this has been done for all η ∈ ω1, we get that {zη : η < ω1} is an
uncountable subset of Y ∩ Z \ Z which is discrete in the relative
topology because zη ∈ π←{αη} and because αη ∈ (C ∩ S) \D.

Using p > ω1, let A be an infinite subset of ω such that A ⊂∗ Aη

for all η < ω1, and let Vη = {zη} ∪ {wη
n : n ∈ A}. Then Vη is a

copy of ω + 1 for all η and each Vη is a relatively clopen subspace
of L = V ∪R, where

V =
⋃
{Vη : η ∈ ω1} and R = Z ∩ π←(C ∩ S).

Thanks to the discreteness of {Ωn : n ∈ ω}, each Ωn ∩ π←(C ∩ S)
is a relatively clopen copy of ω1 in L and hence L is homeomorphic
to the space ÃL defined above. In fact, if {ni : i ∈ ω} lists A in its
natural order, then the mapping ϕ : L → ÃL such that

ϕ(zη) = 〈αη, ω〉 and ϕ(xξ
ni

) = 〈ξ, i〉
is easily seen to be a homeomorphism.

The task that remains is to produce an infinite relatively discrete
family of copies of ω1, given a family {Fn : n ∈ ω} of disjoint copies
of ω1 satisfying the hypothesis of the theorem.
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Claim. There exists an infinite family of disjoint open subsets
Un of X, each of which contains a closed subset Kn of some Fm

such that Kn has unbounded image.

Once the claim is proved, the open sets Un ensure the relative
discreteness of {Kn : n ∈ ω}, and each Kn is a copy of ω1 because
every countably compact noncompact subset of ω1 is a copy of ω1.
(Actually, the Kn we produce will be co-countable subsets of some
subfamily of the Fn, but we will not need this fact.) The proof of the
claim actually goes through if we begin with any countable family of
disjoint closed-in-X countably compact subsets Fn with unbounded
image. Even though Y may not be closed in X, any copy of ω1 with
unbounded image will be closed in X. This is immediate from the
fact that every countable subset of ω1 has compact closure, and the
fact that any unbounded copy of ω1 in X meets each π←[0, α] in a
countable set.

Proof of Claim: Using Urysohn’s Lemma, let g0 : X → [0, 1]
be a continuous function sending F0 to 0 and F1 to 1. Given any
Fn, there exists rn ∈ [0, 1] such that, for every neighborhood N
of rn, there are uncountably many α ∈ ω1 for which there exist
yα

n ∈ Fn ∩ π←{α} such that g0(yα
n) ∈ N . Since Fn is countably

compact, it follows that there are also uncountably many γ and
zγ
n ∈ Fn ∩ π←{γ} such that g0(z

γ
n) = rn. Hence, F 0

n = Fn ∩ g←0 {rn}
is also closed in X, countably compact, and has unbounded image.

Case 1. {rn : n ∈ ω} is infinite. In this case, pick a subsequence
{rn : n ∈ A} of distinct reals converging monotonically to some
r ∈ [0, 1] that is distinct from any of the rn. Then if the sequence
is increasing, the open intervals

U0 = g←0
(
0, r0+r1

2

)
and ( if n > 0)Un = g←0

(
rn−1+rn

2 , rn+rn+1

2

)

are the desired disjoint open sets, and one argues analogously if the
sequence is decreasing. Letting Kn = F 0

n for all n ∈ A, we obtain
the desired families of open sets and closed sets.

Case 2. {rn : n ∈ ω} is finite. Here, we know at least that both
0 and 1 are in {rn : n ∈ ω}. We also know that some g←0 {rk}
meets infinitely many of the sets Fi in a closed unbounded set. Let
s0 = 0 if k 6= 0; otherwise, let s0 = 1. In either case, let t0 = rk

and let K0 = F 0
s0

= Fs0 ∩ g←0 {s0}. Let G0 and H0 be disjoint
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open subsets of [0, 1] containing s0 and t0, so that K0 ⊂ g←0 G0 and
g←0 {t0} ⊂ g←0 H0.

