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1 Introduction

Game Theory is a mathematical field that studies how rational agents make decisions in both competitive
and cooperative situations. It has widespread applications in economics, political science, psychology, biology,
computer science, and data science. Some of the applications include radio spectrum auctions, voting, and
organ donations. These notes introduce the basic strategic form game, also known as the normal form game.

2 Model

In this section, we formally define the normal form game. Let’s begin with some intuition. A normal form
game has a set of players. Each player has a set of strategies. These players each select a strategy and play
their selections simultaneously. In this manner, no player is responding to another’s selection. Furthermore,
we think of the players’ strategies as setting the rules of the game. Finally, the selection of strategies results
in payoff or utility for each player. Each player’s goal in a game is to maximize utility. Each player is aware
of the structure of the game; that is, the other players’ strategy sets and payoffs. The normal form game will
now be formally defined.

Definition 1 (Normal Form Game). A normal form game Γ is a three-tuple [N, (Si)i∈N , (ui)i∈N ] where N is
the set of players, Si is player i’s strategy set, and ui :

∏
i∈N Si → R is player i’s payoff or utility function.

The sequence of strategies (s1, ..., sn) ∈
∏
i∈N Si is referred to as a strategy profile.

In addition to the assumptions that the players are economically rational and play at the same time, it is also
assumed that the structure of the game is perfectly known. In other words, each player knows every player’s
strategy set and utility function.

Let’s examine an example of a normal form game, the standard Prisoner’s Dilemma.

Example 1 (Prisoner’s Dilemma). In this game, the police have two accomplices of a crime in separate rooms.
They are each offered a deal: implicate the other prisoner and earn a reduced sentence if the other player
remains silent. If both players remain silent, they each end up in jail for two years. If both players implicate
each other, they each go to jail for five year.

Formally, we have two players N = {1, 2}. Each player has the strategy set Si = {Quiet,Fink}, and the utility
function of the form ui : Si×Si → R. If both players play Quiet, they each earn utility of −2; and if both play
Fink, they each earn utility of −5. If one player plays Quiet and the other Fink, they earn utilities of −10 and
−1 respectively.

We represent the normal form game using the following matrix known as a payoff matrix. Player 1’s strategies
are on the left-side while Player 2’s strategies are on the top of the matrix. Each cell represents the payoffs of
the form (u1(s1, s2), u2(s1, s2)) for the selected strategies s1 ∈ S1 and s2 ∈ S2.

Player 2
Quiet Fink

Player 1
Quiet
Fink

− 2,−2 −10,−1

−1,−10 − 5,−5
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Not every normal form game can be represented as a matrix. When we have more than two players or
continuous strategies, tables are not very helpful. Let’s consider a second example of a normal form game: the
Cournot duopoly.

Example 2 (Cournot Duopoly). In this game, we have two players again: N = {1, 2}. Each player is a
firm producing the same, identical good. The market sets the price for the good based on the total amount
produced by the two firms. The two firms compete in the quantities of the good they each produce, incurring
a fixed cost c > 0 for each unit of good produced. Each firm seeks to maximize its own profit. Suppose the
inverse demand function (the price function) is given as follows where a, b > 0:

P (q1, q2) =

{
a− b(q1 + q2) : if q1 + q2 ≤ a/b
0 : if q1 + q2 > a/b

(1)

Each firm has the strategy set Si = R+, indicating the quantity of the good it can produce. Each firm also
has the utility function of the form ui : R2

+ → R given by ui(q1, q2) = qiP (q1, q2)− cqi. Since the strategies are
uncountable, it is pointless to construct a payoff matrix to help in analyzing the game.

3 Solving Games and Nash Equilibrium

Recall that each player in a given game seeks to maximize its utility. How do agents select strategies? What
is the solution concept for a game? The first notion of comparison is rather intuitive and straight-forward.
We refer to it as strategy dominance. Basically, if strategy si yields at least as good a payoff as strategy sj
regardless of the other agents’ strategy selections, then why would the player ever choose strategy sj? We
first introduce the following notation. Let i ∈ N . We denote −i := N \ {i}. Now we formalize the notion of
desirable strategies by defining a Best Response.

Definition 2 (Best Response). Let i ∈ N and let si ∈ Si. The strategy si is a best response of player i against
s−i ∈ S−i if ui(si, s−i) ≥ ui(s′i, s−i) for every s′i ∈ Si.

We denote Bi(s−i) = {si ∈ Si : ui(si, s−i) ≥ ui(s
′
i, s−i) ∀s′i ∈ Si} as i’s best response correspondence against

s−i, or the set of all i’s strategies that are best responses to s−i. Note that every element of Bi(s−i) solves
maxsi∈Si ui(si, s−i).

