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Abstract. Strong α-favorability of the compact-open topology on the space of con-
tinuous functions, as well as of the generalized compact-open topology on continuous
partial functions with closed domains is studied.

1. Introduction

Spaces of partial maps have been studied for various applications throughout
the century ([Ku1-2], [AB], [BB], [Ba], [DN1-2], [Fi], [KS], [La], [Se], [St], [Wh],
[Za]). In particular, the so-called generalized compact-open topology on the space of
continuous partial functions with closed domains proved to be a useful tool in math-
ematical economics ([Ba]), in convergence of dynamic programming models ([La],
[Wh]) or more recently in the theory of differential equations ([BC]). This topol-
ogy was also scrutinized from purely topological point of view e.g. in [BCH], [Ho],
[HZ1-2], where among others, separation axioms and some completeness properties
(such as Baireness, weak α-favorability, Čech-completeness, complete metrizability)
of the generalized compact-open topology have been investigated.

Our paper continues in this research by looking at strong α-favorability in this
setting. Section 3 contains our results on strong α-favorability of τC as well as a
short proof of a recent theorem of Holá on complete metrizability of τC .

We will rely on the close connection that exists between the generalized compact-
open topology, the ordinary compact-open topology τCO ([MN1]) and the Fell topol-
ogy τF on the hyperspace of nonempty closed subsets of a topological space ([Be],
[KT]). This connection and some other auxiliary material is described at the end of
Section 1, while in Section 2 we list results about strong α-favorability of τCO and
τF , respectively, needed for proving our main results; a generalization of a theorem
of Ma on weak α-favorability of the compact-open topology is also given.

Let X and Y be Hausdorff spaces. Denote by CL(X) the family of nonempty
closed subsets of X and by K(X) the nonempty compact subsets of X. For any
B ∈ CL(X) and a topological space Y , C(B, Y ) will stand for the space of all
continuous functions from B to Y . A partial map is a pair (B, f) such that B ∈
CL(X) and f ∈ C(B, Y ). Denote by P = P(X,Y ) the family of all partial maps.
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Define the so-called generalized compact-open topology τC on P as the topology
having subbase elements of the form

[U ] = {(B, f) ∈ P : B ∩ U 6= ∅},

[K : I] = {(B, f) ∈ P : f(K ∩B) ⊂ I},

where U is open in X, K ⊂ X is compact and I is an open (possibly empty) subset
of Y . We can assume that the I’s are members of some fixed open base for Y .

The compact-open topology τCO on C(X,Y ) has subbase elements of the form

[K, I] = C(X,Y ) ∩ [K : I] = {f ∈ C(X,Y ) : f(K) ⊂ I},

where K ⊂ X is compact and I ⊂ Y is open; Ck(X) (see [MN1]) stands for
(C(X,Y ), τCO) with Y = R (the reals). Note, that Ck(X) is a topological group, so
a typical basic open neighborhood of f ∈ Ck(X) is of the form f+[K, I] = {f+f ′ ∈
Ck(X) : f ′ ∈ [K, I]}, where K ∈ K(X) and I is a bounded open neighborhood of
zero. We will also use that, if X is a Tychonoff space, then f +[K, I] ⊂ f ′+[K ′, I ′]
implies K ⊃ K ′.

Denote by τF the so-called Fell topology on CL(X) having subbase elements
of the form {A ∈ CL(X) : A ∩ V 6= ∅} with V open in X, plus sets of the form
{A ∈ CL(X) : A ⊂ V } with V co-compact in X. For notions not defined in the
paper see [En].

In the strong Choquet game (cf. [Ch] or [Ke]) two players, α and β, take turns in
choosing objects in the topological space X with an open base B: β starts by picking
(x0, V0) from E(X) = E(X,B) = {(x, V ) ∈ X × B : x ∈ V } and α responds by
U0 ∈ B with x0 ∈ U0 ⊂ V0. The next choice of β is some couple (x1, V1) ∈ E(X,B)
with V1 ⊂ U0 and again α picks U1 with x1 ∈ U1 ⊂ V1 etc. Player α wins the run
(x0, V0), U0, . . . , (xn, Vn), Un, . . . provided

⋂
n
Un =

⋂
n
Vn 6= ∅, otherwise β wins.

A winning tactic for α (cf. [Ch]) is a function σ : E(X,B) → B such that α wins
every run of the game compatible with σ, i.e. such that Un = σ(xn, Vn) for all n.
The strong Choquet game is α-favorable if α possesses a winning tactic; in this case
X is called strongly α-favorable (or a strong Choquet space - cf. [Ke]). We will
need the following facts about the strong Choquet game:

Proposition 1.1.