Let U0 = g←0 G0. Let I0 be a closed subinterval of H0 containing
t0 in its interior. Using the fact that X0 = g←0 I0 satisfies all the
hypotheses of this theorem, we obtain a continuous function g1 from
X0 to [0, 1] in the same way we obtained g0, mutatis mutandis. In
particular, we use the set of all the unbounded Fi∩g←0 {t0} in place
of {Fn : n ∈ ω}. If the analogue of Case 1 obtains, we are done;
otherwise, we obtain a closed unbounded subset K1 of one of the
Fi ∩ g←0 {t0} along with disjoint open sets G1 and H1 analogous to
G0 and H0, as well as analogues of all other sets with subscripts of
0. Let U1 = g←1 G1. Proceeding in this way through infinitely many
steps if necessary, we obtain the desired sets Un and Kn. ¤

As remarked in the course of the proof, each set Kn we construct
is actually a co-countable subset of one of the Fm. This is because
(1) any open subset of ω1 that contains a closed unbounded subset
is co-countable and (2) consequently, every continuous real-valued
function on a copy of ω1 is eventually constant. Thus, all the sets
Fn ∩ g←i {r} are co-countable in Fn if they are unbounded.

Since we did not use normality once the Kn were obtained, we
have also shown:

Corollary 3.6. [p > ω1] Let Y be a space for which there are a
continuous π : Y → ω1 and a stationary subset S of ω1 such that
the fiber π←σ is sequentially compact for all σ ∈ S. If Y contains
an infinite, relatively discrete family of disjoint unbounded copies
of ω1, then Y contains a copy of ÃL.

It would be interesting to know whether normality can be elim-
inated in Theorem 3.5 as well.

The following theorem is called “conditional” because it is not
known whether the two axioms used are compatible with each other.

Theorem 3.7 (Conditional). [Axiom F + p > ω1] Let X be a
normal space for which there is a continuous function f : X →
ω1 with respect to which there is an almost disjoint family of ℵ2

unbounded copies of ω1, and such that each fiber is locally compact,
sequential, and σ-compact. Then X contains a copy of ÃL.
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Proof: LetW = {Wν : ν < ω2} be an almost disjoint family of ℵ2

unbounded copies of ω1. By Theorem 3.5, it suffices to show that
X has a subspace Y such that Y ∩ π←{σ} is sequentially compact
for all σ in some stationary subset S of ω1, and to find an infinite
subfamily W0 of W such that W ⊂ Y for all W ∈ W0.

By sequentiality, each compact subset of π←{α} is sequentially
compact, so π←{α} is the ascending union of compact, sequentially
compact sets Kn

α (n ∈ ω) for each α ∈ ω1, with each Kn in the
interior of Kn+1. If π←{α} is compact, let it equal Kn

α for all n.
Let Cν = π→Wν for all ν < ω2.

Let fν : ω1 → ω be defined by letting fν(ξ) be the least n such
that π←{ξ} ∩Wν ⊂ Kn

ξ whenever ξ ∈ Cν . Such an n exists since
π←{ξ}∩Wν is countably compact and so any countable open cover
has a finite subcover. If ξ /∈ Cν let fν(ξ) = 0. Axiom F now
gives a stationary subset S of ω1 and an infinite subset Z of ω2

and n ∈ ω such that fν(ξ) < n for all ν ∈ Z and all ξ ∈ S.
Let C =

⋂{Cν : ν ∈ Z}. Then C is a club subset of ω1 and
π←{ξ} ∩Wν ⊂ Kn

ξ for all ξ ∈ S ∩ C and all ν ∈ Z. Let

Y =
⋃
{Kn

ξ : ξ ∈ S ∩ C} ∪ π←[ω1 \ (S ∩ C)].

Then Y is as claimed above, and we can letW0 = {Wν : ν ∈ Z}. ¤
By being less specific in the kind of subspace we find in X, we can

remove our reliance on p > ω1 and obtain a real theorem (modulo
large cardinals). A perusal of the proof of 3.5 reveals that p > ω1

was used only to line up the neighborhoods of the points zη. If we
omit all mention of the subset A that is derived from the sets Aξ and
use all of ω in its place, we still obtain a subspace homeomorphic
to what will here be called an NN-plank.