Remark: Note that the Best Response Correspondence is only defined for pure strategies here. If we are inter-
ested in mixed strategies (which will be introduced later), we consider the mixed-extension of the normal form
game Γ′. The mixed extension of a normal form game considers the same set of players and utility functions.
However, each player i’s strategy set in Γ′ is ∆(Si), where ∆(Si) is the set of all probability distributions over
i’s strategy set Si in Γ. We then consider the Best-Response Correspondence over ∆(Si) rather than Si.

Let’s consider an example with a new game, a voting game.

Example 3 (Voting Game). Suppose we have three players, N = {1, 2, 3} and two candidates A,B. Each
player can vote for exactly one of A or B, so Si = {A,B}, for all i ∈ N . The three players cast their votes
simultaneously. Players 1 and 2 incur utility 1 if A wins and utility 0 if B wins. Player 3 incurs utility 0 if A
wins and utility 1 if B wins.

Observe that for any s−1 ∈ S−1, B1(s−1) = {A}. If s−1 = (B,B), player 1 selecting s1 = A incurs the same
utility of 0 as selecting s1 = B. Otherwise, if player 1 selects s1 = A and at least one player of −1 selects A,
then player 1 incurs utility 1 while selecting B may result in utility 0 if only one of the players in −1 selects
A. In fact, we can say more strongly that for player 1, voting for A is a weakly dominant strategy. This is
formally defined as follows.

Definition 3 (Dominated Strategies). The strategy si ∈ Si is weakly dominated if there exists a second strategy
ŝi ∈ Si such that: ui(si, s−i) ≤ ui(ŝi, s−i) for every s−i ∈ S−i, with strict inequality for at least one s−i. We
say that si is strictly dominated if the strict inequality holds for all s−i ∈ S−i.
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Now that we have some notion of how a player compares its strategies, the next step is to discern how the
players select their strategies in anticipation of each other. The solution concept is the Nash equilibrium.
Formally, the Nash equilibrium is defined as follows.

Definition 4 (Nash Equilibrium). The strategy profile s∗ is said to be a Nash Equilibrium if s∗i ∈ Bi(s∗−i) for
every i ∈ N .

Intuitively, a strategy profile s∗ is a Nash equilibrium if no player can unilaterally change its strategy and
improve its outcome. Let’s apply this reasoning to deduce the Nash equilibrium for the Prisoner’s Dilemma
game from Example 1, with the payoff matrix included below. If the two players both select Quiet, then
they each incur utility of −2. One of the players can unilaterally deviate, playing Fink instead, decreasing its
utility to −1 while the other player’s utility is decreased to −10. So (Quiet, Quiet) is not a Nash equilibrium.
Consider (Fink, Quiet). Player 2 can unilaterally deviate, playing Fink instead of Quiet to improve its payoff
from −10 to −5. By symmetry, (Quiet, Fink) is not a Nash equilibrium. Finally, consider (Fink, Fink). By
previous analysis, a single player unilaterally changing from Fink to Quiet will decrease its payoff from −5 to
−10. So no player can unilaterally deviate from (Fink, Fink). Thus, (Fink, Fink) is the Nash equilibrium of
the Prisoner’s Dilemma.

Player 2
Quiet Fink

Player 1
Quiet
Fink

− 2,−2 −10,−1

−1,−10 − 5,−5

The first concern is whether every game has a Nash equilibrium. The answer is yes, but not necessarily
in pure strategies. A pure strategy is the selection of a single strategy from the set Si which player i always
uses. The Nash equilibrium of (Fink, Fink) is the pure strategy Nash equilibrium for the Prisoner’s Dilemma.
For finite normal form games, Nash equilibria are guaranteed to exist in mixed strategies, which will be intro-
duced later. Additionally, we note that in a symmetric game (that is, a game where each player has the same
strategy set and utility function), there exists a Nash equilibrium where each player selects the same strategy.
The equilibrium of (Fink, Fink) in the Prisoner’s Dilemma is actually a symmetric Nash equilibrium.

The problem of computing Nash equilibria is difficult. Formally, it is a complete problem for the complexity
class PPAD. This means that given an arbitrary game, there is (believed to be) no efficient procedure to
compute a Nash equilibrium for an arbitrary game. Additionally, a game may have multiple Nash equilibria.
Enumerating all such equilibria as well as selecting the most realistic equilibria are both difficult problems of
interest. We examine two strategies to help compute pure strategies Nash equilibria: leveraging games with
continuous strategy sets and the elimination of dominated strategies.

