
D-spaces, trees, and an answer to a problem of Buzyakova

This paper was motivated by the following question, posed by Buzyakova [2,
Question 3.6]:

Question 1. If X is a space such that e(Y ) = l(Y ) for all subspaces Y of X, is X
a D-space?

0.1. Definition. The extent of a space X, designated e(X), is the supremum of
the cardinalities of its closed discrete subspaces. The Lindelöf degree (or: Lindelöf
number) of X, designated l(X), is the least κ such that every open cover of X has
a subcover of cardinality κ.

A well known elementary fact is that e(X) ≤ l(X) for all topological spaces X.
But from now on, “space” will mean “Hausdorff space.”

0.2. Definition. A neighborhood assignment or neighbornet on a space X is a
family of sets indexed by the points of X, each one a neighborhood of the indexing
point. A D-space [resp. dually discrete space] is a space X such that for every
neighbornet V = {Vx : x ∈ X} there is a closed discrete subset [resp. a discrete
subset] D of X such that {Vx : x ∈ D} covers X.

In the above definition, we may confine our attention to those V whose members
are open — the open neighborhood assignments. This is because if a shrinking of
a neighbornet has a [closed] discrete subspace associated with it as above, then so
does the original neighbornet. Hence one can also confine oneself to neighborhoods
from a given base for the topology or a system of neighborhood bases for the points.

Question 1 is the seventh of ten open problems about D-spaces that were repeated
by Eisworth in [E]. In Section 1 we give a ZFC counterexample that is a tree with
the interval topology.

0.3. Definition. A tree is a poset (partially ordered set) in which the set of
predecessors of each element is well-ordered.

If T is a tree and t ∈ T then t↓ = {x ∈ T : x ≤ t} and ∇t(T ) (also denoted ∇t

or t↑ if the tree is clear from context) is {x ∈ T : t ≤ x}.
The height of t ∈ T , denoted ht(t), is the order type of t↓, and if α is an ordinal

then T (α) = {t : ht(t) = α}. Some authors write Tα for T (α). The height of T ,
denoted ht(T ), is the least α such that T (α) = ∅.

0.4. Definition. If T is a tree, the interval topology (sometimes referred to simply
as “the tree topology”) on T is the topology whose base is the set of all intervals of
the form (s, t] = {x ∈ T : s < x <≤ t} together with all singletons m such that m
is a minimal element of T .

In Sections 2 and 3 we address the general questions of when a tree is a D-space
[respectively, dually discrete] in its interval topology. Despite the similarity in the
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definitions of the two concepts, the class of dually discrete spaces is radically larger
than the class of D-spaces. But one thing the two classes share is the wide range
of uncertainty as to which spaces do or do not belong. On the one hand, we do
not know whether every subspace of a compact hereditarily Lindelöf space is dually
discrete; on the other hand, we also do not know of even a consistent example of
a normal, weakly θ-refinable space that is not a D-space. Even where the interval
topology on trees is concerned, we have a big gap in our knowledge, exemplified by
the following two contrasting problems:

Problem 1. Is it a theorem of ZFC that every Aronszajn tree is dually discrete?

Problem 2. Is there a tree that is not dually discrete?

Section 1. The main counterexample

1.1 Lemma. A subset D of a tree T is closed discrete iff every infinite ascending
sequence in D is unbounded above in T .

1.2. Lemma. A tree T has a cofinal closed discrete subspace iff it has a cofinal
subset that is the countable union of antichains.

1.3. Theorem. If a tree is a D-space, then every branch is of countable cofinality,
and the tree has a cofinal subset which is a closed discrete subspace.

Proof. Let Vt = t↓ for all points t ∈ T . If D is as in the definition of a D-space,
then D is obviously a cofinal closed discrete subspace of T .

If B is a branch of T , let Vt = t↓ for all t ∈ B, while if t /∈ B then, let Vt = t↓

if t↓ does not meet B. Otherwise, by our Hausdorff assumption, B is closed, so we
can let Vt be any interval (s, t] that does not meet B. Then if D is as before, D∩B
must be countable and cofinal in B by Lemma 1. ¤

We will return to the general question of when a tree is a D-space in Section
2. For now, we just note that the converse of Theorem 1.3 is far from true: any
tree can be embedded as a closed subtree of a tree with a cofinal antichain, and
every closed subspace of a D-space is a D-space. But there are examples of trees in
which every branch is countable, but which are not D-spaces. A Souslin tree is a
consistent example: clearly, a Souslin tree does not have a countable cofinal subset;
but every union of countably many antichains in a Souslin tree is countable. On
the other hand, Souslin trees are dually discrete: see Theorem 2.9.

Here is a very different, ZFC example of a non-D-space which gives a negative
answer to Question 1.