Definition 3.8. An NN-plank is a space with underlying set (ω1×
ω)∪{〈α+1, ω〉 : α ∈ ω1} in which the relative topology on ω1×ω is
the product topology, while 〈α + 1, ω〉 is the sole nonisolated point
in a clopen set Vα ⊂ ({α + 1} × (ω + 1)) that is homeomorphic to
ω + 1.

Every NN-plank is locally compact, and each Vα meets infinitely
many of the copies ω1 × {n} of ω1 in a single point. Using the
same sets F0 and F1 as before, we can show that an NN-plank is
non-normal just as ÃL was shown to be non-normal. Thus, we can
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remove the axiom p > ω1 from among the axioms in 3.5, 3.6, and
3.7 provided we substitute “an NN-plank” for “ÃL.” For example:

Theorem 3.7′ [Axiom F]. Let X be a normal space for which there
is a continuous function f : X → ω1 with respect to which there is
an almost disjoint family of ℵ2 unbounded copies of ω1, and such
that each fiber is locally compact, sequential, and σ-compact. Then
X contains a copy of an NN-plank. Hence, X is not hereditarily
normal.

Numerous other properties can be put in place of the hereditary
normality here, thanks to the “negative” properties of an NN-plank.
Many of them follow from its semi-(ω, ω)-antinormality.

Definition 3.9. A space X is semi-(ω, ω)-antinormal if it has an
infinite discrete collection D of closed sets such that if D′ is an
infinite subcollection of D and {G(D) : D ∈ D′} is a collection of
Gδ subsets of X such that D ⊂ G(D), then

⋂{G(D) : D ∈ D′} 6= ∅.
A space X is quasi-paranormal if for every countably infinite

discrete collection {Dn : n ∈ ω} of closed sets there is a collection
{Un : n ∈ ω} of open sets, such that Dn ⊂ Un for all n, and such
that

⋂{Un : n ∈ ω} = ∅.
A space X is paranormal (δ-paranormal, resp.) if for every count-

able discrete collection {Dn : n ∈ ω} of closed sets there is a locally
finite family {Un : n ∈ ω} of open (Gδ, resp.) sets such that
Dn ⊂ Um iff Dn = Dm.

Properties related to these were introduced in [9]. It is obvi-
ous that every paranormal space is both quasi-paranormal and δ-
paranormal, and that these properties are incompatible with being
semi-(ω, ω)-antinormal. It is also an easy exercise to show that
paranormality is implied by both normality and countable para-
compactness.

Lemma 3.10. ÃL is semi-(ω, ω)-antinormal.

Proof: As before, let F0 = {〈α, ω〉 ∈ ω1×(ω+1) : α is a successor}
and F1 = {〈γ, n〉 ∈ ω1×ω : γ is a limit ordinal}. This time we focus
on subsets of F1. Let Fn

1 = F1∩ (ω1×{n}). Then {Fn
1 : n ∈ ω} is a

discrete collection of closed subsets of ÃL and so is D = {Dn : n ∈ ω}
whenever ω is partitioned into {an : n ∈ ω} and Dn =

⋃{F i
1 : i ∈

an}. If an is infinite, then every Gδ containing Dn has all but



CROWDING, PARA-SATURATION, AND APPLICATIONS 17

countably many points of F0 in its closure. Hence, if every an is
infinite, and {G(D) : D ∈ D′} is as in 3.9, then all but countably
many points of F0 are in the closure of every G(D). ¤

For NN-planks we have a slightly weaker result.

Theorem 3.11. No NN-plank is δ-paranormal. If r > ω1, then
every NN-plank is semi-(ω, ω)-antinormal.

Proof: For the first statement, follow the proof of Lemma 3.10,
letting an = {n}. If Gn is a Gδ-set containing Dn, then

⋃{Gn :
n ∈ ω} has all but countably many members of F0 in its closure.
Hence, {Gn : n ∈ ω} cannot be locally finite.

