STRONG α -FAVORABILITY OF THE (GENERALIZED) COMPACT-OPEN TOPOLOGY

Peter J. Nyikos and László Zsilinszky

ABSTRACT. Strong α -favorability of the compact-open topology on the space of continuous functions, as well as of the generalized compact-open topology on continuous partial functions with closed domains is studied.

1. INTRODUCTION

Spaces of partial maps have been studied for various applications throughout the century ([Ku1-2], [AB], [BB], [Ba], [DN1-2], [Fi], [KS], [La], [Se], [St], [Wh], [Za]). In particular, the so-called generalized compact-open topology on the space of continuous partial functions with closed domains proved to be a useful tool in mathematical economics ([Ba]), in convergence of dynamic programming models ([La], [Wh]) or more recently in the theory of differential equations ([BC]). This topology was also scrutinized from purely topological point of view e.g. in [BCH], [Ho], [HZ1-2], where among others, separation axioms and some completeness properties (such as Baireness, weak α -favorability, Čech-completeness, complete metrizability) of the generalized compact-open topology have been investigated.

Our paper continues in this research by looking at strong α -favorability in this setting. Section 3 contains our results on strong α -favorability of τ_C as well as a short proof of a recent theorem of *Holá* on complete metrizability of τ_C .

We will rely on the close connection that exists between the generalized compactopen topology, the ordinary compact-open topology τ_{CO} ([MN1]) and the Fell topology τ_F on the hyperspace of nonempty closed subsets of a topological space ([Be], [KT]). This connection and some other auxiliary material is described at the end of Section 1, while in Section 2 we list results about strong α -favorability of τ_{CO} and τ_F , respectively, needed for proving our main results; a generalization of a theorem of Ma on weak α -favorability of the compact-open topology is also given.

Let X and Y be Hausdorff spaces. Denote by CL(X) the family of nonempty closed subsets of X and by K(X) the nonempty compact subsets of X. For any $B \in CL(X)$ and a topological space Y, C(B,Y) will stand for the space of all continuous functions from B to Y. A partial map is a pair (B, f) such that $B \in$ CL(X) and $f \in C(B,Y)$. Denote by $\mathcal{P} = \mathcal{P}(X,Y)$ the family of all partial maps.

¹⁹⁹¹ Mathematics Subject Classification. 54C35; 54B20, 90D44.

Key words and phrases. Generalized compact-open topology, Fell topology, compact-open topology, strong α -favorability, weak α -favorability.

Define the so-called generalized compact-open topology τ_C on \mathcal{P} as the topology having subbase elements of the form

$$[U] = \{ (B, f) \in \mathcal{P} : B \cap U \neq \emptyset \},$$

$$[K : I] = \{ (B, f) \in \mathcal{P} : f(K \cap B) \subset I \},$$

where U is open in $X, K \subset X$ is compact and I is an open (possibly empty) subset of Y. We can assume that the I's are members of some fixed open base for Y.

The compact-open topology τ_{CO} on C(X, Y) has subbase elements of the form

$$[K, I] = C(X, Y) \cap [K : I] = \{ f \in C(X, Y) : f(K) \subset I \},\$$

where $K \subset X$ is compact and $I \subset Y$ is open; $C_k(X)$ (see [MN1]) stands for $(C(X,Y), \tau_{CO})$ with $Y = \mathbb{R}$ (the reals). Note, that $C_k(X)$ is a topological group, so a typical basic open neighborhood of $f \in C_k(X)$ is of the form $f + [K, I] = \{f + f' \in C_k(X) : f' \in [K, I]\}$, where $K \in K(X)$ and I is a bounded open neighborhood of zero. We will also use that, if X is a Tychonoff space, then $f + [K, I] \subset f' + [K', I']$ implies $K \supset K'$.

Denote by τ_F the so-called Fell topology on CL(X) having subbase elements of the form $\{A \in CL(X) : A \cap V \neq \emptyset\}$ with V open in X, plus sets of the form $\{A \in CL(X) : A \subset V\}$ with V co-compact in X. For notions not defined in the paper see [En].

