A note on Cj(irrationals)

The main result in this note was obtained in 2001. It is that C}(IP) does not have
a o-closure-preserving base at the origin consisting of countable unions of the usual
basic open sets centered on the origin. A slightly different proof was subsequently
published by Gartside and Glyn [1] so this note will not be published unless it is
supplemented by new results.

Notation. In our context, X is a space homeomorphic to the space of irrational
numbers with the usual topology, while Cj(X) denotes the ring of continuous real-
valued functions on X, with the compact-open topology. If h € Ci(X) and K is a
compact subset of X and p > 0, let

B(h,K,p)={f€ X :|h(zx)— f(z)| < p for all z € K}.

As is well known, these sets form a base for C(X).

Given a real number r, we let r denote the constant function with domain X
and range {r}, and we let 7 denote the constant function with domain Cy(X) and
range {r}.

Let 7 denote the space of all nondecreasing functions from w to itself, with the
product topology. As is well known, 7 is homeomorphic to “w itself, and thus to
the space PP of irrationals. The following two facts are well known, but the proofs
are so short that they are included here:

Theorem A. Cy(X) is a cosmic space; that is, it has a countable network.

Proof. Let B be a countable base for P, and for B € B and rationals ¢ < r, let
[B,(q,7)] = all f in Cx(P) with f(B) C (gq,r), then the collection of all finite
intersections of such things is a network. [

Corollary. Cy(X) is hereditarily separable and hereditarily Lindeldf, and sequen-
tially separable.

Proof. A space is cosmic iff it is the continuous image of a separable metrizable
space. Sequential separability is an immediate consequence, while the other two
properties are easy consequences of having a countable network. [

This corollary allows us to write any open set of Cj(PP) and hence of C(7) as
a countable union of basic open sets. Because of the corollary and the following
well-known theorem, the question of whether Cy(P) is M; reduces to the question
0_f> whether there can be a o-closure-preserving base of open sets about the origin

0.
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Theorem B. [cf. [2], proof of Lemma 24] If G is a topological group, and D is a
dense subset of G, and B is an open base at the identity, then {dB :d € D, B € B}
18 a base for the topology on G. [

Theorem 1 below shows that if we have a base in C,(7) at 0 of open sets which
_)
are the union of basic open sets as above, each of which is centered at 0, then the
base cannot be o-closure-preserving.

Lemma 1. Given a base B at 0 € T of sets of the form

G B(0, Kn, pn).

n=0

and p > 0, there are a family {B, : o < b} C B, andp, € T, and {qy :n € w} C T,
and (p% : n € w) with supremum p, < p such that {p, : @ < b} is <*-increasing
and <*-unbounded, and such that

— —
B(0, (¢ p%) € By C B(0,pk,pa)

foralln € w.

Proof. Choose the p, first, and make an initial choice of p!,. Since B is a base at
?, we can assume that if B € B, then all p,, associated with B as in the statment
of this lemma are less than p; and since each B (6), pl,pl,) contains some member
of the base, we can choose B, € B to be contained in it. If

Bo = |J B(0,K2,p2),
n=0

—
0,

let po be the supremum of the p%; clearly p, < p/ , and since each B( 0, K, p%) is
a subset of B(ﬁ,p}l,p;), and p% < pa, we have K& C pl and so B(W,Kf{,pz‘) C
B (6), pl, pa) for all n. Finally, it is clear that if ¢¢ majorizes the compact set K,
then B( 0, (q2)',p2) C B, for alln. O

Theorem 1. If B is a base at 0eT of sets of the form
| B0 Ko, pn),
n=0

then B is not o-closure-preserving.

Proof. Let po, B, etc. be as in Lemma 1. Taking a subfamily of b members if
necessary, we may assume {p, : @ < b} is both bounded in R and bounded away
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from 0. By the same kind of cutting-down-if-necessary argument, it is enough to
show that {B, : a < b} is not closure-preserving.

Let qo = q§ for all . Then po(k) < qo(k) for all £ € w, because of the double
containment in the statement of Lemma 1.

Inductively define ¢ € 7 one coordinate at a time so that, for all n € w, there
are b-many ¢, extending ¢ [ n. The associated p,’s are still <*-unbounded, so that
after ¢ has been defined, there will be an infinite set of integers k£ for which the
following set is unbounded in w:

{pa(k):qa T k=qlk}

Therefore, we can define a strictly increasing sequence of ordinals («;,)nec. by in-
duction, along with a strictly increasing sequence of non-negative integers k,, so
that pa, (ko) > q(ko) and, if n > 0:

(1) 4o, (5) = q(j) for all j < ky_1;
()pang n) > q(kn); and

(3) Pa, (kn) > qa, (k) for all i < n.

