STRONG «o-FAVORABILITY OF THE
(GENERALIZED) COMPACT-OPEN TOPOLOGY
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ABSTRACT. Strong a-favorability of the compact-open topology on the space of con-
tinuous functions, as well as of the generalized compact-open topology on continuous
partial functions with closed domains is studied.

1. INTRODUCTION

Spaces of partial maps have been studied for various applications throughout
the century ([Kul-2|, [AB], [BB], [Ba], [DN1-2], [Fi], [KS], [La], [Se], [St], [Wh],
[Za]). In particular, the so-called generalized compact-open topology on the space of
continuous partial functions with closed domains proved to be a useful tool in math-
ematical economics ([Ba]), in convergence of dynamic programming models ([La],
[Wh]) or more recently in the theory of differential equations ([BC]). This topol-
ogy was also scrutinized from purely topological point of view e.g. in [BCH], [Ho],
[HZ1-2], where among others, separation axioms and some completeness properties
(such as Baireness, weak a-favorability, Cech-completeness, complete metrizability)
of the generalized compact-open topology have been investigated.

Our paper continues in this research by looking at strong a-favorability in this
setting. Section 3 contains our results on strong a-favorability of 7o as well as a
short proof of a recent theorem of Hold on complete metrizability of 7.

We will rely on the close connection that exists between the generalized compact-
open topology, the ordinary compact-open topology 7co ([MN1]) and the Fell topol-
ogy Tr on the hyperspace of nonempty closed subsets of a topological space ([Be],
[K'T]). This connection and some other auxiliary material is described at the end of
Section 1, while in Section 2 we list results about strong a-favorability of 7¢o and
Tr, respectively, needed for proving our main results; a generalization of a theorem
of Ma on weak a-favorability of the compact-open topology is also given.

Let X and Y be Hausdorff spaces. Denote by C'L(X) the family of nonempty
closed subsets of X and by K(X) the nonempty compact subsets of X. For any
B € CL(X) and a topological space Y, C(B,Y) will stand for the space of all
continuous functions from B to Y. A partial map is a pair (B, f) such that B €
CL(X) and f € C(B,Y). Denote by P = P(X,Y) the family of all partial maps.
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Define the so-called generalized compact-open topology T on P as the topology
having subbase elements of the form

U]
(K- 1

where U is open in X, K C X is compact and I is an open (possibly empty) subset
of Y. We can assume that the I’s are members of some fixed open base for Y.
The compact-open topology 7co on C(X,Y) has subbase elements of the form

(B,f)eP:BNU %0},
(B,f)eP: f(KNB)C I},

{
{

K, I =C(X,Y)N[K:I|={feC(X,Y): f(K)C I},

where K C X is compact and I C Y is open; Ci(X) (see [MN1]) stands for
(C(X,Y),7co) with Y = R (the reals). Note, that C(X) is a topological group, so
a typical basic open neighborhood of f € Cy(X) is of the form f+[K,I] = {f+f' €
Cr(X) : ff € [K,I]}, where K € K(X) and I is a bounded open neighborhood of
zero. We will also use that, if X is a Tychonoff space, then f+ [K,I] C f'+[K',I']
implies K D K'.

Denote by 77 the so-called Fell topology on C'L(X) having subbase elements
of the form {A € CL(X) : ANV # (0} with V open in X, plus sets of the form
{A € CL(X):ACV} with V co-compact in X. For notions not defined in the
paper see [En].

In the strong Choquet game (cf. [Ch] or [Ke]) two players, a and 3, take turns in
choosing objects in the topological space X with an open base B: 3 starts by picking
(0, Vo) from E(X) = E(X,B) = {(z,V) € X xB: x € V} and «a responds by
Uy € B with g € Uy C Vp. The next choice of 3 is some couple (z1, V1) € E(X, B)
with Vi3 C Uy and again « picks U; with z1 € Uy C V; etc. Player a wins the run
(0, V0),Uo, - -, (Xn, Vp), Uy, ... provided N, U, =, Va # 0, otherwise 3 wins.
A winning tactic for o (cf. [Ch]) is a function o : £(X,B) — B such that o wins
every run of the game compatible with o, i.e. such that U, = o(x,,V,,) for all n.
The strong Choquet game is a-favorable if a possesses a winning tactic; in this case
X is called strongly a-favorable (or a strong Choquet space - cf. [Ke]). We will
need the following facts about the strong Choquet game:

Proposition 1.1.