1.4. Example. Let E be a stationary, co-stationary subset of ω1. Members of the
tree T (E) are the compact subsets of E, ordered by end extension <T . That is, if
c1 and c2 are compact subsets of E, then c1 <T c2 iff c1 ⊂ c2 and α < β for all
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α ∈ c1 and b ∈ c2 \ c1. Since E does not contain a club, every branch of T (E) is
countable.

1.5. Definition. Call a tree robust if for every t ∈ T and every α such that
ht(t) < α < ht(T ), there exists x ∈ T such that t < x and ht(x) = α. In other
words, each point of T has successors at every level above its own.

For our next theorem, we use a definition of “Baire” that refers to the logicians’
wedge topology (also known as the Alexandroff discrete topology [Ny]) on posets.
This is the topology whose base is the set of all wedges ∇t = {x ∈ T : x ≥ t}.
This is not a T2 topology, but it is the topology logicians refer to when they use
the expressions “dense,” “open,” and “Baire” in the context of trees. These have
simple order-theoretic characterizations: a dense set in this topology is one that is
cofinal; an open set is one that is upwards-closed; and:

1.6. Definition. A poset is ω-distributive or Baire if every countable collection of
cofinal, upwards-closed sets has cofinal intersection.

The following is well known folklore.

1.7. Theorem. Let T be a robust tree of height ω1 in which every chain is count-
able. The following are equivalent.

(1) No subset of the form ∇t has a cofinal subset which is the countable union
of antichains.

(2) T is Baire.
(3) Forcing with T cannot collapse ω1.

1.8. Lemma. T (E) is robust.

Proof. See [Ba, Lemma 3.7] or [F]. ¤

1.9. Theorem. T (E) is not a D-space.

Proof. By 1.2, 1.3, 1.7 and 1.8, it is enough to show that T (E) is Baire. This is
shown in [T, Lemma 9.12] where T (E) is called U(E), except that the proof makes
no mention of the essential ingredient that T (E) is robust, implicitly used in getting
extensions arbitrarily far up inside a countable elementary submodel. [Compare the
proof of 2. below.] ¤

1.10 Theorem. T (E) has no Aronszajn subtrees.

Proof. Let S be a subtree of T (E) in which every level is countable. If c ∈ S then
the level of c in S is no greater than its level in T , which in turn is no greater than
max(c). Suppose S is uncountable; the following argument yields a contradiction.

For ξ ∈ ω1, let

α(ξ) = min {η : max(c) ≤ η for all c in the ξth level of S}
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Let α0 = 0,
αν+1 = α(αν + 1);
if µ is a limit ordinal, let αµ = sup{αν : ν < µ}.

Then {αν : ν < ω1} is a club, and so it meets the complement of E in a stationary
set. If ν is a limit ordinal and c is on the ανth level of S, then αν ∈ c; but if αν /∈ E
this is impossible. ¤

1.11. Theorem. Let T be a tree. Exactly one of the following is true.

(1) T either has an uncountable branch or a Souslin subtree.
(2) Every uncountable subset of T contains an antichain of the same cardinality.

Proof. If (1) fails, let S be an uncountable subset of T .

If |S| = ω1 we use the fact that any uncountable tree without an uncountable
branch is either a Suslin tree or it contains an uncountable antichain.

If cf(|S|) > ω1, then some level must meet S in a set of cardinality |S|, and this
is a closed discrete subspace.

Finally, suppose |S| is singular of cofinality ω or ω1. If cf(|S|) = ω, let {κn : n ∈
ω} be cofinal in |S|, with κ0 > ω1, and let S′ = {x ∈ S : |∇x(S)| < |S|}.

Case 1: |S′| = |S|. In this case, if |∇x(S)| < κn for some n and all x ∈ S′, then
the minimal members of S′ are an antichain of size |S|. Otherwise, pick the least
θ such that the θth level S′(θ) of S′ is infinite, and pick distinct tn ∈ S′(θ) such
that |∇tn

(S)| > κn. Since κn > ω1, there must be an antichain Ln in ∇tn
(S) of

cardinality > κn; then
⋃∞

n=0
Ln is as desired.

Case 2. |S′| < |S|. Let U = S \ S′, let θ be the least ordinal such that U(θ) is
infinite, and pick distinct tn in U(θ) and antichains Ln as above.

If cf(|S|) = ω1, just replace countable sets with sets of size ω1 in the above
constructions. ¤

1.12. Corollary. If X is any subspace of T (E), then e(X) = l(X). Moreover,
extent is always attained (except for ω under some definitions of extent).

Problem 3. Is T (E) dually discrete?

Of course, if the answer to Problem 3 is negative, so is the one to Problem 2.

Section 2. When is a tree a D-space? When is it dually discrete?

