MATH 700	$\operatorname{Quiz} \#2$	Name:	
Fall, 2008			

- 1. Let n be a positve natural number, A be an $n \times n$ matrix over a field F, and $T \in L(F^n)$. In each case determine if A or T, respectively, is invertible, not invertible, or there is not sufficient information to decide. Justify your answer. a. $T^k = 0$ for some $k \ge 2$.
 - b. AB = 0 for some nonzero $n \times p$ matrix B with $p \ge 1$.
 - c. A is similar to an invertible $n \times n$ matrix B.
 - d. $\operatorname{nullity}(T) > \operatorname{rank}(T)$.

2. Suppose V is an *n*-dimensional vector space, n > 0, and $T \in L(V)$. Let **v** be a non-zero vector in V. Explain why $\alpha = \langle \mathbf{v}, T\mathbf{v}, T^2\mathbf{v}, \dots, T^n\mathbf{v} \rangle$ must be dependent, and why $\text{span}(\alpha)$ must be T-invariant.