3.1 Leveraging Continuity.

Recall Example 2, the Cournot Duopoly. Each player’s strategy set is R+, an amount to produce. Furthermore,
each player has the same utility function, so this game is symmetric. Therefore, we solve for a symmetric Nash
equilibrium. Each player seeks to solve maxqi ui(q1, q2) = (a− c)qi − b(q1 + q2)qi. We consider the first partial
derivative of ui with respect to qi, as player i cannot vary q−i, and set it to 0 to identify potential maximizers:
a− c = 2bqi + bq−i. Solving for qi yields:

qi =
a− c

2b
− q−i

2

As this game is symmetric, there exists a Nash equilibrium where each player selects the same strategy. So we
set: qi = q−i and solve:

q−i =
a− c

2b
− q−i

2
=⇒ q−i =

a− c
3b
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Note that if q−i ≥
a− c
b

, then qi = 0 is player i’s best response.

3.2 Elimination of Dominated Strategies.

Recall the approach in reasoning the Nash equilibrium for the Prisoner’s Dilemma. Checking each strategy
profile to determine if it is a Nash equilibrium is tedious. We prove a simple lemma, upon which the approach
of eliminating dominated strategies is based.

Lemma 3.1. Let i ∈ N . Suppose s, t ∈ Si. If s strictly dominates t, then i will not play t in any Nash
equilibrium.

Proof. If s strictly dominates t, then ui(s, s−i) > ui(t, s−i) for every s−i ∈ S−i. If i plays t, then i can
unilaterally deviate and choose s instead. So i will never play t in a Nash equilibrium.

The procedure below is the same regardless if attention is restricted to strictly dominated strategies or weakly
dominated strategies. Note that Lemma 3.1 is not a necessary condition of weakly dominated strategies. How-
ever, a Nash Equilibrium found in a game produced from eliminating weakly dominated strategies is also a
Nash Equilibrium in the original game. This will be proven later. Let’s begin by examining the procedures.

Definition 5 (Iterated Elimination of Strictly (Weakly) Dominated Strategies). : The procedure begins by
accepting a game Γ where each player’s strategy set is finite. While there is a player x ∈ N with strategies
x1, x2 ∈ Sx such that x1 strictly (weakly) dominates x2, set Sx := Sx \ {x2}. Consider Γ with the updated Sx
at the next iteration of the procedure.

We apply the Iterated Elimination of Strictly Dominated Strategies to the Prisoner’s Dilemma, eliminating
Quiet for the two respective players. This yields the sole strategy profile (Fink, Fink), which we recognize as
the Nash Equilibrium for the game.

Now let’s apply the Iterated Elimination of Weakly Dominated Strategies to the game given by the following
payoff matrix. Observe first this game has three Nash equilibria: (T, L), (B,L), and (B,R).

Player 2
L C R

Player 1
T
B

0, 1 1, 0 0, 0

0, 0 0, 0 1, 0

Observe that Player 1 does not have a dominant strategy in this game. However, L dominates both C and R
for Player 2. We remove R from Player 2’s strategy set and consider the reduced game:

Player 2
L C

Player 1
T
B

0, 1 1, 0

0, 0 0, 0

In this new game, T dominates B for Player 1. So we eliminate B to obtain the following game:

Player 2
L C

Player 1 T 0, 1 1, 0
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Player 2 will play L in this new game, yielding the Nash equilibrium (T, L).

The Elimination of Weakly Dominated Strategies suffers from the fact that the order in which strategies are
eliminated may result in a different Nash Equilibrium. This is due to the fact that weak dominance only
requires one strict inequality, while strict dominance requires all strict inequalities. Consider again the above
game:

Player 2
L C R

Player 1
T
B

0, 1 1, 0 0, 0

0, 0 0, 0 1, 0

If we instead eliminated M first from Player 2’s strategy set initially, we would eliminate T from Player 1’s
strategy set at the next iteration. This would result in finding the Nash equilibrium (B,L). By exhaustion, it is
possible to verify that the Nash equilibrium (B,R) cannot be found by eliminating weakly dominated strategies.

These algorithms do not always yield pure strategies equilibria, but they do reduce the search spaces consid-
erably. Eliminating a strictly dominated strategy preserves all Nash equilibria in a game. We have already
seen that this is not the case when eliminating weakly dominated strategies. However, in a game derived
from eliminating a weakly dominated strategy has a Nash equilibrium, which is also a Nash equilibrium in the
original game. Let’s prove these results formally.

I begin with the following Lemma:

Lemma 3.2. Let Γ be a finite game and let Γ′ be the game produced by eliminating a strictly dominated strategy
in Γ. Then Γ and Γ′ have the same set of Nash equilibria.