Problem 4. Suppose T is a tree such that every closed subtree has a cofinal subset
that is the countable union of antichains. (a) Is T dually discrete in its interval
topology? (b) Is it a D-space? (c) Is it quasi-metrizable?
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2.2 Definition. A quasi-metric on a set X is a function d : X2 → R
+ ∪ {0} such

that:

(1) d(x, y) = 0 if, and only if, x = y.
(2) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z in X.

A space X is quasi-metrizable if there is a quasi-metric d on X such that the
collection ({Bǫ(x) : x ∈ X, ǫ > 0} of open ǫ-balls is a base for the topology on X.

The converse of Problem 4(c) has an affirmative answer:

2.3. Theorem. Every quasi-metrizable tree has a cofinal subset that is the count-
able union of antichains.

An immediate corollary is that T (E) is not quasi-metrizable.

Before proving Theorem 2.3, we introduce some concepts which will be useful
later on.

2.4. Notation. Given a tree T of height ≤ ω1, let
R(T ) = {x ∈ T : ∇x is of height ω1}.
Let R0(T ) = T . With Rα(T ) defined, let Rα+1(T ) = R(Rα(T )) and if α is a

limit ordinal, let Rα(T ) =
⋂
{Rβ(T ) : β < α}. Let RC(T ) = Rα(T ) for the least α

such that Rα+1(T ) = Rα(T ).

It is easy to see that if RC(T ) is nonempty, then it is robust; and in this case we
refer to RC(T ) as the robust core of T .

Note how the following proof only uses the fact that ht(T ) ≤ ω1 until the Claim.

Proof of Theorem 2.3. Let T be a quasi-metrizable tree. If RC(T ) = ∅ then every
point of T is ≤ some member of T \ R(T ), which in turn has a cofinal subset
that is a countable union of antichains: let A be the set of minimal members of
T \ R(T ), and for each x ∈ A let the levels of ∇x be listed as {An(x) : n ∈ ω}; let
An =

⋃
{An(x) : x ∈ A}. Clearly, each An an antichain and C =

⋃
{An : n ∈ ω} is

cofinal in T .

So suppose RC(T ) 6= ∅. Every point of T \RC(T ) is below some point of A. So
it is enough to show that RC(T ) has a cofinal subset that is the countable union of
antichains. This will follow from Theorem 1.7 and:

Claim. If T is quasi-metrizable and RC(T ) 6= ∅, then forcing with RC(T ) col-
lapses ω1.

Proof of Claim. As seen from the proof of 1.7, forcing with a robust tree of
height ω1 adds a branch that meets every level, so that if ω1 is not collapsed, the
branch is a copy of ω1, hence countably compact. However, quasi-metrics cannot
be destroyed by forcing, and every countably compact, quasi-metrizable space is
metrizable. This is because every quasi-metrizable space is a γ-space [G, 10.2,
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10.5], and every countably compact g-space is metrizable [G, 10.8]. But ω1 is not
metrizable. ¤

From the proof of the claim it can be deduced that every chain in a quasi-
metrizable tree is countable.

2.5. Definition. Let L be a totally ordered set. A tree T is L-special if there is
a <-preserving function from T to L. A tree is special if it is a countable union of
antichains.

Problem 5. Is a tree a D-space (or: dually discrete) if it is (a) quasi-metrizable?
(b) R-special?

An affirmative answer to (a) also implies one to (b): if T is R-special, witnessed
by f : T → R, then the following is a quasi-metric that generates the topology:
d(t, x) = min{1, f(x) − f(t)} if t ≤ x, d(t, x) = 1 otherwise.

If a tree is hereditarily a D-space, then it cannot contain a copy of ω1 and so
every chain is countable. This motivates:

Problem 6. If a tree is a D-space with no uncountable chains, is it hereditarily a
D-space if it is (a) quasi-metrizable? (b) R-special?

Problem 7. If a tree is hereditarily a D-space, is it (a) quasi-metrizable? (b)
R-special? (c) special?

Now we turn to positive results. First, we show the converse of the last part of
Problem 7.

2.6. Theorem. Every special tree is hereditarily a D-space.

Proof. A routine induction shows that if X is the countable union of closed D-
subspaces, then X is a D-space. The rest is immediate from the fact that an
antichain in a tree is closed discrete, and hence a D-space. ¤

A similar proof shows that every locally compact, subparacompact space is a D-
space. Simply use the following definition of “subparacompact”: every open cover
has a σ-discrete closed refinement; and, of course, the fact that every compact space
is a D-space.

Next, we show that the extra conditions ((a), etc.) in Problem 7 are important.