(i) Let X be metrizable. Then X is completely metrizable if and only if X 1is
strongly a-favorable.
(ii) If X is locally compact, then X is strongly a-favorable.
(iii) Let f: X — Y be continuous, open and onto. If X is strongly a-favorable,
s0isY.
(iv) The product of any collection of strongly a-favorable spaces is strongly o-
favorable.

Proof. 1t is not hard to show that (ii)-(iv) holds (cf. [Ke], Exercise 8.16); as for (i),
see [Ch], Theorem 8.7 or [Ke], Theorem 8.17. [

The Banach-Mazur game (see [HM] or the Choquet game in [Ke]) is played as the
strong Choquet game except that §’s choice is Just a nonempty open set contained
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a winning strategy in the Banach-Mazur game (i.e. a function defined on nests of
nonempty open sets of odd length picking for « the set that wins the Banach-Mazur
game for a no matter what 3 chooses). Note that 5 has no winning strategy in the
Banach-Mazur game if and only if X is a Baire space (i.e. countable intersections
of dense open sets are dense - cf. [Ke] or [HM]), consequently, weakly a-favorable
spaces are Baire spaces.

The restriction mapping
n: (CL(X),7r) X (C(X,Y),7c0) — (P, 7c)

is defined as n((B, f)) = (B, f IB).

Clearly, n is onto provided continuous partial functions with closed domain are
continuously extendable over X. We can say more about 7 if we assume that X, Y
have property (P),i.e. if X, Y are such that partial continuous functions with closed
domains are continuously extendable over X and there exists an open base V for Y
closed under finite intersections such that for each nonempty K € (X) and V € V,
every function f € C(K,V) is extendable to some f* € C(X,V). A fundamental
result about 7 is as follows (see [HZ1], Section 3):

Proposition 1.2.

(i) If X,Y have property (P), then n is open, continuous and onto.

(ii) If X is paracompact and Y is locally convex completely metrizable or if X
is Ty andY C R is an interval, then X, Y have property (P). In particular,
n s open, continuous and onto in this case.

2. STRONG «-FAVORABILITY OF Tco AND Tg

As for strong a-favorability of the Fell topology, we have:

Theorem 2.1.

(i) If X is locally compact, then (CL(X),7r) is locally compact (and hence
strongly a-favorable).

(ii) If X is a strongly a-favorable space such that the countable subsets of X are
closed, then (CL(X),Tr) is strongly a-favorable.

Proof. (i) See [Be|, Corollary 5.1.4.

(ii) In our case K(X) is a weakly Urysohn family, i.e. if S € K(X) and A C S°¢,
then there exists T € K(X) with A C T¢ C S¢ such that E C S¢ for all countable
E C T¢ (we can choose T' = S). Consequently, Theorem 5.1 of [Zs] yields the
desired result. [

Recall that a Hausdorff space X is hemicompact ([En], Excercise 3.4.E) provided
in the family of all compact subspaces of X ordered by inclusion there exists a
countable cofinal subfamily.

Theorem 2.2. If X is locally compact paracompact and Y is completely metrizable,
then (C(X,Y),1co) is strongly a-favorable.

Proof. The proof of Theorem 5.3.1 in [MN1] can be modified to get the result:
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Theorem 5.1.27). Then (C(X:,Y),7co) is completely metrizable for all ¢ € T
([MN1], Exercise 5.8.1(a)). Therefore, (C(X,Y),Tco) is homeomorphic to the
product [[,,(C(Xt,Y),7c0) ([MN1], Corollary 2.4.7) of completely metrizable
spaces, hence, in view of Proposition 1.1 (i) and (iii), (C(X,Y),7co) is strongly
a-favorable. [

A space X is a g-space if for each = € X there is a sequence {G,, } e of open
neighborhoods of x such that whenever z,, € G,, for all n, the set {z, }nc. has a
cluster point. Notice that 1st countable or locally compact (even Cech-complete)
spaces are g-spaces. The next result generalizes Theorem 1.2 of [Ma] about weak
a-favorability of the compact-open topology (see also [MN2]):

Theorem 2.3. Let X be a g-space. Then the following are equivalent:

(i) Cx(X) is strongly a-favorable;
(ii) Cx(X) is weakly a-favorable;
(iii) X s locally compact and paracompact.