In the strong Choquet game (cf. [Ch] or [Ke]) two players, α and β , take turns in choosing objects in the topological space X with an open base $\mathcal{B}: \beta$ starts by picking (x_0, V_0) from $\mathcal{E}(X) = \mathcal{E}(X, \mathcal{B}) = \{(x, V) \in X \times \mathcal{B} : x \in V\}$ and α responds by $U_0 \in \mathcal{B}$ with $x_0 \in U_0 \subset V_0$. The next choice of β is some couple $(x_1, V_1) \in \mathcal{E}(X, \mathcal{B})$ with $V_1 \subset U_0$ and again α picks U_1 with $x_1 \in U_1 \subset V_1$ etc. Player α wins the run $(x_0, V_0), U_0, \ldots, (x_n, V_n), U_n, \ldots$ provided $\bigcap_n U_n = \bigcap_n V_n \neq \emptyset$, otherwise β wins. A winning tactic for α (cf. [Ch]) is a function $\sigma : \mathcal{E}(X, \mathcal{B}) \to \mathcal{B}$ such that α wins every run of the game compatible with σ , i.e. such that $U_n = \sigma(x_n, V_n)$ for all n. The strong Choquet game is α -favorable if α possesses a winning tactic; in this case X is called strongly α -favorable (or a strong Choquet space - cf. [Ke]). We will need the following facts about the strong Choquet game:

Proposition 1.1.

- (i) Let X be metrizable. Then X is completely metrizable if and only if X is strongly α -favorable.
- (ii) If X is locally compact, then X is strongly α -favorable.
- (iii) Let $f: X \to Y$ be continuous, open and onto. If X is strongly α -favorable, so is Y.
- (iv) The product of any collection of strongly α -favorable spaces is strongly α -favorable.

Proof. It is not hard to show that (ii)-(iv) holds (cf. [Ke], Exercise 8.16); as for (i), see [Ch], Theorem 8.7 or [Ke], Theorem 8.17. \Box

The Banach-Mazur game (see [HM] or the Choquet game in [Ke]) is played as the strong Choquet game except that β 's choice is just a nonempty open set contained in the previous more of a Λ space X is called exactly a forward latif a parameters.

a winning strategy in the Banach-Mazur game (i.e. a function defined on nests of nonempty open sets of odd length picking for α the set that wins the Banach-Mazur game for α no matter what β chooses). Note that β has no winning strategy in the Banach-Mazur game if and only if X is a Baire space (i.e. countable intersections of dense open sets are dense - cf. [Ke] or [HM]), consequently, weakly α -favorable spaces are Baire spaces.

The restriction mapping

$$\eta : (CL(X), \tau_F) \times (C(X, Y), \tau_{CO}) \to (\mathcal{P}, \tau_C)$$

is defined as $\eta((B, f)) = (B, f \upharpoonright_B)$.

Clearly, η is onto provided continuous partial functions with closed domain are continuously extendable over X. We can say more about η if we assume that X, Y have property (P), i.e. if X, Y are such that partial continuous functions with closed domains are continuously extendable over X and there exists an open base \mathcal{V} for Y closed under finite intersections such that for each nonempty $K \in \mathcal{K}(X)$ and $V \in \mathcal{V}$, every function $f \in C(K, V)$ is extendable to some $f^* \in C(X, V)$. A fundamental result about η is as follows (see [HZ1], Section 3):

Proposition 1.2.

- (i) If X, Y have property (P), then η is open, continuous and onto.
- (ii) If X is paracompact and Y is locally convex completely metrizable or if X is T_4 and $Y \subset \mathbb{R}$ is an interval, then X, Y have property (P). In particular, η is open, continuous and onto in this case.

2. Strong α -favorability of τ_{CO} and τ_F

As for strong α -favorability of the Fell topology, we have:

Theorem 2.1.

- (i) If X is locally compact, then $(CL(X), \tau_F)$ is locally compact (and hence strongly α -favorable).
- (ii) If X is a strongly α-favorable space such that the countable subsets of X are closed, then (CL(X), τ_F) is strongly α-favorable.