For the second statement, let Aα = {n ∈ ω : Vα∩(ω1×{n}) 6= ∅}
and define an by induction as follows. Let a0 be any set that reaps
A0 = {Aα : α ∈ ω1}. If Ak and ak ⊂ ω have been defined, let
Ak+1 = {Aα \ ak : Aα ∈ Ak} and let ak+1 be any set that reaps
Ak+1. With Dn and G(D) defined as in 3.10, the reaping nature of
the sets ak insures that all but countably many points of F0 are in
the closure of every G(D), D ∈ D′. ¤

The use of r > ω1 cannot be eliminated, as the following example
shows.

Example 3.12. Assume there is a free ultrafilter on ω with a base
{Bα : α < ω1} such that Bβ ⊂∗ Bα whenever α < β. (It is easy
to construct such an ultrafilter under CH, for example.) Let X be
an NN-plank in which the neighborhoods of 〈α + 1, ω〉 are defined
by letting a base be all sets of the form {α + 1} × (Bα ∪ {ω} \
{0, . . . , n}). Every partition of ω has at most one member which
is in the ultrafilter, and all the others can meet at most countably
many of the Bα in an infinite set. Hence, no matter how a partition
{an : n ∈ ω} of ω is chosen, at most one of the sets ω1 × an will
have more than countably many points of F0 in its closure.

Every closed subset of X \F0 differs only in a countable set from
a countable (perhaps empty) union of sets of the form C × {n},
where C is a club subset of ω1. This makes it easy to expand any
(countable) discrete collection of closed subsets of X \ F0 to open
sets such that the removal of one of these sets results in a locally fi-
nite collection. Any countable discrete collection of (closed) subsets
of F0 can be expanded to a locally finite collection of open sets: just
have the nth open set miss the first n rows of X \ F0 = ω1 × ω. A
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tedious but routine argument utilizing these two ingredients shows
that X is quasi-paranormal and hence that r > ω1 is needed for the
second part of Theorem 3.11.

Here is a fascinating problem closely related to this example.

Problem 3. Is r = ω1 compatible with the statement that every
uncountable family of subsets of ω has an uncountable subfamily
that can be reaped?

A. Dow has observed, in a private communication, that such a
model of set theory cannot contain an ultrafilter with a base of
cardinality ω1.

Before going on to the next section, we mention an application
of Theorem 3.5 to the following theorem implicit in [12].

Theorem A. [PFA] If M is a normal, hereditarily collectionwise
Hausdorff manifold of dimension > 1, then M is either metrizable
or has a subspace X for which there is a continuous π : X → ω1

such that π←{α} is compact for all α ∈ ω1, and in which there is
a family of ℵ2 disjoint countably compact subspaces whose image is
unbounded.

Using the PFA a second time gives an application similar to the
earlier uses of Axiom F.

Theorem 3.13. [PFA] If M is a normal, hereditarily collectionwise
Hausdorff manifold of dimension > 1, then M is either metrizable
or contains a copy of ÃL.

Proof: The PFA implies p > ω1, and it also figures in the follow-
ing theorem of Balogh. ¤
Theorem B. [PFA] Every first countable, countably compact space
is either compact or contains a copy of ω1.

For a proof of Theorem B, see [4, Corollary 6.6]. Every manifold
is first countable, so if M is not metrizable, theorems A and B
give a family of ℵ2 disjoint copies of ω1 in a subspace X of M .
Their images under the map π of Theorem A are unbounded since
π←[0, α) is σ-compact for each α < ω1, and no first countable,
σ-compact Hausdorff space can contain a copy of ω1. Now apply
Theorem 3.5.
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Corollary 3.14. [PFA] If M is a normal, hereditarily collection-
wise Hausdorff manifold of dimension > 1, then M is either metriz-
able or contains a subspace which is neither normal nor countably
paracompact, nor even δ-paranormal or quasi-paranormal.

4. Para-saturation of ideals

The concept of para-saturation that we give here is a generaliza-
tion of the concept introduced in section 1. It extends the second
parameter to all cardinals and adds an extra parameter motivated
by the following concept of saturation.