Proof. Let Γ be a game and suppose the strategy sj is eliminated from player j’s strategy set by the algorithm.
Let Γ′ be the resulting game. Let s∗ be a Nash equilibrium for Γ′. Player j cannot unilaterally deviate in Γ′

and improve its outcome. As sj is strictly dominated, player j will not deviate to sj in Γ. As every player
k ∈ N \ {j} has the same strategy set in Γ and Γ′, no other player can unilaterally deviate and improve its
outcome. It follows that s∗ is a Nash equilibrium of Γ.

Conversely, suppose q∗ is a Nash equilibrium of Γ. By Lemma 3.1, sj does not appear in any Nash equilibrium
of Γ. It follows immediately that q∗ is a Nash equilibrium of Γ′.

It follows that Γ and Γ′ have the same set of Nash equilibria.

Theorem 3.1. Let Γ0 be a finite game. Let Γ1, ...,Γk be the sequence of games produced by the Iterated
Elimination of Strictly Dominated Strategies. For every i ∈ {0, ..., k − 1}, Γi and Γi+1 have the same set of
Nash equilibria.

Proof. Theorem 3.1 follows immediately by applying induction and Lemma 3.2.

Lemma 3.3. Let Γ be a game and let Γ′ be the game produced by eliminating a weakly dominated strategy in
Γ. Then every Nash equilibrium in Γ′ is also a Nash equilibrium in Γ.

Proof. As Γ′ is a finite game, it has a Nash equilibrium. Suppose that si was eliminated from player i’s
strategy set in the construction of Γ′. Suppose to the contrary that there exists a Nash equilibrium s∗ of Γ′

that is not a Nash equilibrium of Γ. As deviating from s∗ in Γ and Γ′ is equivalent for −i, only player i can
unilaterally deviate and improve its outcome. The only such option is for i to deviate in Γ is si, contradicting
the assumption that si was eliminated as a weakly dominant strategy.

Applying induction and Lemma 3.3 immediately implies the correctness of the Iterated Elimination of Weakly
Dominated Strategies.
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4 Mixed Strategies

In this section, we introduce the notion of mixed-strategies. One important motivator for mixed-strategies is
that not every game has a pure strategies Nash equilibrium. Consider the matching pennies game:

Player 2
H T

Player 1
H
T

1,−1 −1, 1

−1, 1 1,−1

In any pure strategy profile, one player incurs utility 1 and the other player incurs utility −1. The player
incurring utility −1 can unilaterally deviate by switching its choice to improve its utility. This inverts the
payoffs- the first player incurs utility −1 while the second player incurs utility 1. Iterating on the above argu-
ment, we see that no Nash equilibrium exists in pure strategies.

Definition 6 (Mixed Strategies). Let Γ be a normal form game. Let i ∈ N . A mixed strategy is a sequence
(sj)

k
j=1 ∈ Si and a probability distribution σ = (σj)

k
j=1 where player i selects strategy sj with probability σj .

Note that
∑k

j=1 σj = 1. The set of mixed strategies for player i is denoted Σi := ∆(Si), where ∆(Si) is the

simplex in R|Si|. That is, ∆(Si) = {x ∈ R|Si| : xi ≥ 0 ∀i ∈ {1, ..., |Si|},
∑|Si|

i=1 xi = 1}.

Note that pure strategies are a special case of mixed strategies. The mixed extension will now be defined, to
formalize the notion of games with mixed strategies. A mixed strategies Nash equilibrium in a normal form
game is equivalent to a pure strategies Nash equilibrium in a mixed extension.

Definition 7 (Mixed Extension). Let Γ = [N, (Si)i∈N , (ui)i∈N ] be a normal form game. The mixed extension
of Γ is the three-tuple [N, (Σi)i∈N , (ui)i∈N ], where Σi := ∆(Si).

The notion of mixed strategies is rather unintuitive from a behavioral perspective, as a normal form game is
played simultaneously. So how is a mixed strategies Nash equilibrium formulated? Recall that each player is
a rational, utility maximizing agent that is aware of the structure of the game. Each player still seeks to mix
its strategies in such a way to maximize its utility. In mixing strategies, a player runs the risk that another
player can take advantage of a given mixing. Thus, in a Nash equilibrium, each player i mixes strategies such
that −i is indifferent to whichever pure strategy ends up being played. That is, −i’s expected utility for each
of i’s pure strategies in the mixing is the same. This is formalized as follows.

Theorem 4.1. Let Γ be a normal form game. A mixed strategy profile σ∗ is a mixed strategy Nash equilibrium
if and only if, for each player i, the following two conditions are satisfied:

1. Every pure strategy si ∈ Si which is given positive probability by σ∗i yields the same expected payoff against
σ∗−i; that is, ui(si, σ

∗
−i) = ui(σ

∗).

2. Every pure strategy si ∈ Si which is given probability zero by σ∗i yields no more than the pure strategies
that are assigned positive probability: ui(si, σ

∗
−i) ≤ ui(σ∗).