Proof. (i) See [Be], Corollary 5.1.4.

(ii) In our case K(X) is a weakly Urysohn family, i.e. if $S \in K(X)$ and $A \subset S^c$, then there exists $T \in K(X)$ with $A \subset T^c \subset S^c$ such that $\overline{E} \subset S^c$ for all countable $E \subset T^c$ (we can choose T = S). Consequently, Theorem 5.1 of [Zs] yields the desired result. \Box

Recall that a Hausdorff space X is *hemicompact* ([En], Excercise 3.4.E) provided in the family of all compact subspaces of X ordered by inclusion there exists a countable cofinal subfamily.

Theorem 2.2. If X is locally compact paracompact and Y is completely metrizable, then $(C(X, Y), \tau_{CO})$ is strongly α -favorable.

Proof. The proof of Theorem 5.3.1 in [MN1] can be modified to get the result:

Theorem 5.1.27). Then $(C(X_t, Y), \tau_{CO})$ is completely metrizable for all $t \in T$ ([MN1], Exercise 5.8.1(a)). Therefore, $(C(X,Y), \tau_{CO})$ is homeomorphic to the product $\prod_{t \in T} (C(X_t, Y), \tau_{CO})$ ([MN1], Corollary 2.4.7) of completely metrizable spaces, hence, in view of Proposition 1.1 (i) and (iii), $(C(X,Y), \tau_{CO})$ is strongly α -favorable. \Box

A space X is a q-space if for each $x \in X$ there is a sequence $\{G_n\}_{n \in \omega}$ of open neighborhoods of x such that whenever $x_n \in G_n$ for all n, the set $\{x_n\}_{n \in \omega}$ has a cluster point. Notice that 1st countable or locally compact (even Čech-complete) spaces are q-spaces. The next result generalizes Theorem 1.2 of [Ma] about weak α -favorability of the compact-open topology (see also [MN2]):

Theorem 2.3. Let X be a q-space. Then the following are equivalent:

- (i) $C_k(X)$ is strongly α -favorable;
- (ii) $C_k(X)$ is weakly α -favorable;
- (iii) X is locally compact and paracompact.

Proof. (i) \Rightarrow (ii) Clear.

(ii) \Rightarrow (iii) X is locally compact by Theorem 4.4 of [MN2], since weakly α -favorable spaces are Baire spaces. Paracompactness of X follows from Theorem 1.2 of [Ma].

(iii) \Rightarrow (i) See Theorem 2.2 \square

Proposition 2.4. Let X be a T_4 space with the countable subsets closed and discrete. Then $C_k(X)$ is strongly α -favorable.

Proof. Let $(f, U) \in \mathcal{E}(C_k(X))$ with U = f + [K, I] and diam $(I) < \infty$ (the diameter of I). Define $\sigma(f, U) = f + [K, J]$, where J is an open neighbourhood of zero such that diam $(J) = \frac{1}{2}$ diam(I). Then σ is a winning strategy for α : let $(f_0, U_0), V_0, \ldots, (f_n, U_n), V_n, \ldots$ be a run of the strong Choquet game in $C_k(X)$, where

$$U_n = f_n + [K_n, I_n], \ V_n = \sigma(f_n, U_n),$$

 $K_n \in K(X)$ and I_n is an open neighborhood of zero $(n \in \omega)$. Then $U_{n+1} \subset V_n \subset U_n$ for each $n \in \omega$, so $K_{n+1} \supset K_n$ and diam $(I_{n+1}) \leq \frac{1}{2}$ diam (I_n) ; consequently, for each $x \in K = \bigcup_{n \in \omega} K_n$, the sequence $\{f_n(x)\}_{n \in \omega}$ converges to some $f(x) \in \mathbb{R}$. Observe that in our case the K_n 's are finite and hence K is closed and discrete, so the function $f : K \to \mathbb{R}$ defined above is continuous. If we extend f to some $f^* \in C(X, \mathbb{R})$, we have $f^* \in \bigcap_{n \in \omega} U_n$ and α wins the run. \Box

3. Strong α -favorability of τ_C

Theorem 3.1. Assume that X, Y have property (P). If both $(C(X,Y), \tau_{CO})$ and $(CL(X), \tau_F)$ are strongly α -favorable, so is (\mathcal{P}, τ_C) .

