Mathematics 700 Third Midterm Examination
 24 November 1997
 Professor George McNulty

Problem 1.

Let \mathbf{V} and \mathbf{W} be a finite dimensional vector spaces over the field \mathbf{F}. Let $\mathbf{V}^{*}=\mathcal{L}(\mathbf{V}, \mathbf{F})$ and let $\mathbf{W}^{*}=\mathcal{L}(\mathbf{W}, \mathbf{F})$. Let $T \in \mathcal{L}(\mathbf{V}, \mathbf{W})$. Define $T^{*}: \mathbf{W}^{*} \rightarrow \mathbf{V}^{*}$ by

$$
T^{*}(f)=f \circ T
$$

for every $f \in \mathbf{W}^{*}$. Prove that $T^{*} \in \mathcal{L}\left(\mathbf{W}^{*}, \mathbf{V}^{*}\right)$.

Problem 2.

Let \mathbf{V} be a vector space over the field \mathbf{F}. Let \mathbf{X}, \mathbf{Y}, and \mathbf{Z} be subspaces of \mathbf{V} such that $\mathbf{X} \subseteq \mathbf{Y}, \mathbf{Y}+\mathbf{Z}=\mathbf{V}$, and $\mathbf{Y} \cap \mathbf{Z}=\{0\}$. Prove that $\mathbf{X}=\mathbf{Y} \cap(\mathbf{X}+\mathbf{Z})$.

Problem 3.
Let \mathbf{V} be a vector space over \mathbf{F} and let $S, T \in \mathcal{L}(\mathbf{V})$. Prove that if
(1) $S^{2}=S$,
(2) $T^{2}=T$,
(3) $S T=O$, and
(4) $S+T=I$,
then $V=$ range $S \oplus$ range T.

Problem 4.

Let \mathbf{V} be a finite dimensional vector space, and let $S \in \mathcal{L}(\mathbf{V})$. Prove each of the following:
(1) If $T \in \mathcal{L}(\mathbf{V})$ and $S T=\mathrm{O}$, then dim range $S+\operatorname{dim} \operatorname{range} T \leq \operatorname{dim} \mathbf{V}$.
(2) There is $T \in \mathcal{L}(\mathbf{V})$ such that $S T=\mathrm{O}$ and $\operatorname{dim} \operatorname{range} S+\operatorname{dim} \operatorname{range} T=\operatorname{dim} \mathbf{V}$.

Problem 5.

Let \mathbf{V} be a finite dimensional vector space over the field \mathbf{F}, let $T \in \mathcal{L}(\mathbf{V})$, and let λ an eigenvalue of T. Prove that there is $f \in \mathcal{L}(\mathbf{V}, \mathbf{F})$ so that $f T=\lambda f$.

Problem 6.

Let $T \in \mathcal{L}\left(\mathbb{R}^{4}\right)$ be defined by

$$
T\left(x_{0}, x_{1}, x_{2}, x_{3}\right)=\left(x_{0}-x_{3}, x_{0},-2 x_{1}-x_{2}-4 x_{3}, 4 x_{2}+x_{3}\right)
$$

(1) Display the matrix of T with respect to the standard basis.
(2) Display the matrix of T with respect to the basis which is the result of reversing the order of the standard basis. This basis is displayed below:

$$
(0,0,0,1),(0,0,1,0),(0,1,0,0),(1,0,0,0)
$$

Problem 7.
Let \mathbf{V} be a vector space and let $S, T \in \mathcal{L}(\mathbf{V})$ such that $S T=T S$. Prove each of the following:
(1) If λ is an eigenvalue of S and $U=\{u \in V: S u=\lambda u\}$, then U is T-invariant.
(2) S and T have a common eigenvector.

Problem 8.

Let \mathbf{V} be a finite dimensional vector space over the field \mathbf{F}, and let $T \in \mathcal{L}(\mathbf{V})$. Prove that T is invertible if and only if the constant term of the minimal polynomial of T is not 0 .

NamE:

Problem 9.

Let \mathbf{V} be a finite dimensional vector space over the field \mathbf{F}, and let $T \in \mathcal{L}(\mathbf{V})$ be diagonalizable. Prove that if \mathbf{U} is a T-invariant subspace of \mathbf{V}, then the restriction of T to U is also diagonalizable.

Problem 10.
Consider $n \times n$ matrices over a field \mathbf{F}. Prove each of the following:
(1) If A and B are such matrices and at least one of them is invertible, then $A B$ and $B A$ are similar.
(2) Provide an example of matrices A and B such that $A B$ and $B A$ are not similar.

Problem 11.
Suppose that T is a linear operator on the n-dimensional vector space \mathbf{V}. A vector v is said to be T-cyclic if and only if ($v, T v, T^{2} v, \ldots, T^{n-1} v$) is a basis for \mathbf{V}. Suppose that v is T-cyclic. Prove that if $S \in \mathcal{L}(\mathbf{V})$ such that $S T=T S$, then there is a polynomial $p(x)$ such that $S=p(T)$.

Problem 12.
Provide an example of a matrix A with real entries whose characteristic polynomial is $x^{4}-1$. What is the Jordan form of the matrix A ?