Proof. (i)=-(ii) Clear.
(ii)=(iii) X is locally compact by Theorem 4.4 of [MNZ2], since weakly a-favorable
spaces are Baire spaces. Paracompactness of X follows from Theorem 1.2 of [Ma)].
(iii)=-(i) See Theorem 2.2 [

Proposition 2.4. Let X be a T, space with the countable subsets closed and dis-
crete. Then Cy(X) is strongly a-favorable.

Proof. Let (f,U) € E(Cyx(X)) with U = f + [K,I| and diam(]) < oo (the di-
ameter of I). Define o(f,U) = f + [K,J], where J is an open neighbourhood
of zero such that diam(J) = Sdiam(I). Then o is a winning strategy for a: let
(f0,U0), Vo, --+y (fn,Un), Vi, ... be a run of the strong Choquet game in Cx(X),

where

U, = fn + [Knaln]a Vh = U(fann)v

K, € K(X) and I, is an open neighborhood of zero (n € w). Then U,,41 C V,, C U,
for each n € w, so K,41 D K, and diam([,41) < sdiam(I,); consequently, for
each x € K = J, ., Kn, the sequence {f,(7)},c., converges to some f(x) € R.
Observe that in our case the K,,’s are finite and hence K is closed and discrete,

so the function f : K — R defined above is continuous. If we extend f to some
f* e C(X,R), we have f* €, ., Un and o wins the run. 0O

ncw
3. STRONG «-FAVORABILITY OF T¢

Theorem 3.1. Assume that X,Y have property (P). If both (C(X,Y),Tco) and
(CL(X),7p) are strongly a-favorable, so is (P, 71¢c).

Proof. The restriction mapping is continuous, open and onto by Proposition 1.2(i),
so Proposition 1.1(iv) and (iii) applies. O
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Theorem 3.2. Let X be a locally compact, paracompact space and Y a locally
convex completely metrizable space. Then (P, T¢) is strongly a-favorable.

Proof. (CL(X),7r)and (C(X,Y), 7c0) are strongly a-favorable by Theorem 2.1(i)
and Theorem 2.2, so Proposition 1.2 and Theorem 3.1 yields the desired result. [

As a corollary of Theorem 3.2 we get the following theorem of Hola ([Ho], The-
orem 3.3):

Theorem 3.3. Let X be a Tychonoff space and Y a locally conver completely
metrizable space. Then the following are equivalent:

(i) (P,7¢c) is completely metrizable;
(ii) X s a locally compact 2nd countable space.

Proof. In view of [Ho|] (Theorem 2.4), (P, 7¢) is metrizable if and only if X is locally
compact and 2nd countable, so the implication (i)=-(ii) immediately follows. As
for (ii)=(i), use Theorem 3.2 and Proposition 1.1(i). O

We will now study strong a-favorability of 7o for Y = R to show that Theo-
rem 3.2 is not reversible, i.e. that local compactness plus paracompactness is not
necessary for strong a-favorability of the generalized compact-open topology.

Theorem 3.4. Let Y = R and X be a Ty strongly a-favorable space with the
countable subsets closed discrete. Then (P,7¢) is strongly a-favorable.

Proof. (CL(X),7r) and Ci(X) are strongly a-favorable by Theorem 2.1(ii) and
Theorem 2.4, respectively, hence Proposition 1.2(ii) and Theorem 3.1 applies. [

To demonstrate that Theorem 3.2 is not reversible we need (by Theorem 3.4)
the following:

Example 3.5. There exists a Ty non-paracompact, strongly a-favorable space with
the countable subsets closed discrete.

Proof. The space with the required properties is X = {z € ws : c¢f x > w}, which is
a stationary subset of we and hence X is Ty and, by the Pressing Down Lemma, not
paracompact. Further, by the definition of X, no countable subset of X clusters,
thus, countable subsets of X are closed and discrete. To show that X is strongly
a-favorable, put o(z,U) = U for every (z,U) € £(X) with U = (a,z] N X.

Then o is a winning tactic for «, since if (zo,Up), Uy, ..., (n,Upn),Up,... is a
run of the strong Choquet game compatible with o, then there exists some ng € w
with = z,, = z,, for all m,n > ng (otherwise {x,,}, would have a subsequence of
order type w*), whence x € (| . U,. O

ncw
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