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1. The axiom of G.H. Hardy, equivalents and status

In the year before Zermelo published his proof of the well-ordering principle
from AC, the renowned Cambridge mathematician G. H. Hardy published a proof
that there is an uncountable well-orderable subset of the real line [1], [2]. Hardy’s
technique was surprisingly modern: he used a ladder system on ω1 to build an
uncountable set of sequences of natural numbers well-ordered by the preorder <∗

of eventual domination. We now know that some form of the axiom of choice (AC)
is needed for this, and even that the existence of Hardy’s uncountable set does not
imply the existence of a ladder system on ω1 just assuming ZF.

Definition 1. Given a limit ordinal α, a ladder at α is a strictly ascending sequence
of ordinals less than α whose supremum is α. Given an ordinal γ, a ladder system

on γ is a family

{Lα : α ∈ γ, α is a limit ordinal of countable cofinality}

where each Lα is a ladder at α.

Theorem 1. In ZF, the following axioms are equivalent:

1. There is a ladder system on ω1.

2. There is a Hausdorff gap.

3a. There is a well-orderable special Aronszajn tree.

3b. There is a well-orderable special tree of height ω1.

3c. There is an R-special tree T of height ω1 with a choice function for the levels of

T .
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4a(i). There is a coherent family {fα : α ∈ ω1} of 1-1 functions fα : α→ ω.

4a(ii). There is a family {fα : α ∈ ω1} of 1-1 functions fα : α→ ω.

4a(iii). Given any disjoint family A of countably infinite well-ordered sets, there is

a function F :
⋃
A → ω such that the restriction of F to any member of A is a

bijection.

4b. There is a family {hα : α ∈ ω1} of surjective functions hα : ω → α.

4c(i). The direct sum of the countable ordinals is special when viewed as a tree.

4c(ii). The direct sum of any family of trees of countable height is special.

5a. The topological direct sum of any family of countable ordinal spaces is metriz-

able.

5b. The topological direct sum of any family of countable ordinal spaces can be given

a uniformity with a countable base of equivalence relations.

6a. The topological direct sum of any family of countable locally compact metrizable

spaces is the countable union of discrete subspaces.

6b. The topological direct sum of any family of scattered Hausdorff spaces of count-

able Cantor-Bendixson rank is the countable union of discrete subspaces.

7a. The open first octant in ω1 × ω1 is a β-space.
7b. The open first octant in ω1 × ω1 is an elementary β-space.

Definitions.

2. A Hausdorff gap is a pair (A,B) where A = {Aα : α < ω1} and B = {Bα :
α < ω1} are families of subsets of ω such that

(1) Aα ⊂
∗ Aβ ⊂

∗ Bβ ⊂
∗ Bα whenever α < β [note order reversal in third

equation] and
(2) For all β < ω1, {Aα : α < β} leaks badly out of Bβ , meaning that for each

integer n there are only finitely many α < β such that Aα \ Bβ is a subset
of {0, . . . , n}.

Here ⊂∗ is the strict pre-order of almost containment: A ⊂∗ B means that A \B is
finite and B \A is infinite. [Some authors omit the second condition.]

Every Hausdorff gap is an (ω1, ω
∗
1)-gap: a pair (A,B) satisfying (1) and (2−):

there is no subset C of ω1 satisfying Aα ⊂
∗ C ⊂∗ Bα for all α ∈ ω1.

3. A tree is a partially ordered set in which the predecessors of any element are
well-ordered. [Given two elements x < y of a poset, we say x is a predecessor of y and
y is a successor of x.] If T is a tree, then T (0) is its set of minimal members. Given
an ordinal α, if T (β) has been defined for all β < α, then T ¹ α =

⋃
{T (β) : β < α},

while T (α) is the set of minimal members of T \ T ¹ α. The set T (α) is called the

α-th level of T .