Proof. Suppose first that the mixed-strategy profile σ∗ satisfies conditions (1) and (2). Let i ∈ N . If i
unilaterally deviates by shifting positive probability to a strategy si ∈ Si given zero probability in σ∗, then i’s
utility does not increase by condition (2). Let S′i = {si ∈ Si : σ∗i (si) > 0} be the set of strategies given positive
probability by σ∗i . By condition (1), each pure strategy in S′i results in the same expected utility u. Thus, any
mixing γ of strategies in S′i results in expected utility:∑

si∈S′
i

γ(si)ui(si, σ
∗
−i) = u

∑
si∈S′

i

γ(si) = u

Thus, player i cannot unilaterally deviate and improve its outcome, so σ∗ is a mixed strategies Nash equilibrium.
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Conversely, suppose σ∗ is a mixed-strategies Nash equilibrium. As no player can unilaterally deviate and
improve its outcome, condition (2) follows immediately. Suppose to the contrary that condition 1 does not
hold. Let i ∈ N and si ∈ Si such that the ui(si, σ

∗
−i) 6= ui(σ

∗). If ui(si, σ
∗
−i) > ui(σ

∗), then player i could
assign more weight to si in σ∗i and improve its outcome. Similarly, if ui(si, σ

∗
−i) < ui(σ

∗), then player i could
assign less weight to si in σ∗i and improve its outcome. Either occurrence contradicts the assumption that σ∗

is a mixed-strategies Nash equilibrium.

Example 1: Let’s now use Theorem 2.1 to find a mixed-strategies Nash equilibrium for the Matching Pennies
game. Player 1 mixes strategies such that Player 2 is indifferent to H and T . Suppose Player 1 plays H with
probability p and T with probability 1− p. Player 2’s payoff from playing H is −p+ (1− p) = 1− 2p. Player
2’s payoff from playing T is p − (1 − p) = 1 − 2p. In equilibrium, Player 2 is indifferent between playing H
and T . Setting 1− 2p = 2p− 1 =⇒ p∗ = 1

2 . By symmetry, we have Player 2 mixing between H and T with
frequencies (1

2 ,
1
2) as well.

In addition to guaranteeing the existence of a Nash equilibrium, mixed strategies are also useful in selecting
realistic Nash equilibria. Consider the following example.

Example 2: Consider a traffic routing game on the following network. The weight of each edge denotes the
latency cost of traversing that edge. The variable x denotes the number of players traversing the edge (A,B),
and the variable y denotes the number of players using the edge (C,D). So for example, if x = 50, then the
latency cost of (A,B) is 1.5 for every each of the 50 players. Each player starts at A and ends at D, seeking
to minimize latency.

Suppose there are 100 players in the game. Denote n1 as the number of players choosing the path ABD, n2

as the number of players choosing the path ACD, and n3 as the number of players choosing ABCD. Consider
first the pure strategies Nash equilibrium of n1 = 25, n2 = 25, n3 = 50. Both the edges (A,B) and (C,D) have
75 players traversing them, and so have latency costs 1.75. Players of each type incur latency cost 3.75. If a
player of type n1 unilaterally deviates, he increases the latency cost of the edge (C,D) to 1.76, resulting in
a total latency cost of 3.76. By similar argument, players of type n2 and n3 cannot unilaterally deviate and
decrease their costs as well.

While n1 = n2 = 25 and n3 = 50 is a pure strategies Nash equilibrium, it is unlikely the 100 players will end
up playing this strategy profile. However, this pure strategies equilibrium does provide the probabilities for a
mixed strategies equilibrium. As the game is symmetric, there exists a Nash equilibrium in which each player
selects the same strategy. Suppose each player selects the mixed strategy (ABD,ACD,ABCD) with probabil-
ities (1

4 ,
1
4 ,

1
2). We apply Theorem 2.1 to verify this mixed strategy profile, denoted σ∗, is a mixed-strategies

Nash equilibrium.

First, observe that E[ui(σ
∗)] = 3.75. Consider each of the pure strategies ABD,ACD,ABCD.

• Suppose player i plays the pure strategy ABD. Under σ∗−i, n1 = 24, n2 = 25, and n3 = 50. So
E[ui(ABD, σ∗−i)] = 1.75 + 2 = 3.75 = E[ui(σ

∗)].
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• Suppose player i plays the pure strategy ACD. Under σ∗−i, n1 = 25, n2 = 24, and n3 = 50. So
E[ui(ACD, σ∗−i)] = 1.75 + 2 = 3.75 = E[ui(σ

∗)].

• Suppose player i plays the pure strategy ABCD. Under σ∗−i, n1 = n2 = 25 and n3 = 49. So
E[ui(ABCD, σ∗−i)] = 1.75 + 0.25 + 1.75 = 3.75 = E[ui(σ

∗)].