Proof. The restriction mapping is continuous, open and onto by Proposition 1.2(i), so Proposition 1.1(iv) and (iii) applies. \Box

Theorem 3.2. Let X be a locally compact, paracompact space and Y a locally convex completely metrizable space. Then (\mathcal{P}, τ_C) is strongly α -favorable.

Proof. $(CL(X), \tau_F)$ and $(C(X, Y), \tau_{CO})$ are strongly α -favorable by Theorem 2.1(i) and Theorem 2.2, so Proposition 1.2 and Theorem 3.1 yields the desired result. \Box

As a corollary of Theorem 3.2 we get the following theorem of Holá ([Ho], Theorem 3.3):

Theorem 3.3. Let X be a Tychonoff space and Y a locally convex completely metrizable space. Then the following are equivalent:

- (i) (\mathcal{P}, τ_C) is completely metrizable;
- (ii) X is a locally compact 2nd countable space.

Proof. In view of [Ho] (Theorem 2.4), (\mathcal{P}, τ_C) is metrizable if and only if X is locally compact and 2nd countable, so the implication (i) \Rightarrow (ii) immediately follows. As for (ii) \Rightarrow (i), use Theorem 3.2 and Proposition 1.1(i). \Box

We will now study strong α -favorability of τ_C for $Y = \mathbb{R}$ to show that Theorem 3.2 is not reversible, i.e. that local compactness plus paracompactness is not necessary for strong α -favorability of the generalized compact-open topology.

Theorem 3.4. Let $Y = \mathbb{R}$ and X be a T_4 strongly α -favorable space with the countable subsets closed discrete. Then (\mathcal{P}, τ_C) is strongly α -favorable.

Proof. $(CL(X), \tau_F)$ and $C_k(X)$ are strongly α -favorable by Theorem 2.1(ii) and Theorem 2.4, respectively, hence Proposition 1.2(ii) and Theorem 3.1 applies. \Box

To demonstrate that Theorem 3.2 is not reversible we need (by Theorem 3.4) the following:

Example 3.5. There exists a T_4 non-paracompact, strongly α -favorable space with the countable subsets closed discrete.

Proof. The space with the required properties is $X = \{x \in \omega_2 : \text{cf } x > \omega\}$, which is a stationary subset of ω_2 and hence X is T_4 and, by the Pressing Down Lemma, not paracompact. Further, by the definition of X, no countable subset of X clusters, thus, countable subsets of X are closed and discrete. To show that X is strongly α -favorable, put $\sigma(x, U) = U$ for every $(x, U) \in \mathcal{E}(X)$ with $U = (a, x] \cap X$.

Then σ is a winning tactic for α , since if $(x_0, U_0), U_0, \ldots, (x_n, U_n), U_n, \ldots$ is a run of the strong Choquet game compatible with σ , then there exists some $n_0 \in \omega$ with $x = x_n = x_m$ for all $m, n \ge n_0$ (otherwise $\{x_n\}_n$ would have a subsequence of order type ω^*), whence $x \in \bigcap_{n \in \omega} U_n$. \Box

References

- [AB] A. Abd-Allah and R. Brown, A compact-open topology on partial maps with open domains, J. London Math. Soc. 21 (1980), 480-486.
- [Ba] J. Back, Concepts of similarity for utility functions, Journal of Math. Economics 1 (1976), 721-727.
- [BB] P. I. Booth and R. Brown, Spaces of partial maps, fibred mapping spaces and the compact open topology,, Topology Appl. 8 (1978), 181-195.
- [BC] P. Brandi and R. Ceppitelli, *Existence, uniqueness and continuous dependence for hered*-