A tree is Aronszajn if it is uncountable while every chain is countable and every
level T (α) is countable. A tree is special if it is a countable union of antichains. A
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tree T is R-special if there is a strictly order-preserving function f : T → R, i.e.,
s < t in T implies f(s) < f(t).

Caution! Some authors require Aronszajn trees to satisfy the additional require-
ment that every element has uncountably many successors—equivalently, successors
on every higher level of the tree. Some even require that every element has at least
two immediate successors. This makes little difference in ZFC because then any
Aronszajn tree can be pruned to produce one satisfying the extra requirements.
However, there are models of ZF where some trees satisfying Definition 4 have no
subtrees satisfying either of the extra requirements.

4. A family of functions is called coherent if any two functions agree on all but
finitely many members of their common domains.

The direct sum of ordered sets {(Aγ , <γ) : γ ∈ Γ} is
⋃
{Aγ × {γ} : γ ∈ Γ} with

the order (a, γ1) < (b, γ2) iff γ1 = γ2 and a <γ1
b.

5. The direct sum of topological spaces {(Xγ , τγ) : γ ∈ Γ} is
⋃
{Xγ×{γ} : γ ∈ Γ}

with the topology whose base is all sets of the form
⋃
{Uγ × {γ} : γ ∈ Γ, Uγ ∈ τγ}.

6. A topological space X is scattered if every subspace has an isolated point in
the relative topology. The Cantor-Bendixson rank of a point x ∈ X is defined by
induction similarly to the height of a point in a tree: R(0) is the set of isolated
points of X; if R(β) has been defined for all β < α, then R(α) is the set of isolated
points of the subspace X \

⋃
{R(β) : β < α}. The Cantor-Bendixson rank of a

scattered space is the least α such that R(α) is empty.

7. A topological space X is a β-space if there is a family of open sets {g(n, x) :
n ∈ ω, x ∈ X} of such that g(n, x) is a neighborhood of x for all n and x, and such
that 〈xn has a cluster point whenever

⋂
∞

n=0 g(n, xn) 6= ∅. A β-space is elementary
if g(n, x) = g(0, x) for all n and all x.

The axiom 1. in Theorem 1 was designated “Postulate A” in [3] and the impli-
cation 1. =⇒ 4a(ii). is Corollary 1 of Theorem A1 in [3]; the converse is easy. The
implication 1. =⇒ 2 is essentially proven in [4], and the converse is trivial.

“Postulate A” is an easy consequence of the following slight weakening of the
axiom of choice, which is actually equivalent to it in ZF but is strictly weaker if
atoms (Urelemente) are allowed:

MC(∞,∞): The Multiple Choice Axiom: For every family A = {Aγ : γ ∈ Γ} of
non-empty pairwise disjoint sets there exists a family F = {Fγ : γ ∈ Γ} of finite
non-empty sets such that for every γ ∈ Γ, Fγ ⊆ Aγ .

Of course, it is enough to have the special case MC(ℵ1, 2
ℵ0) of MC(∞,∞) which

has |Γ| ≤ ℵ1 and |Aγ | ≤ 2ℵ0 for all γ ∈ Γ. It would be interesting to know of
interpolants between MC(ℵ1, 2

ℵ0) and “Postulate A”.
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In Theorem 1, item 3c, “choice function” can be weakened to “multiple choice
function,” i.e., a function that picks a finite subset of each level of the tree. This is
partly because the union of a finite collection of ranges of ladders is the range of a
ladder.

Theorem 2. [G.H. Hardy] [1] “Postulate A” implies the existence of an uncount-

able well-orderable subset of R.

Hardy took advantage of the fact (which can be proven easily in ZF) that there
is an injective function from the family of sequences σ : ω → ω of natural numbers
into R. He showed, in effect:

Theorem 3. “Postulate A” implies that there is a family {σα : α < ω1} of se-

quences of natural numbers such that σα <∗ σβ whenever α < β.

Here <∗ is the order of eventual domination: f <∗ g means there exists n ∈ ω
such that f(i) < g(i) for all i > n.