2.7. Definition. The branch completion of a tree T is the tree T̃ obtained by
adjoining a point tB at the end of each branch B of T . That is, T̃ = T ∪ {tB :

B is a branch of T} and if t1, t2 ∈ T̃ then t1 ≤T̃ t2 iff either ti ∈ T for i = 1, 2 and
t1 ≤T t2 or t1 ∈ T and t2 = tB for some branch B such that t1 ∈ B.

For simplicity, we write T̃ (E) for ˜T (E) below. It is a tree in which every chain
is countable, and T (E) is a dense, downwards closed (hence open) subtree which is

not a D-space. However, T̃ (E) is a D-space (accounting for the extra conditions in
Problem 5):
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2.8 Theorem. T̃ (E) is a D-space.

Proof. Let U = 〈Ut : t ∈ T̃ (E)〉 be an open neighbornet and let D0 = T̃ (E) \ T (E).

Let U =
⋃
{Ud : d ∈ D0} and let S = T̃ (E) \ U = T (E) \ U .

Claim. S is special.

Once the claim is proved, use Theorem 2.6 and the fact that S is closed in T̃ (E)
(and hence the relative topology on S is the interval topology) to get a closed

discrete subspace D1 of T̃ (E) such that S ⊂
⋃
{Ud : d ∈ D1}. Then T̃ (E) =

⋃
{Ud :

d ∈ D0 ∪ D1}, as desired.

Proof of Claim Otherwise, let S′ = S \ {s ∈ S : ∇s(S) is special }. Then S \ S′

is special, and we will be done once we show that S′ = ∅.

Suppose S′ 6= ∅. Then ht(S′) = ω1 and S′ is robust. Let N0 be a countable
elementary submodel of a sufficiently large fragment of the universe containing
E, T (E), and U . Then T̃ (E), D0, and U are also elements of N0. Let {Nα : α < ω1}
be a continuous ∈-chain of countable elementary submodels. Let δ /∈ E be such
that Nδ ∩ ω1 = δ, and let αn ր δ. Note that αn ∈ Nδ for each n.

Let x0 ∈ S′ ∩ Nδ. By elementarity, there exists x1 ∈ S′ ∩ Nδ such that x1 ≥ x0

and the height of x1 in S′ is at least α1 (but < δ). In general, with xn defined, let
xn+1 ≥ xn, xn+1 ∈ S′ ∩ Nδ, αn+1 ≤ htS′(xn+1(< δ). Then the set of all xn is not
bounded above in T (E) and hence it determines a branch B of T (E). But then tB
is in the closure of {xn : n ∈ ω}, a contradiction. ¤

Here is a theorem promised in Section 1.

2.9. Theorem. Every Souslin tree is dually discrete.

Proof. If T is an Aronszajn tree and N is a neighbornet, call a point popular if it is
in uncountably many sets N(t), otherwise call it unpopular. A standard argument
shows that the following is a club subset of ω1:

C = {α : ht(t) < α and t is unpopular implies ht(x) < α for all x such that t ∈ N(x)}

This club divides up the unpopular points into countable relatively clopen sets, and
the unpopular points on levels indexed by C form a closed discrete subspace.

However, if T is Souslin, then every closed discrete subspace is countable, so
there are only countably many unpopular points altogether.

Fix δ so that all unpopular points are below level δ. The levels at δ or below
form a countable clopen D-subspace Tδ. Let D0 be a closed discrete subspace of Tδ

and hence of T such that {N(t) : t ∈ D0} covers Tδ.
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List the points above level δ as {pα : α ∈ ω1} and inductively choose xα so that
pα ∈ N(xα), the level of xα is above that of the earlier xβ , and so that whenever α
is a limit ordinal, then there is a limit ordinal between the levels of the xβ , β < α
and the level of xα itself. The resulting set D1 of xα is discrete, and so is D0 ∪D1,
and {N(t) : t ∈ D1 ∪ D2} covers T . ¤

The foregoing argument can be easily adapted to almost Souslin trees, which are
Aronszajn trees in which every antichain meets a nonstationary set of levels. But
there is, consistently, a big no-man’s land of Aronszajn trees between the almost
Souslin and the special, where the foregoing argument runs into major difficulties.

3. Additional Properties of T (E)

We have already seen that T (E) is not quasi-metrizable. It also fails to satisfy
the nice topological properties that Eric van Douwen was interested in, and which
are featured in most of the other problems in [E].

A nice property that T (E) does have is realcompactness. This property is char-
acterized by every Z-ultrafilter with the countable intersection property being fixed:

Definition. A zero-set of a space X is a set of the form f←{0} for some continuous
function f : X → R. A Z-ultrafilter on a space X is an ultrafilter U of the lattice of
zero-sets. That is, if Z0 and Z1 are zero-sets in U , then their intersection is in U ,
every zero-set containing one in U is itself in U , the empty set is not in U , and if Z
is a zero-set not in U then it is disjoint from some member of U .
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