Definition 4.1. An ideal I of subsets of a set E is (κ ; λ, µ)-
saturated if for every collection Z of κ-many members of P(E) \ I,
there is a subcollectionW of Z such that |W| = λ and such that ev-
ery subcollection of W having µ or fewer members has intersection
not in I. I is κ-saturated if it is (κ ; 2, 2)-saturated.

This kind of saturation was introduced by R. Laver [8], who
showed the consistency of an (ω2 ; ω2, ω)-saturated normal ideal on
ω1 assuming the consistency of a huge carkinal. Every ℵ1-dense
σ-ideal is easily seen to be (ω2 ; ω2, ω)-saturated. Also, in [13,
XIII, 4.3], S. Shelah begins with a stationary, co-stationary sub-
set E of ω1 in a model with a supercompact cardinal, and defines a
semiproper forcing extension in which E remains stationary and the
ideal NS(E) ⊂ P(E) of nonstationary subsets of E is (ω2 ; ω2, ω)-
saturated.

To extend the concept of para-saturation in a fruitful way, we
introduce the following concept.

Definition 4.2. If I is an ideal of subsets of a set S, we say a
collection A of subsets of S is I-disjoint if the intersection of any
pair of distinct members of A is in I. A collection A of sets in
P(S) \ I is maximal I-disjoint if it is I-disjoint and for each B ∈
P(S) \ I there exists A ∈ A such that (B ∩A) /∈ I.

Definition 4.3. Let I and J be ideals on a set S. We say the pair
〈I,J 〉 is (κ, ι ; λ, µ)-para-saturated ((κ,< ι ; λ, µ)-para-saturated ,
resp.) if, for each family K of κ maximal I-disjoint collections of
sets in P(S)\I, each of which has≤ ι (fewer than ι, resp.) members,
it is possible to choose a subfamily L of λ collections and a member
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of each collection in the subfamily L so that the intersection of any
set of µ chosen members is not in J . We say I is (κ, ι ; λ, µ)-para-
saturated if the pair 〈I, I〉 is (κ, ι ; λ, µ)-para-saturated.

The concept of (κ, ι ; λ, µ)-para-saturation makes sense only if
κ ≥ λ ≥ µ. On the other hand, there are no restrictions on ι
vis-a-vis the other cardinals. Maximality of the members of K
clearly implies that if λ is finite, then every ideal is (κ, ι ; λ, µ)-
para-saturated. Also, if ι is finite, then any ultrafilter containing
the complements of the members of I is a witness to the fact that
I is (κ, ι ; λ, n)-para-saturated for all finite n. On the other hand,
if µ is infinite than we can generally expect to see only negative
results or consistency results. For instance, Laver has observed, in
a private communication, that the pair 〈I,J 〉 is not (κ, 2 ; ω, ω)-
para-saturated in a model obtained by adding max{κ, ω1} Cohen
reals, where I and J are the nonstationary and countable ideals on
ω1, respectively. Laver’s argument for the case κ = ω2 is given in
[10] and his argument for the other κ is essentially the same. This
is the weakest possible kind of nontrivial para-saturation property
involving these two ideals and infinite µ. Since this paper is focused
on ideals on ω1, we will only analyze the case µ = ω except for a
pair of paragraphs at the end.

The following is immediate from the comments before 2.3 and
after 4.1.

4.4. Observation. Every (κ; λ, µ)-saturated ideal is (κ, ι ; λ, µ)-
para-saturated for all ι. In particular, if it is consistent that there
is an inaccessible cardinal above infinitely many Woodin cardinals,
it is consistent that NS(ω1) is (ω2, 2ω1 ; ω2, ω)-para-saturated.