Theorem 4. “Postulate A” implies that the long line is smoothable.

The problem of obtaining “Postulate A” without relying on any variants of the
axiom of choice was posed in [2].

Postulate A was treated at length in [3] along with two alternatives, the three
together being mutually exclusive and mutually exhaustive:

Postulate B: Postulate A fails, but for each limit ordinal “of the second class”
there is a ladder system on that ordinal.

Postulate C: There is a limit ordinal “of the second class” which does not admit
of a ladder system.

Under Postulates A and B, the “ordinal numbers of the second class” coincide
with the countable infinite ordinals. Under Postulate C, they contain the countable
infinite ordinals as a proper subset. In [3] there is a list of axioms, reminiscent of
the Peano Axioms, for the “ordinal numbers of the second class.”

Also in [3] it is shown, in effect, that “Postulate C” is equivalent to ω1 being of
countable cofinality, and hence that “Postulate A” and “Postulate B” both imply
ω1 is regular; and that both “Postulate B” and “Postulate C” imply R cannot be
well-ordered. As a corollary, we then have:

Theorem 5. If R can be well-ordered, there is a ladder system on ω1. ¤

Church [3] left unanswered the natural question whether either “Postulate B”
or “Postulate C” is compatible with R having an uncountable well-ordered subset.
The answer to both parts of this question is affirmative. Assuming the consistency
of an inaccessible cardinal, Howard Becker has recently produced a model in which
the axiom of Dependent Choices holds (hence ω1 is regular), there is no ladder
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system on ω1 (hence we have a model of Postulate B), and there is an uncountable
well-orderable subset of R.

For the other part of the question, one can use a method of Feferman and Lévy
which produces models of ZF in which ω1 is singular. The method introduces
surjective maps fn : ω → ωn into a symmetric submodel N of a forcing model M[G]
without introducing the set of these maps, nor even a map from ω onto ωω. [See
Jech’s Set Theory, pp. 213–4 for the details.] Thus in the new model N, ℵ1 is ℵω of
the ground model M, and the sequence of ground model ℵn’s becomes a countable
cofinal subset of ωN

1 . Now if the ground model M satisfies MA + c = ℵω+1, then
M contains an ωω+1-scale: a sequence of functions gα : ω → ω, (α < ωω+1) which
is well ordered by the order <∗ and which is cofinal in (ωω,<∗). In the symmetric
extension N, this sequence loses its <∗-cofinality but remains <∗-unbounded, and
it can easily be used to produce a subset of R itself which is well-orderable in order
type ωN

2 = ωM
ω+1.

Andreas Blass, adapting an old argument of Solovay, has shown that if “Postulate
B” [equivalently: ω1 is regular but there is no ladder system on ω1] holds, then ω1 is
inaccessible in Gödel’s Constructible Universe L. Hence the inaccessible is necessary
in Becker’s model.

It is easy to see that the existence of an (ω1, ω
∗
1)-gap implies both (a) that there is

an uncountable set of sequences well-ordered by <∗ and hence an uncountable well-
orderable subset of R and (b) that ω1 is not of countable cofinality—equivalently,
ω1 is regular—and so a negative answer to the following problem would also require
an inaccessible cardinal:

Problem 1. Does the existence of an (ω1, ω
∗
1)-gap imply the existence of a Haus-

dorff gap?

2. Superficially similar but weaker axioms

Here are some consequences of “Postulate A” which are superficially similar to
some of the statements in Theorem 1, but are strictly weaker.

(I) There exists a system of countable families of functions, F = {Fα : α < ω1},
such that if f ∈ Fα, then f maps α one-to-one into ω.

(Ia) There is a system as in (I) with the further property that, for each α < ω1, any
two functions f, g in Fα satisfy f(ξ) = g(ξ) for all but finitely many ξ < α.

(Ib) There is a system as in (I) such that if α < ω1, and f, g ∈ Fα, then ran(f)∆ran(g)
is finite, where ∆ denotes symmetric difference.