Thus, σ∗ is a mixed-strategies Nash equilibrium.

5 Analysis and Topology Primer

So far, we have presented game theory from a practical perspective. The theorems above provide approaches
for finding Nash equilibria in normal form games. However, the above results do not provide formal proofs for
the existence of Nash equilibria. The goal of this section is to introduce enough analysis and topology to prove
the existence of Nash equilibria in finite, normal form games. We begin wtih the definition of a metric space.

5.1 Elementary Notions From Analysis and Topology

Definition 8 (Metric Space). Let X be a set of elements, and let d : X ×X → R+ be a function. The pair
(X, d) is a metric space if d satisfies the following:

d(x, y) ≥ 0 ∀x, y ∈ X with equality precisely when y = x (2)

d(x, y) = d(y, x) ∀x, y ∈ X (3)

d(x, z) ≤ d(x, y) + d(y, z) ∀x, y, z ∈ X (4)

Example 4. Euclidean space Rn with the standard Euclidean metric d(x, y) =
√∑n

i=1(xi − yi)2 forms a
metric space.

Example 5. Let G(V,E,W ) be a simple, weighted, undirected graph. Consider the shortest path function
d : V ×V → R+, which returns the length of the shortest path between any two vertices. (G, d) forms a metric
space.

We now need some basic definitions from topology.

Definition 9 (Neighborhood). Let (X, d) be a metric space. Let p ∈ X and ε > 0. The ε-neighborhood
Nε(p) = {q ∈ X : d(p, q) < ε}.

Definition 10 (Limit Point). Let (X, d) be a metric space, and let E ⊂ X. A point p ∈ X is a limit point of
E if every neighborhood of p contains a point q 6= p such that q ∈ E.

Example 6. Let X = R and E = [0, 1). The point 1 ∈ X is a limit point of E.

Definition 11. Let (X, d) be a metric space. A set E ⊂ X is closed if it contains all its limit points.

Example 7. The set [0, 1] ⊂ R is closed, and the unit circle is closed in R2.

Definition 12 (Interior Point). Let (X, d) be a metric space, and let E ⊂ X. A point p ∈ E is called an
interior point if there exists an ε > 0 such that Nε(p) ⊂ E.

Example 8. Observe that (0, 0) is an interior point of the unit circle. Take ε ∈ (0, 1) and Nε((0, 0)) is con-
tained in the unit circle.

Definition 13 (Open Set). Let (X, d) be a metric space. A set E ⊂ X is an open set if every point in E is an
interior point.

Example 9. Every neighborhood of a point is open.
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Some Important Facts:

• Let (X, d) be a metric space, and let E ⊂ X. The set E is said to be open if and only if X \E is closed.

• The only sets that are both open and closed in X are ∅ and X.

• Let (X, d) be a metric space. A set E ⊂ X is closed if for every convergent sequence of points (pn)n∈N ∈ E,
pn → p ∈ E. (We need this when applying Kakutani’s Fixed Point Theorem).

With some notions from topology in mind, we introduce the notion of a complete metric space. We need the
notion of a complete metric space when discussing certain fixed-point theorems. However, we restrict attention
to Rn, which is the canonical example of a complete metric space. We begin with the definition of a Cauchy
sequence:

Definition 14 (Cauchy Sequence). Let (X, d) be a metric space, and let (pn)n∈N be a sequence of points in
X. The sequence is said to be Cauchy if for every ε > 0, there exists a N ∈ N such that for every m,n ≥ N ,
d(pm, pn) < ε.

Example 10. The sequences ( 1
n)n∈N and ( 1

n2 )n∈N are both Cauchy in R. Consider ( 1
n)n∈N. We pick N > 2

ε .
So for m,n ≥ N , we have:

| 1
n
− 1

m
| ≤ | 1

n
|+ | 1

m
| < ε

2
+
ε

2
= ε (5)

The argument is analogous with ( 1
n2 )n∈N.

Example 11. The sequence ((−1)n)n∈N is bounded but not Cauchy.

Definition 15 (Complete Metric Space). The metric space (X, d) is said to be complete if every Cauchy
sequence of points in X converges in X.

Definition 16 (Compact Set). A set E ⊂ Rk is said to be compact if it is closed and bounded. Equivocally, E is
compact if every infinite subset of E has a limit point in E. (Note that this is the Heine-Borel characterization,
and there is a more general definition of compact sets).

Example 12. The unit circle is compact, as is [0, 1]. The set R is closed but not bounded, so it is not compact.