(i) Let X be metrizable. Then X is completely metrizable if and only if X is
strongly α-favorable.

(ii) If X is locally compact, then X is strongly α-favorable.
(iii) Let f : X → Y be continuous, open and onto. If X is strongly α-favorable,

so is Y .
(iv) The product of any collection of strongly α-favorable spaces is strongly α-

favorable.

Proof. It is not hard to show that (ii)-(iv) holds (cf. [Ke], Exercise 8.16); as for (i),
see [Ch], Theorem 8.7 or [Ke], Theorem 8.17. ¤

The Banach-Mazur game (see [HM] or the Choquet game in [Ke]) is played as the
strong Choquet game except that β’s choice is just a nonempty open set contained
in the previous move of α. A space X is called weakly α-favorable if α possesses
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a winning strategy in the Banach-Mazur game (i.e. a function defined on nests of
nonempty open sets of odd length picking for α the set that wins the Banach-Mazur
game for α no matter what β chooses). Note that β has no winning strategy in the
Banach-Mazur game if and only if X is a Baire space (i.e. countable intersections
of dense open sets are dense - cf. [Ke] or [HM]), consequently, weakly α-favorable
spaces are Baire spaces.

The restriction mapping

η : (CL(X), τF )× (C(X,Y ), τCO)→ (P, τC)

is defined as η((B, f)) = (B, f ¹B).
Clearly, η is onto provided continuous partial functions with closed domain are

continuously extendable over X. We can say more about η if we assume that X,Y

have property (P), i.e. if X,Y are such that partial continuous functions with closed
domains are continuously extendable over X and there exists an open base V for Y

closed under finite intersections such that for each nonempty K ∈ K(X) and V ∈ V,
every function f ∈ C(K,V ) is extendable to some f ∗ ∈ C(X,V ). A fundamental
result about η is as follows (see [HZ1], Section 3):

Proposition 1.2.

(i) If X,Y have property (P), then η is open, continuous and onto.
(ii) If X is paracompact and Y is locally convex completely metrizable or if X

is T4 and Y ⊂ R is an interval, then X,Y have property (P). In particular,
η is open, continuous and onto in this case.

2. Strong α-favorability of τCO and τF

As for strong α-favorability of the Fell topology, we have:

Theorem 2.1.

(i) If X is locally compact, then (CL(X), τF ) is locally compact (and hence
strongly α-favorable).

(ii) If X is a strongly α-favorable space such that the countable subsets of X are
closed, then (CL(X), τF ) is strongly α-favorable.

Proof. (i) See [Be], Corollary 5.1.4.
(ii) In our case K(X) is a weakly Urysohn family, i.e. if S ∈ K(X) and A ⊂ Sc,

then there exists T ∈ K(X) with A ⊂ T c ⊂ Sc such that E ⊂ Sc for all countable
E ⊂ T c (we can choose T = S). Consequently, Theorem 5.1 of [Zs] yields the
desired result. ¤

Recall that a Hausdorff space X is hemicompact ([En], Excercise 3.4.E) provided
in the family of all compact subspaces of X ordered by inclusion there exists a
countable cofinal subfamily.

Theorem 2.2. If X is locally compact paracompact and Y is completely metrizable,
then (C(X,Y ), τCO) is strongly α-favorable.

Proof. The proof of Theorem 5.3.1 in [MN1] can be modified to get the result:
write X =

⊕
t∈T

Xt, where each Xt is locally compact and hemicompact ([En],
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Theorem 5.1.27). Then (C(Xt, Y ), τCO) is completely metrizable for all t ∈ T

([MN1], Exercise 5.8.1(a)). Therefore, (C(X,Y ), τCO) is homeomorphic to the
product

∏
t∈T

(C(Xt, Y ), τCO) ([MN1], Corollary 2.4.7) of completely metrizable
spaces, hence, in view of Proposition 1.1 (i) and (iii), (C(X,Y ), τCO) is strongly
α-favorable. ¤

A space X is a q-space if for each x ∈ X there is a sequence {Gn}n∈ω of open
neighborhoods of x such that whenever xn ∈ Gn for all n, the set {xn}n∈ω has a
cluster point. Notice that 1st countable or locally compact (even Čech-complete)
spaces are q-spaces. The next result generalizes Theorem 1.2 of [Ma] about weak
α-favorability of the compact-open topology (see also [MN2]):

Theorem 2.3. Let X be a q-space. Then the following are equivalent:

(i) Ck(X) is strongly α-favorable;
(ii) Ck(X) is weakly α-favorable;
(iii) X is locally compact and paracompact.