(II) There exists a system of countable families of ladders, {Lα : α < ω1, α is a limit ordinal},
such that each L ∈ Lα is a ladder at α.



6 PETER NYIKOS

(IIa) There is a system as in (II) with the further property that, for each α < ω1,
any ladders L,M in Lα satisfy L(n) = M(n) for all but finitely many n ∈ ω.

(IIb) There is a system as in (II) such that if α < ω1, and L,M ∈ Lα, then
ran(L)∆ran(M) is finite.

Clearly (Ia)→ (Ib)→ (I) and (IIa)→ (IIb)→ (II). Also (I)→ (II), (Ia)→ (IIa),
and (Ib) → (IIb); however, unlike in the case of the axioms in Theorem 1 that they
mimic, the last three implications don’t seem to reverse; neither do the others. One
can however obtain conditions equivalent to (Ia), (Ib) and (I) respectively by asking
that the members of each Fα be functions from ω onto α. Indeed, if f : α → ω is
1-1, then any left inverse of f is a function from ω onto α, while any right inverse
of the latter kind of function is a function of the former kind. When the domain
of a surjective function is well-ordered, ZF is already enough to produce a right
inverse: take each element ξ in the range to the least element in f←{ξ}. This will
be referred to as the “canonical right inverse” below.

(I) is an easy consequence of the following axiom, and also of its weakening
ω-MC(ℵ1, 2

ℵ0), defined analogously to MC(ℵ1, 2
ℵ0):

ω-MC(∞,∞): For every A = {Aγ : γ ∈ Γ} of non-empty pairwise disjoint sets
there exists a family F = {Fγ : γ ∈ Γ} of countable non-empty sets such that for
every γ ∈ Γ, Fγ ⊆ Aγ .

(IIb) is equivalent to the following statement: there is a locally compact topology
on ω1 refining the order topology, such that the set of limit ordinals forms a closed
discrete subspace, but none are isolated.

If there is a special Aronszajn tree, then it is easy to show that (I) holds. As a
partial converse, we have:

Theorem 6. If (I) holds and ω1 is singular, then there is a special Aronszajn tree.

A model of (I) where ω1 is singular is described below; thus “well-orderable”
cannot be dropped from 3a. The following example witnesses the truth of Theorem
6, even if one adopts the restricted definition of “Aronszajn tree” in the cautionary
note of Section 1. It is named after a fascinating botanical phenomenon, of which
there is a fine example in my neighborhood.

Example 1. “The Witches’-Broom”. This is a tree of height ω1 whose existence
uses a sequence βn ↗ ω1 of non-limit ordinals such that β0 = 0 and a family
{Fα : α < ω1} as in (I). For each countable ordinal α, let n be the unique natural
number such that βn ≤ α + 1 < βn+1, and let Gα be the set of all functions
g : α + 1 → (ω × ω) for which there is a finite sequence σ = 〈f1, . . . fn+1〉 such
that fi ∈ Fβi

and g(ξ) = 〈i, fi(ξ)〉 for the unique i satisfying βi ≤ ξ < βi+1. Let
T =

⋃
{Gα : α < ω1} ordered by end extension. Clearly, T is of height ω1, and

each level is countable because the members of each level are uniquely associated
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with finite sequences σ whose members are taken from countable sets. T cannot
have an uncountable branch because that would give us a 1-1 function from ω1 into
ω × ω; thus T is Aronszajn. T even satisfies the restrictive definition given in the
cautionary note of Section 1. T is also special: for each 〈n, k〉, the following is an
antichain: {g ∈ T : g(max(dom(g))) = 〈n, k〉}.

Because of Example 1 and Theorem 1, a negative answer to any part of the
following would require large cardinals.
Problem 2. Is (I), or (Ib), or at least (Ia) enough to imply the existence of an
Aronszajn tree? a special Aronszajn tree?

Theorem 7. If (Ib) holds and ω1 is singular, then there is an uncountable well-

orderable set of reals.