Clearly, the smaller κ is and the larger any of the remaining
cardinals or the ideal J is, the more demanding it is for 〈I,J 〉 to be
(κ, ι ; λ, µ)-para-saturated, and having I ⊂ J is more demanding
than having J ⊂ I. It is also not hard to see that if I ⊂ I0 and
I0 is ι+-closed (i.e., closed under unions of cardinality ≤ ι), then
replacing I by I0 gives a stronger condition. Unlike the concepts in
section 1, Definition 4.3 is phrased in terms of maximal I-disjoint
families, rather than partitions into arbitrary subsets of the set
on which I lives. Nevertheless, (κ, ι ; λ, λ)-para-saturation is easily
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seen to be equivalent to (κ, ι ; λ)-para-saturation when I = J is ι+-
closed. In particular, this is true if I = J and either ι is finite, or ι
is countable and I is a σ-ideal, and section 1 made these restrictions
for this very reason.

This change in perspective makes it possible to improve on the
observation made near the end of section 1, that Axiom F+ implies
that NS(ω1) is (ω2, ω; ω, ω)-para-saturated. We can now improve
the second parameter to ω1.

Theorem 4.4. Axiom F+ implies that NS(ω1) is (ω2, ω1; ω, ω)-
para-saturated.

Proof: Let {Mα : α ∈ ω2} be a family of maximal NS(ω1)-
disjoint collections of stationary subsets of ω1, each of cardinality
≤ ω1. Let Mα = {Mη

α : η < κ} where κ ≤ ω1. We can assume Mα

is pairwise disjoint by replacing, if necessary, Mη
α by Mη

α \
⋃{M ξ

α :
ξ < η} for all η. The resulting sets are still stationary and the
collection is still maximal NS(ω1)-disjoint, because Mη

α ∩
⋃{M ξ

α :
ξ < η} is nonstationary.

Assuming then thatMα is pairwise disjoint for all α, we let {P η
α :

η < κ} list the members of Mα in order of their least elements, and
define functions gα : ω1 → ω1 by letting gα(ξ) = η when ξ ∈ P η

α .
Then η ≤ ξ by an easy induction using disjointness of each Mα,
and g←α {η} = P η

α .
Now we use injective transfer functions ϕξ : ξ + 1 → ω as in

the comments following the proof of Theorem 2.2. That is, let
fα : ω1 → ω be defined by fα(ξ) = ϕξ(gα(ξ)). Then fα(ξ) = fβ(ξ))
if, and only if, gα(ξ) = gβ(ξ). Also, P η

α = {ξ : fα(ξ) = ϕξ(η)}
Now Axiom F+gives gives a stationary set E on which infinitely

many fα’s agree, meaning that there is an infinite set of indices
{αn : n ∈ ω} such that fαn(ξ) = fαm(ξ) for all ξ ∈ E. This
common value at each ξ ∈ E equals ϕξ(ηξ) for some ηξ ≤ ξ. Then
gαn(ξ) = ηξ for all n ∈ ω.

Let ∆ = {ξ : ηξ = ξ}. If ξ ∈ ∆ then ξ ∈ P ξ
αn for all n and

so ∆ meets each member of Mαn in at most one point. Hence, by
NS-maximality of Mαn , ∆ is nonstationary and E\∆ is stationary.

The function ψ : E \∆ → ω1 that takes ξ to ηξ is regressive. So
by Fodor’s Lemma, there is a stationary S ⊂ E \ ∆ and η ∈ ω1
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such that ψ(ξ) = η for all ξ ∈ S. In other words, S ⊂ P η
αn for all

n ∈ ω. ¤
The following problems are closely related to Problem 1 and the

question preceding it.
Problem 4. Is it possible to show the consistency of the nonsta-
tionary ideal being (ω2, ω1 ; ω, ω)-para-saturated without using large
cardinal axioms?

A negative answer would, of course, follow from a positive one
to:
Problem 5. Is the converse of Theorem 4.5 true?

If we switch the second and third para-saturation parameters
in Problem 4, we get an axiom which does require large cardinal
axioms and, in fact, implies Axiom F+.

Theorem 4.5. If there is a (ω2, ω ; ω1, ω)-para-saturated proper σ-
ideal I on a stationary subset S of ω1 such that NS(S) ⊂ I, then
P ∗

ω1
(ω, τ) fails for all τ < ω1; hence, there is an inner model with a

measurable cardinal, Axiom F+ holds, and NS(S) is (ω2, ω1 ; ω, ω)-
para-saturated.