Notation: For o € ‘w, let Ulg]| ={pe€T :pli=oc}

Let 0y, = pa, [ kn + 1. From (1) — (3) and the fact that p, < g, it follows that
Pa,, (kn) > qa,, (ky) for all m # n. From this follows item (b) below, and part (c)
follows similarly:

(a) Pa, € Ulonl;
(b) Uloy) N, =0 for all m # n; and
(c) Ulon] NU[om] = 0 for all m # n,

Another easy consequence of (1) and the definition of ¢,, and the fact that p, < g
is that the boundary of | J, .. Ulo,] is a (compact) subset of ¢'.

ncw

Remarkably enough, although the ¢ with n > 0 play no role in these definitions,
there is a subsequence of (B, : n € w) and a function A in the closure of the union of
the members of the subsequence, but not in the closures of the individual members.
These other ¢ come into play in defining h, via a concept of “dangerous for n wrt

b2

7”7 introduced below. Once we find the desired subsequence, Theorem 4 follows.

By picking a subsequence if necessary, we may assume p,, — p > 0. The
remainder of the proof is covered by two main cases. Case 1 is where p,. T p, while
Case 2 is where p,, \, p, where by 7,, T r is meant that r, — r and r, < r,4; for
all n, whereas by r, \, r is meant that r,, — r and r,, > r,4+1 for all n. Clearly



every convergent sequence of reals has a subsequence falling under one of these two
descriptions.

Case 1. Let h = p. This is the easy case; h is in the uniform closure of the union
of the B,, but is not even in the product-topology closure of the individual B, .
Indeed B(h,{pa, }, P—Pa, ) misses even B(W,p}ln , Pa,, ). On the other hand, if e > 0,
pick N € w so that p — ps, < €, pick k so that p— p2™ <'¢, and let g(x) = pp¥ — ¢
for all x € T, where § < € — p+ pp¥. Then clearly g € B(?, (ge™)Y, pi™), while
|h — gllec = p — P~ <€, so a fortiori g € B(h, K, €) for all compact K.

Case 2. In this case we may find ourselves taking subsequences infinitely many
times, so to avoid too many multiple subscripts and a confusing tangle of “wolog”s,
we will index the sequences using a decreasing chain of subsets of w. The final
outcome will be a subset A,, = {n(j) : j € w} of w and a function & in the closure of
U{B., :n € A,} but not in the closure of any individual B,,, (n € A,). We define
h | Uloy](n € A,) by induction, beginning with the assumption that p,, \, p (> 0).

Let n(0) = 0, let Ay = w, let €9 = pa, + 1, and let h(z) = g for all x € Uloy].
Given n € w\ {0} and r € R, call r dangerous for n wrt 0 if, for each compact
K C T, there exists k such that K N K;'" NU[oo] = 0, and such that p7™ > r. From
(b) above, it follows that py™ is dangerous for all n > 0 wrt 0, while it is clear that
no r > p,, is dangerous for any n > 0 wrt 0.

For each n > 0, let 62 = sup{r : r is dangerous for n wrt 0}. If (§2) has a strictly
increasing (convergent) subsequence, (62 : n € A) T & (< p), let A, = w, and let
h(z) = dp whenever x ¢ Ulog]. On the other hand, if there is no such subsequence,
then there is a monotone non-increasing subsequence (60 : n € A;) converging to
some Jg (< p). In this case let n(1) = min(A;), let g,(1) = 52(1) + 1/2, and let
h(z) = e, for all z € Ulo,1y]. Note that e,(1) is not dangerous for any n € A,
wrt 0. Continue building h by induction as follows.

The general induction hypothesis at j € w \ {0} is that A; and n(i) = min(4;)
and h [ Uloy;)] have been defined for all i < j and that:
(%) (6L :n € A;) \, 9, for all i < j, and if m < i < j then p > §,, > §; > 0.

n

For each n € A%(= A; \ {min A;}) and each r € R, call r dangerous for n wrt j if
the following holds:

For each compact K there exists k such that K N K" N Uigj Ulon@y] =0,
and such that p7™ > r.
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Again by (b), pg™ is dangerous for all n € A’ wrt j. It is also easy to see that
if r is dangerous for n wrt j, then r is dangerous for n wrt ¢ for all 7 < j; and also
that the set of reals dangerous for n wrt j forms an initial segment of R.