Definition 17 (Continuous Function). Let (X, dX) and (Y, dY ) be metric spaces. Let E ⊂ X and p ∈ E.
A function f : E → Y is said to be continuous at p if for every ε > 0, there exists a δ > 0 such that
dY (f(x), f(p)) < ε for all points x ∈ E such that dX(x, p) < δ.

Theorem 5.1 (Weierstrass Extreme Value Theorem). Let (X, d) be a metric space, and let E ⊂ X be compact.
A continuous function f : E → X acheives both a maximum and minimum value.

Definition 18 (Convex Set). Let E ⊂ Rn. The set E is said to be convex if for any x, y ∈ E and any λ ∈ (0, 1),
λx+ (1− λ)y ∈ E.

Example 13. Let p ∈ Rn and fix ε > 0. We have Nε(p) is convex.

Example 14. The simplex ∆ ⊂ Rn+1, which is defined below, is convex. The simplex is the set of all
probability distributions over an n+ 1 element set.

∆ = {(λ0, . . . , λn) ∈ Rn+1 :
n∑
i=0

λi = 1} (6)

More Important Facts:

• The simplex is compact.

• The Cartesian product of two compact sets is compact.

• The Cartesian product of two convex sets is convex.
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5.2 Fixed Points

Definition 19 (Contraction). Let (X, d) be a metric space. If φ : X → X and if there is a constant c ∈ [0, 1)
such that for all x, y ∈ X:

d(φ(x), φ(y)) < c · d(x, y) (7)

Example 15. Let f : [0, 1]→ [0, 1] by f(x) = x
2 . This is a contraction, with c = 1

2 .

We first show that a contraction is continuous.

Lemma 5.1. Let (X, d) be a metric space and let φ : X → X be a contraction with constant c ∈ [0, 1). We
have that φ is continuous.

Proof. Let ε > 0 and let δ = ε. We have d(x, y) < δ =⇒ d(φ(x), φ(y)) < c · d(x, y) < c · δ < ε.

Theorem 5.2 (Contraction Mapping Principle). Let X be a complete metric space, and if φ : X → X is a
contraction, then there exists a unique x ∈ X such that f(x) = x.

Proof. Let x0 ∈ X be arbitrary, and let c < 1 such that d(φ(x), φ(y)) ≤ c · d(x, y). Define (xn)n∈N recursively
by setting xn+1 = φ(xn). We now show this sequence is Cauchy. By induction, it follows that d(xn+1, xn) ≤
cnd(x1, x0) for all n ∈ N. For n < m, it follows that:

d(xn, xm) ≤
m∑

i=n+1

d(xi, xi−1) (8)

This follows from the fact that xi = φ(xi−1) and that φ is a contraction. We bound:

m∑
i=n+1

d(xi, xi−1) ≤
(m−1∑

i=n

ci
)
d(xi, x0) (9)

≤ cn

1− c
d(x1, x0) (10)

With (10) following from the sum of a convergent geometric series. Fix ε > 0. We solve for N such that:

cN

1− c
d(x1, x0) < ε (11)

So we let N such that (which is possible since c ∈ [0, 1)):

cN <
ε · (1− c)
d(x1, x0)

(12)

So (xn)n∈N converges to some point x ∈ X (since X is complete). Since φ is continuous, we have:

φ(x) = φ( lim
n→∞

xn) = lim
n→∞

φ(xn) = lim
n→∞

xn+1 = x (13)

So we have a fixed point. We conclude with uniqueness. Suppose x, y are two fixed points of φ. Then:

0 ≤ d(x, y) = d(φ(x), φ(y)) ≤ c · d(x, y) (14)

Since c ∈ [0, 1), it follows that x = y.

The Contraction Mapping Principle is useful in dynamical systems theory when we study the stability of our
system. Brouwer’s Fixed Point Theorem is more general, though, as it removes the contraction assumption.
However, we also lose the uniqueness of the fixed point. Nash’s original theorem in his dissertation used
Brouwer’s fixed point theorem.
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Theorem 5.3 (Brouwer’s Fixed Point Theorem). Let D be a convex, compact subset of Rn. Any continuous
function f : D → D has a point x ∈ D such that f(x) = x.

There are numerous proofs of Brouwer’s Fixed Point Theorem. One of my personal favorites uses Sperner’s
Lemma, which is a famous result in combinatorics and discrete geometry. Other proofs rely on analytical
techniques, and there is even a proof from mathematical logic. I won’t prove Brouwer’s Fixed Point Theorem
in its full generality, but instead offer a proof of the one-dimensional case to illustrate the concept. We first
recall the Intermediate Value Theorem:

Theorem 5.4 (Intermediate Value Theorem). Let f be a continuous real-valued function on the interval [a, b].
If f(a) < f(b) and if c is a number such that f(a) < c < b, then there exists a point x such that f(x) = c.
(Analogously, if f(a) > f(b) and f(a) > c > f(b), there exists a point x ∈ [a, b] such that f(x) = c).

