\qquad
Fall, 2008

1. Let n be a positve natural number, A be an $n \times n$ matrix over a field F, and $T \in L\left(F^{n}\right)$. In each case determine if A or T, respectively, is invertible, not invertible, or there is not sufficient information to decide. Justify your answer. a. $\quad T^{k}=0$ for some $k \geq 2$.
b. $\quad A B=0$ for some nonzero $n \times p$ matrix B with $p \geq 1$.
c. $\quad A$ is similar to an invertible $n \times n$ matrix B.
d. $\quad \operatorname{nullity}(T)>\operatorname{rank}(T)$.
2. Suppose V is an n-dimensional vector space, $n>0$, and $T \in L(V)$. Let \mathbf{v} be a non-zero vector in V. Explain why $\alpha=\left\langle\mathbf{v}, T \mathbf{v}, T^{2} \mathbf{v}, \ldots, T^{n} \mathbf{v}\right\rangle$ must be dependent, and why $\operatorname{span}(\alpha)$ must be T-invariant.