A slight modification of the Feferman-Lévy model produces a model of (Ia) and
hence of (1b) in which ω1 is singular (“Postulate C”). Where Feferman and Lévy
use the group G of all permutations of ω×ω that leave the first coordinate invariant,
this modification uses just the subgroup H of members of G which move only finitely
many elements of ω×ω. The definitions of the fn are as before and all the arguments
in Jech’s Set Theory, pp. 213–4 go through without change.

In this modification, the set of all translates of any name for a set is countable.
Thus if we start with the names ḟn of each fn and define

Ḟn = {〈πḟn,1〉 : π ∈ H}

then Ḟn is a symmetrical name of a countable set, and so is

Ḟn = {〈Ḟn,1〉 : n ∈ ω}.

Each πḟn is the name of a function from ω onto the ωn of the ground model M, a
function that differs from fn in only finitely many coordinates. By restricting each
of these functions to each α ∈ ωM

n , we get a system of countable families Gα of
surjective functions from subsets of ω to α. From this system we can easily obtain
a system satisfying (Ia) as explained earlier.

If the ground model M satisfies MA + c = ℵω+1, then there is an uncountable
set of sequences well-ordered by <∗ in the extension N. If M satisfies GCH, there
is no such set of sequences in N; however, by Theorem 7, there is an uncountable
well-orderable set of reals in N no matter what M is. Thus, with the possible
exception of (2) [see Problem 1], no statement in the following list implies the one
before it—but, as we have seen, each one implies the later ones:

(1) There is a ladder system on ω1.

(2) There is an (ω1, ω
∗
1)-gap.
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(3) There is an uncountable set of functions from ω to ω that is <∗-well-ordered.

(4) There is an uncountable well-orderable subset of the real line.

Problem 3. If there is a system satisfying (Ia), is there a coherent one?

In other words, can we remove the restriction on f and g in (Ia) that requires
them to belong to the same Fα, and ask that f(ξ) = g(ξ) for all but finitely many
ξ in the common domain of f and g? If ω1 is singular and F satisfies (Ia), then the
Gα in the construction of the Witches’ Broom form a coherent system satisfying
(Ia) with ω × ω substituted for ω. So a negative answer to Problem 3 implies the
consistency of an inaccessible cardinal. This can also be seen from the fact, shown
in the next section, that an affirmative answer to Problem 3 also implies one to the
(Ia) part of Problem 2.

3. Aronszajn trees and long line smoothings from coherent families

Definition 3.1. Let 〈A,≤〉 be a well-ordered set. An element α ∈ A is called a
limit in A or a limit element of A if it has no immediate predecessor and is not
the least element of A. An A-sequence is a function whose domain is A. We use
〈rα : α ∈ A〉 to denote the A-sequence σ that satisfies σ(α) = rα for all α ∈ A.

The following definition is typical of a genre of definitions by transfinite recursion.
To define something in this genre for a well-ordered set A, we assume that it has
already been defined for proper initial segments of A, and we break it up into the
cases where A has a greatest element and where it does not. Such definitions are
necessarily awkward because proper initial segments of A are also one of these two
kinds, and we have to talk about one kind before we do of the other.

Definition 3.2. Let 〈A,≤〉 be a countable well-ordered set, and let σ be an A-
sequence of real numbers. If A is finite, with n elements, we let α(i) be the ith
element of A and let

∑
〈rα : α ∈ A〉 =

∑n
i=1 rα(i). If A is infinite and has a greatest

element γ, we say
∑
〈rα : α ∈ A〉 converges to r and write

∑
〈rα : α ∈ A〉 = r just

in case
∑
〈rα : α < γ〉 converges to r − rγ .

If A is infinite and has no greatest element, We say
∑
〈rα : α ∈ A〉 = r iff (a) for

every limit β ∈ A there exists r(β) ∈ R such that
∑
〈rα : α < β〉 = r(β) and (b)

for each positive ε ∈ R, there exists δ ∈ A such that |r −
∑
〈rξ : ξ < η〉| < ε for all

η ≥ δ.