Proof: Let {fα : α < ω2} be a family of functions from S to ω. In
the ω×ω2 matrix of sets M(n, α) = f←α {n}∩S, the αth column is
a partition of S from which we can throw out all members of I and
still have what is left of the αth column be maximal I-disjoint. Let
{f←α {nα} : α ∈ W} be a witness to (ω2, ω ; ω1, ω)-para-saturation;
in particular, |W | = ℵ1. By the Pigeonhole Principle, some row has
uncountably many sets indexed by members of W . The intersec-
tion of any subcollection of order type τ witnesses the negation of
P ∗

ω1
(ω, τ). The remaining conclusions follow from the replacement

of ω1 by NS(S) in the statement of Axiom F+and of Theorem 4.5.,
and following the proof of the latter with an altered notation. ¤

In [8], Laver proved a similar theorem, in effect,

Theorem C. If CH holds and there is an (ω2, ω ; ω2, ω)-para-saturated
σ-ideal I on ω1, then

(ℵ2

ℵ1

)
→

(ℵ1

ℵ1

)1,1

ω

holds, and [ω1]≤ω is (ω2, ω ; ω1, ω1)-para-saturated.
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Laver’s proof implicitly showed the following lemma, from which
Theorem C follows easily.

Lemma 4.6. [CH] If X is a family of ℵ2 subsets of ω1 such that
every countable subfamily of X has uncountable intersection, then
there exists X0 ⊂ X such that |X0| = ℵ1 and |⋂X0| = ℵ1.

The following problem is a variant of Problem 4 which puts a
bigger demand on ι but allows the use of the countable ideal.

Problem 6. Let S be a stationary subset of ω1. If I is the non-
stationary ideal on S and J is the countable one, is it possible to
show the consistency of 〈I,J 〉 being (ω2, 2ω1 ; ω, ω)-para-saturated
without using large cardinal axioms?

The existence of S for which this para-saturation property holds
is called Axiom S in [10]. There, it is used in conjunction with PFA+

to show the consistency of every T5, hereditarily cwH manifold of
dimension > 1 being metrizable. The claim that this conjunction
is consistent, modulo large cardinals, turns out to be an unsolved
problem: the means used to show its consistency were flawed as
explained in [12], the correction to [10]. In [12], one can also read
a new proof using PFA alone.

Our final theorem takes care of most of the remaining para-
saturation properties where the first parameter is ≤ ω1.

Theorem 4.7. Let I be the nonstationary ideal on a stationary
subset E of ω1. Then

(a) if p > ω1, then I is (ω, n ; ω, ω)-para-saturated for all n ∈ ω;
(b) I is not (ω,< ω ; ω, ω)-para-saturated;
(c) if p > ω1, then I is (ω1, < ω ; ω, ω)-para-saturated;
(d) I is not (ω1, ω ; ω, ω)-para-saturated.

Part (a) will follow from a slightly more general lemma (4.10,
below). If we assume (a), then (c) follows quickly: Given a family
{Mα : α < ω1} of finite maximal I-disjoint collections, there exists
n such that uncountably many Mα are of cardinality ≤ n, so we
can apply (a) to any infinite subfamily of these Mα.

The following example is more than enough to show (b).

Example 4.8. Let I be any ideal on ω1 such that I 6= P(X) for
all X ⊂ ω1. Let S = {α : {α} ∈ I} and let {fα : α ∈ S} be a family
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of functions from ω to ω, with fα(n) ≤ n for all n, and such that
any two agree on only finitely many n. Such a family is easy to
construct by transfinite induction: If Fα = {fβ : β < α} has been
defined, let {gn : n ∈ ω} list Fα and make sure fα differs from gn

on all integers greater than n. We will now use each fα to define
an ω × ω matrix of subsets of S in a manner “orthogonal” to the
method of sections 1 and 2.