- [BCH] P. Brandi, R. Ceppitelli and Ľ. Holá, Topological properties of a new graph topology, Jour. Convex. Anal. 5 (1998), 1-12.
- [Be] G. Beer, Topologies on Closed and Closed Convex Sets, Kluwer, Dordrecht, 1993.
- [Ch] G. Choquet, Lectures on Analysis I., Benjamin, New York, 1969.
- [DN1] A. Di Concilio and S.A. Naimpally, *Proximal set-open topologies and partial maps*, Boll. U.M.I., to appear.
- [DN2] A. Di Concilio and S.A. Naimpally, Function space topologies on (partial) maps, Recent progress in function spaces, Quaderni di Matematica (G. Di Maio and E. Holá, eds.), vol. 3, 1999.
- [En] R. Engelking, *General Topology*, Helderman, Berlin, 1989.
- [Fi] V.V. Filippov, Basic topological structures of the theory of ordinary differential equations, Topology in Nonlinear Analysis, Banach Centrum Publications 35 (1996), 171-192.
- [HM] R.C. Haworth and R.A. McCoy, *Baire spaces*, Dissertationes Math. 141 (1977), 1-73.
- [Ho] Ľ. Holá, Complete metrizability of generalized compact-open topology, Topology Appl. 91 (1999), 159-167.
- [HZ1] Ľ. Holá and L. Zsilinszky, Completeness properties of the generalized compact-open topology on partial functions with closed domains, Topology Appl. **110** (2001), 303-321.
- [HZ2] L. Holá and L. Zsilinszky, Čech-completeness and related properties of the generalized compact-open topology, preprint.
- [Ke] A.S. Kechris, Classical Descriptive Set Theory, Springer, New York, 1994.
- [KS] H. P. Künzi and L. B. Shapiro, On simultaneous extension of continuous partial functions, Proc. Amer. Math. Soc. 125 (1997), 1853-1859.
- [KT] E. Klein and A. Thompson, *Theory of Correspondences*, Wiley, New York, 1975.
- [Ku1] K. Kuratowski, Sur l'espace des fonctions partielles, Ann. Mat. Pura Appl. 40 (1955), 61-67.
- [Ku2] K. Kuratowski, Sur une méthode de métrisation complète de certains espaces d'ensembles compacts, Fund. Math. 43 (1956), 114-138.
- [La] H.J. Langen, *Convergence of dynamic programming models*, Mathematics of Operations Research **6** (1981), 493-512.
- [Ma] D. K. Ma, The Cantor tree, the γ -property and Baire function spaces, Proc. Amer. Math. Soc. **119** (1993), 903-913.
- [MN1] R.A. McCoy and I. Ntantu, *Topological properties of spaces of continuous functions*, Springer-Verlag, Berlin, 1988.
- [MN2] R.A. McCoy and I. Ntantu, Completeness properties of function spaces, Topology Appl. 22 (1986), 191-206.
- [Se] G. R. Sell, On the Fundamental Theory of Ordinary Differential Equations, J. Differential Equations 1 (1965), 3710-392.
- [St] E.N. Stepanova, Extension of continuous functions and metrizability of paracompact pspaces, Mat. Zametki 53 (1993), 92-101; English transl., Math. Notes 53 (1993), 308-314.
- [Wh] W. Whitt, Continuity of Markov Processes and Dynamic Programs, Yale University, 1975.
- [Za] S.K. Zaremba, Sur certaines familles de courbes en relation avec la theorie des equations differentielles, Rocznik Polskiego Tow. Matemat. 15 (1936), 83-105.
- [Zs] L. Zsilinszky, Topological Games and Hyperspace Topologies, Set-Valued Anal. 6 (1998), 187-207.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF SOUTH CAROLINA, COLUMBIA, SC 29208 *E-mail address*: nyikos@math.sc.edu

DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE, UNIVERSITY OF NORTH CAROLINA AT PEMBROKE, PEMBROKE, NC 28372

E-mail address: laszlo@nat.uncp.edu