Obviously, r is not dangerous for n wrt j iff there exists a compact subset K of
T such that for each k € w, either K N K™ NU,;<; Ulon] # 0, or pp <.

The purpose of this concept is to find a value for h(z) on Ulo,]| which will put
h outside the closure of B,, , but which also makes it possible to continue defining
h on the rest of 7 so that it will be in the closure of the union of all the B, . If
r is dangerous for n wrt j, and if h <7 on K N K. whenever this intersection is
nonempty, then h is in the closure of B, no matter how h is defined elsewhere.

For each n € Af let 8} = sup{r : r is dangerous for n wrt j}. If (6} : n € A})
has a strictly increasing subsequence, (07 : n € Aj;1), let its limit be 6,;(< 6;_1);
let A, = Aj11U{n(i) i < j} and let h(z) = §; for all x ¢ (J,; Uloy )] Clearly, h
is continuous. For notational convenience, write €, = d; for all m > n(j), m € A,
and have {n(j) : j € w} list A, in its natural order. By definition of §;, €, is not
dangerous for n wrt j for any n € A; 1.

On the other hand, if (67 : n € A’) has no strictly increasing subsequence, then
there is a monotone non-increasing subsequence (67, : n € A;) converging to some
0;(< dj-1). In this case let n(j + 1) = min(A4;), let (1) = 5i(j+1) +1/23+L
and continue the induction. It is clear from the definition of ¢}, that €,(;11) is not
dangerous for any n € A1 wrt j.

If the induction is forced to continue for infinitely many steps, let A, = {n(i) :
i € w}. Then {&,, : m € A,} is a monotone non-increasing sequence converging to
some § < p. We then define h on Ulo,,(;] to equal £,,(;) and let h equal 0 everywhere
outside | J{U][om] : m € A,}. Then h is clearly continuous.

FIfm e A,, then h is not in the closure of B, . Thisis clear in case m = 0, since
then B(h,{pa,},1) even misses B(W,pgo,pao). Otherwise, we have €, = €,,(j41)
for some 7, and no r > ¢/, is dangerous for m wrt j, so there is a compact set C
that meets every set of the form K™ N UJ,c; Uloy(y] for which pp™ > 6},. Let
K ={pa,, }UC.

Suppose first that A, = Aj11 U{n(i) : i < j} for some j, and that m € A4, so
that €, = d;. Let ¢ = min{d; — &7,,1/27}.

H- Claim. B(h, K,€) does not meet By, = Ureq B(ﬁ, KJX™, ppm™).

Proof of Claim. Fix k € w. If K N K™ N Ulo,] = 0 for all i < 4, and
fe B(W,K?m,pgm), then f(pa,,) < 82,, whereas h(p,,,) = d;.



On the other hand, if K N K™ N U<, Ulonw] # 0, let p € KN K™ NU[on3)
for the least ¢ < j for which this is possible. If i = 0 then f(p) < pa, whereas
h(p) = pa, + 1. If i > 0, then, by minimality of i, and by the fact that any
r > 5;?11) is not dangerous for m with respect to i — 1, we have f(p) < &' (21) for all
feB(0, K, p®™), whereas h(p) = SN 12 > ol 412,

If the induction continues to where A;o is defined, then we let € = 1/272 and
follow the above argument, except that now h(p,, ) = 67 +1/27tL o

= h is in the closure of |J{Ba,, : m € A,}. Given € > 0 and a compact subset
K of T, choose j in w as follows. If the induction stops at some stage j, pick £ > j
large enough so that 5fl o > d; — €/2, while if the induction continues for infinitely
many steps, choose £ so that €,,(p) — 6 < €/2. In the latter case, let m = n(f); then
551(@ — ¢/2 is dangerous for m wrt £ — 1. Hence there exists k such that

Kpm | JUloam) N K =0,
i<l

and such that pf™ > §* (el) €¢/2. This enables us to choose g € B(ﬁ), K™, ppm)n
B(h,K,¢€) as follows. Let g be any continuous function which agrees with h on
Kn Ui§£ Ulon)] and equals p;;™ on K. Then g is as desired: if p € K then g(p)

is within € of h(p), etc.

The former case, where the induction stops at stage j < £, is similar: we have

that 52(6) — ¢/2 is dangerous for m = n({) wrt j, and now we look for a k so that

K;:m N U U[O’n(i)] NK = @,

(5]
and such that pp™ > 5 —€/2,etc. 4 O
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