Proof. (i)⇒(ii) Clear.

(ii)⇒(iii)X is locally compact by Theorem 4.4 of [MN2], since weakly α-favorable
spaces are Baire spaces. Paracompactness of X follows from Theorem 1.2 of [Ma].

(iii)⇒(i) See Theorem 2.2 ¤

Proposition 2.4. Let X be a T4 space with the countable subsets closed and dis-
crete. Then Ck(X) is strongly α-favorable.

Proof. Let (f, U) ∈ E(Ck(X)) with U = f + [K, I] and diam(I) < ∞ (the di-
ameter of I). Define σ(f, U) = f + [K,J ], where J is an open neighbourhood
of zero such that diam(J) = 1

2
diam(I). Then σ is a winning strategy for α: let

(f0, U0), V0, . . . , (fn, Un), Vn, . . . be a run of the strong Choquet game in Ck(X),
where

Un = fn + [Kn, In], Vn = σ(fn, Un),

Kn ∈ K(X) and In is an open neighborhood of zero (n ∈ ω). Then Un+1 ⊂ Vn ⊂ Un

for each n ∈ ω, so Kn+1 ⊃ Kn and diam(In+1) ≤
1

2
diam(In); consequently, for

each x ∈ K =
⋃

n∈ω
Kn, the sequence {fn(x)}n∈ω converges to some f(x) ∈ R.

Observe that in our case the Kn’s are finite and hence K is closed and discrete,
so the function f : K → R defined above is continuous. If we extend f to some
f∗ ∈ C(X,R), we have f∗ ∈

⋂
n∈ω

Un and α wins the run. ¤

3. Strong α-favorability of τC

Theorem 3.1. Assume that X,Y have property (P). If both (C(X,Y ), τCO) and
(CL(X), τF ) are strongly α-favorable, so is (P, τC).

Proof. The restriction mapping is continuous, open and onto by Proposition 1.2(i),
so Proposition 1.1(iv) and (iii) applies. ¤

The next theorem generalizes Corollary 4.4(i) of [HZ1]:
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Theorem 3.2. Let X be a locally compact, paracompact space and Y a locally
convex completely metrizable space. Then (P, τC) is strongly α-favorable.

Proof. (CL(X), τF ) and (C(X,Y ), τCO) are strongly α-favorable by Theorem 2.1(i)
and Theorem 2.2, so Proposition 1.2 and Theorem 3.1 yields the desired result. ¤

As a corollary of Theorem 3.2 we get the following theorem of Holá ([Ho], The-
orem 3.3):

Theorem 3.3. Let X be a Tychonoff space and Y a locally convex completely
metrizable space. Then the following are equivalent:

(i) (P, τC) is completely metrizable;
(ii) X is a locally compact 2nd countable space.

Proof. In view of [Ho] (Theorem 2.4), (P, τC) is metrizable if and only if X is locally
compact and 2nd countable, so the implication (i)⇒(ii) immediately follows. As
for (ii)⇒(i), use Theorem 3.2 and Proposition 1.1(i). ¤

We will now study strong α-favorability of τC for Y = R to show that Theo-
rem 3.2 is not reversible, i.e. that local compactness plus paracompactness is not
necessary for strong α-favorability of the generalized compact-open topology.

Theorem 3.4. Let Y = R and X be a T4 strongly α-favorable space with the
countable subsets closed discrete. Then (P, τC) is strongly α-favorable.

Proof. (CL(X), τF ) and Ck(X) are strongly α-favorable by Theorem 2.1(ii) and
Theorem 2.4, respectively, hence Proposition 1.2(ii) and Theorem 3.1 applies. ¤

To demonstrate that Theorem 3.2 is not reversible we need (by Theorem 3.4)
the following:

Example 3.5. There exists a T4 non-paracompact, strongly α-favorable space with
the countable subsets closed discrete.

Proof. The space with the required properties is X = {x ∈ ω2 : cf x > ω}, which is
a stationary subset of ω2 and hence X is T4 and, by the Pressing Down Lemma, not
paracompact. Further, by the definition of X, no countable subset of X clusters,
thus, countable subsets of X are closed and discrete. To show that X is strongly
α-favorable, put σ(x, U) = U for every (x, U) ∈ E(X) with U = (a, x] ∩X.

Then σ is a winning tactic for α, since if (x0, U0), U0, . . . , (xn, Un), Un, . . . is a
run of the strong Choquet game compatible with σ, then there exists some n0 ∈ ω

with x = xn = xm for all m,n ≥ n0 (otherwise {xn}n would have a subsequence of
order type ω∗), whence x ∈

⋂
n∈ω

Un. ¤
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