Second Midterm Examination
Mathematics 700
29 October 1997
Professor George McNulty

Problem 1.

Let \mathbf{V} be a finite dimensional vector space over the field \mathbf{F}. Let $\mathcal{F}(V, F)$ be the set of all functions from V into F. We know that $\mathcal{F}(V, F)$ is a vector space over \mathbf{F}. Prove each of the following:
(1) $\mathcal{L}(\mathbf{V}, \mathbf{F})$ is a subspace of $\mathcal{F}(V, F)$.
(2) $\operatorname{dim} \mathcal{L}(\mathbf{V}, \mathbf{F})=\operatorname{dim} \mathbf{V}$.

Problem 2.

Let \mathbf{V} be a vector space over the field \mathbf{F}. Can \mathbf{V} have three distinct proper subspaces \mathbf{X}, \mathbf{Y}, and \mathbf{Z} such that $\mathbf{X} \subseteq \mathbf{Y}, \mathbf{X}+\mathbf{Z}=\mathbf{V}$, and $\mathbf{Y} \cap \mathbf{Z}=\{0\}$?

Problem 3.

Let \mathbf{V} be a vector space over \mathbf{F} and let $T \in \mathcal{L}(\mathbf{V})$. Prove that if $T^{2}=T$, then $V=\operatorname{null} T \oplus \operatorname{range} T$.

Problem 4.

Let \mathbf{V} be a finite dimensional vector space, and let $T \in \mathcal{L}(\mathbf{V})$. Prove each of the following:
(1) There is a positive integer k such that null $T^{k}=\operatorname{null} T^{j}$ for all $j \geq k$.
(2) There is a positive integer k such that null $T^{k} \oplus \operatorname{range} T^{k}=V$.

Problem 5.

Let \mathbf{V} be a vector space over the field \mathbf{F}. Let $S, T \in \mathcal{L}(\mathbf{V}, \mathbf{F})$. Prove that if null $S=\operatorname{null} T$, then there is $\lambda \in F$ so that $T=\lambda S$.

Problem 6.

Let \mathbf{V} and \mathbf{W} be finite dimensional vector spaces over the field \mathbf{F}. Let $T \in \mathcal{L}(\mathbf{V}, \mathbf{W})$ with dim range $T=r$. Prove that there are bases B_{V} of \mathbf{V} and B_{W} of \mathbf{W} so that the matrix of T with respect to these two bases is

$$
\left(\begin{array}{ll}
I & 0 \\
0 & 0
\end{array}\right)
$$

where I denotes the $r \times r$ identity matrix and the various 0 's in this matrix displayed above represent matrices of the correct sizes and entries all 0 .

Problem 7.

Let \mathbf{V} be a vector space and let $S, T \in \mathcal{L}(\mathbf{V})$. Prove that $S T$ and $T S$ have the same eigenvalues.

Problem 8.

Let \mathbf{V} be a finite dimensional vector space over the field \mathbf{F}, and let $T \in \mathcal{L}(\mathbf{V})$. Prove that if T is invertible, then there is a polynomial $q(x) \in \mathbf{F}[x]$ so that $T^{-1}=q(T)$.

Name:

Problem 9.

Let \mathbf{V} be a finite dimensional vector space over the field \mathbf{F}, and let $S, T \in \mathcal{L}(\mathbf{V})$. Prove that if T has n distinct eigenvalues, where $n=\operatorname{dim} \mathbf{V}$ and $S T=T S$, then there is a polynomial $p(x) \in \mathbf{F}[x]$ so that $S=p(T)$.