Note the special case in which A is infinite and there is no limit element in A:
in this case, A is order-isomorphic to the set of natural numbers, and we get a
definition essentially like the usual one. Another special case worth noting is when
A has exactly one limit element β and a greatest element γ. Then

∑
〈rα : α ∈ A〉

exists iff
∑
〈rα : α < β〉 “is a convergent series,” as we say in analysis, and then

∑
〈rα : α ∈ A〉 =

∑
〈rα : α < β〉+

∑
〈rη : β ≤ rη ≤ γ〉.
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and the rightmost sum is over a finite set, so we look to the second sentence of
Definition 3.2 for its definition.

The following definition and theorem allow us to cut through the Gordian knot
of Definition 3.2 in the special case where all terms of the A-sequence σ are positive.

Definition 3.3. If Σ =
∑
〈rα : α ∈ A〉, we say Σ is an absolutely convergent series

if
∑
〈|rα| : α ∈ A〉 exists.

It is easy to show that absolute convergence of Σ implies convergence of Σ. The
following generalizes the “advanced calculus” theorem that all rearrangements of
an absolutely convergent series converge to the same real number.

Theorem 8. If A is a countably infinite well-ordered set and Σ is absolutely con-

vergent, and f : ω → A is any bijection, then

∑
〈rα : α ∈ A〉 =

∞∑

n=0

rf(n).

Corollary. If A is a countably infinite well-ordered set and 〈rα : α ∈ A〉 is a

convergent series in which every term is positive, then for each ε > 0 there are only

finitely many α such that rα ≥ ε.

We now adopt the following notation.

QΣ = {〈qξ : ξ < α〉 : α < ω1,
∑

ξ

qξ converges, and qξ ∈ Q+ for all ξ < α}.

Lemma. There is an uncountable coherent subtree of QΣ iff there is an uncountable

coherent subset of

W = {σ : α→ ω | σ is 1-1 and α ∈ ω, and ran(σ) is co-infinite in ω}

It is easy to see that QΣ is R-special and that every uncountable coherent subtree
of QΣ is Aronszajn. These things are also true of W , which is a tree in the extension
order: we can embed W in QΣ by sending each σ ∈ W to the sequence with the
same domain that takes ξ ∈ dom(σ) to 1/2σ(ξ). This sends coherent subtrees of
W to coherent subtrees of QΣ, showing the reverse implication in the lemma. The
forward implication is proven by listing Q+ in a sequence, {qn : n ∈ ω}, taking
τ ∈ QΣ to a 1-1 sequence τ ′ in QΣ such that always τ(ξ) ≤ τ ′(ξ), and then taking
τ ′ to the sequence σ with the same domain that takes ξ ∈ dom(τ ′) to the unique n
such that τ(ξ) = qn. Of course, σ has coinfinite range since at most finitely many
τ ′(ξ) are > ε for any ε > 0. ¤

The following theorem, together with the modified Feferman-Lévy model of Sec-
tion 2, establishes that the converse of Theorem 4 does not hold.
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Theorem 9. If there is an uncountable coherent subtree of QΣ, then there is a

smoothing of the long line.

If we go all the way and assume the existence of a ladder system, then we can
produce a special Aronszajn subtree of QΣ without having to knock out the limit
levels as we did in the Witches’-Broom. Also the tree has the esthetic advantage of
being Hausdorff (T2) in the interval topology; this is equivalent to every chain that
is bounded above having a least upper bound. From the Corollary above, it is an
easy step to:

Lemma. If Σ =
∑
〈rξ : ξ < α〉 is a series of positive rational numbers that con-

verges to a rational number, then for every q ∈ Q+ there is a series Σq that converges

to q and differs from Σ in only finitely many summands.

Theorem 10. If there is a ladder system on ω1, then there is a coherent Hausdorff

special Aronszajn subtree T of QΣ in which every member converges to a rational

number.
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