We now prove the one-dimensional case of Brouwer’s Fixed Point Theorem.

Theorem 5.5. Let a, b ∈ R with a < b and consider [a, b] ⊂ R. Let f : [a, b] → [a, b] be continuous. There
exists a fixed point x ∈ [a, b] such that f(x) = x.

Proof. Let g : [a, b]→ R be given by g(x) = f(x)− x. Since g is the sum of two continuous functions, g itself
is continuous. Since f(a) ∈ [a, b], g(a) = f(a) − a ≥ 0. By similar argument, g(b) = f(b) − b ≤ 0. As g is
continuous, we have g(a) ≥ 0 ≥ g(b). So by the intermediate value theorem, there exists a point x ∈ [a, b] such
that g(x) = 0. This point x satisfies f(x) = x, so f has a fixed point.

We conclude by introducing Kakutani’s Fixed Point Theorem, which we will use for an alternative proof of
Nash’s theorem.

Definition 20 (Correspondence). Let X,Y be sets. A correspondence from X to Y is a function f : X → 2Y .

Definition 21 (Fixed Point (Correspondence)). Let X be a set, and let f : X → 2X be a correspondence. A
fixed point is a point x ∈ X such that x ∈ f(x).

Theorem 5.6 (Kakutani’s Fixed Point Theorem). Let A ⊂ Rn be non-empty, convex, and compact. Let
f : A→ 2A be a correspondence which has a closed graph, and the property that f(x) is non-empty and convex
for all x ∈ S. Then f has a fixed-point.

5.3 Existence of Nash Equilibrium

Theorem 5.7 (Nash). Every finite, normal form game has a Nash equilibrium in mixed strategies.

Proof. Let Γ = [N, (Si)i∈N , (ui)i∈N ] be a normal form game. Let Σ =
∏n
i=1 ∆(Si). Define the correspondence

f : Σ→ 2Σ where for σ ∈ Σ, fi(σ−i) is the best-response correspondence for player i against the strategy profile
σ−i. We apply Kakutani’s Fixed Point Theorem to show that f has a fixed point; that is, each player’s strategy
is a best response to the other players’ strategies. Recall that this is the definition of a Nash equilibrium.

Claim 1: Σ is convex, compact, and non-empty.

Proof. For each i, ∆(Si) is convex and compact as it is a simplex. Since Σ is the Cartesian product of simplex
polytopes, Σ itself is convex and compact. As each player’s strategy set Si is non-empty, Σ is non-empty.

Claim 2: For each σ ∈ Σ, f(σ) 6= ∅.

Proof. Fix σ ∈ Σ. Recall that for each i ∈ N , fi(σ) = arg maxs∈Σ ui(s, σ−i). As each player’s utility function
is continuous and ∆(Si) is compact, ui acheives a maximum by the Weierstrass Extreme Value Theorem. So
fi(σ) 6= ∅.

Claim 3: For each σ ∈ Σ, f(σ) is convex.
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Proof. Fix σ ∈ Σ and i ∈ N . Each strategy s ∈ fi(σ) maximizes ui with respect to σ−i. So taking convex
combinations of strategies in fi(σ) results in the same payoff. Thus, fi(σ) is convex, and so f(σ) is convex.

Claim 4: The correspondence f has a closed graph.

Proof. The graph relation on a correspondence h is the set G = {(x, y) : y ∈ h(x)}.We show the graph is closed
by showing that any sequence of points from G converges within G. We prove this by means of contradiction.
Let (σn, τn)n∈N be sequences of strategy profiles such that τn ∈ f(σn) and (σn, τn) → (σ, τ). Suppose to the
contrary that τ 6∈ f(σ). So for some player i, we have a strategy µ ∈ ∆(Si) and ε > 0 such that:

ui(µ, σ−i) ≥ ui(τi, σ−i) + 3ε (15)

As σn−i → σ−i and each player’s utility function is continuous, there exists an N ∈ N such that for every n ≥ N :

ui(µ, σ
n
−i) ≥ ui(µ, σ−i)− ε (16)

ui(τ
n
i , σ

n
−i)− ui(τi, σ−i) < ε (17)

From (15), (16) and (17) we obtain:

ui(µ, σ
n
−i) > ui(τi, σi) + 2ε ≥ ui(τni , σn−i) + ε (18)

This implies µ dominates τni with respect to the strategy profile σn−i, contradicting the assumption that τni is
a best response to σn−i. So f must have a closed graph.

Claims 1-4 satisfy the hypotheses of Kakutani’s Fixed Point Theorem. So f contains a fixed point, which is a
Nash equilibrium.
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