For each n and i in ω, let Ai
n = {α : fα(n) = i}. Then An =

{Ai
n : i ≤ n} is a partition of S, and if we remove all members that

are in I, then what remains is still a maximal I-disjoint family. If
Z ⊂ ω is infinite and A

f(n)
n is chosen from the nth family for each

n ∈ Z, then the graph of f can be a subset of the graph of at most
one of the fα, and hence

⋂{Af(n)
n : n ∈ Z} contains at most one

element.

The following example is more than enough to justify (d) of The-
orem 4.7.

Example 4.9. Let I be any σ-complete ideal as in Example 4.8.
This time let {fα : α ∈ S} be a family of functions into ω1, with
fα(ξ) ≤ ω + ξ for all ξ, such that any two agree on only finitely
many ξ. One can construct such a family by transfinite induction
as follows. If Fα = {fβ : β < α, β ∈ S} has been defined, let
{gn : n ∈ ω} list Fα and let {ξn : n ∈ ω} list all ordinals less than
α and make sure fα differs from gn on all ξi such that i > n. Also
let fα(γ) = α for all γ ≥ α. Continue as for Example 4.8, mutatis
mutandis. In particular, this time Z is any countably infinite subset
of ω1, and σ-completeness comes into play when we throw out all
members of each partition that are not in I and conclude that the
resulting collection is still maximal I-disjoint.

Finally, the following lemma proves part (a) of Theorem 4.7. I
am indebted to the referee for the proof given here. It is much
simpler than my original proof, which was only given in full for
n = 2 and incorrectly outlined for n > 2.

Lemma 4.10. [p > ω1] Suppose {I,J } ⊂ {[E]≤ω, NS(E)} where
E ⊂ ω1 is stationary. Then 〈I,J 〉 is (ω, n ; ω, ω)-para-saturated
for all finite n.

Proof: Fix n. First note that by prior observations, it is enough
to prove that I = NS(E) is (ω, n ; ω, ω)-para-saturated. Let {Aj :
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j ∈ ω} be a family of maximal I-disjoint collections {A0
j , . . . , A

n−1
j }.

For each α ∈ E and k = 0, . . . , n− 1, define

Zk
α = {j : α ∈ Ak

j }.
Let U be a nonprincipal ultrafilter on ω. There exists k ≤ n − 1
such that

S = {α : Zk
α ∈ U} is stationary.

By p > ω1 there is an infinite Z ⊂ ω with Z \Zk
α finite for all α ∈ S.

Thus, there is a stationary S0 ⊂ S and a finite F ⊂ Z such that
S0 ⊂

⋂{Ak
j : j ∈ Z \ F}. ¤

There remain only two open (κ, ι ; λ, µ)-para-saturation prob-
lems on NS(ω1) where κ ≤ ω2 and µ = ω; even large cardinal
axioms have not yet been applied successfully to them.

Problem 7. Is it consistent that the nonstationary ideal on ω1

is (ω1, 2 ; ω1, ω)-para-saturated? that it is (ω1, < ω ; ω1, ω)-para-
saturated?

We conclude with a few remarks on what happens if µ > ω. The
proof of Theorem C does not extend to the substitution of NS(ω1)
for [ω1]ω even if I is a normal ideal, and the following problem
seems to be open, even modulo large cardinals.

Problem 8. Is it consistent for NS(ω1) to be (2ω1 , 2 ; ω1, ω1)-para-
saturated, or (κ, ι ; ω1, ω1)-para-saturated for smaller κ or bigger ι?

However, if there is such a thing as a model of 2ω1 = ω3 where
the club filter has a base of size ω2 and NS(ω1) is ω2-dense (we
don’t even need ω1-density here), then a 2-step pigeonhole argu-
ment shows us that NS(ω1) is (ω3;ω3, ω3)-saturated! That is, given
any family of ω3 stationary sets, there is a subfamily of cardinal-
ity ω3 with stationary intersection. This would imply that NS(ω1)
is (2ω1 , 2ω1 ; 2ω1 , 2ω1)-para-saturated, and also that any family of
2ω1(= ℵ3) functions from ω1 to ω has a subfamily of ℵ3 functions
that take on the same constant value on the same stationary set.
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