First Midterm Examination
Mathematics 700
26 September 1997
Professor George McNulty

Problem 1.

Let \mathbf{V} and \mathbf{W} be vector spaces over the field \mathbf{F} and let T be a function from V into W. Recall that such a function is a set of ordered pairs; in fact, $T \subseteq V \times W$. Prove that $T \in \mathcal{L}(\mathbf{V}, \mathbf{W})$ if and only if $T \in \operatorname{Sub}(\mathbf{V} \times \mathbf{W})$. [That is the function T is a linear transformation if and only if it is a subspace of $\mathbf{V} \times \mathbf{W}$.]

Problem 2.

Let \mathbf{V} be a vector space over the field \mathbf{F} and let \mathbf{X}, \mathbf{Y}, and \mathbf{Z} be subspaces of \mathbf{V}. Prove that if $\mathbf{X} \supseteq \mathbf{Z}$, then

$$
\mathbf{X} \cap(\mathbf{Y}+\mathbf{Z})=(\mathbf{X} \cap \mathbf{Y})+\mathbf{Z}
$$

Problem 3.

Let \mathbf{V} be a vector space over either \mathbb{R} or \mathbb{C}. Let $T \in \mathcal{L}(\mathbf{V})$ such that $T^{2}=I$ (that is $T \circ T$ is the identity map). Let

$$
U=\{\mathfrak{u} \in V: T u=u\}
$$

and

$$
V=\{w \in V: T w=-w\} .
$$

a. Prove that both U and W are subspaces of \mathbf{V}.
b. Prove that $\mathbf{V}=\mathbf{U} \oplus \mathbf{W}$.

Problem 4.

Let \mathbf{V} be a finite dimensional vector space and let $T \in \mathcal{L}(\mathbf{V})$. Prove that if range $T+\operatorname{null} T=\mathbf{V}$, then range $T \oplus$ null $T=\mathbf{V}$ and range $T=\operatorname{range} T^{2}$.

Problem 5.

a. Let \mathbf{F} be a field and let T be a function from F into F. Prove that $T \in \mathcal{L}(\mathbf{F})$ if and only if there is $a \in F$ such that $T x=a x$ for all $x \in F$.
b. \mathbb{C} can be construed as a vector space of dimension 2 over \mathbb{R}, and also as a vector space of dimension 1 over \mathbb{C}. Let $\mathcal{L}_{\mathbb{R}}(\mathbb{C})$ denote the set of linear operators on \mathbb{C} construed as a vector space over \mathbb{R}, while $\mathcal{L}_{\mathbb{C}}(\mathbb{C})$ denotes the set of linear operators on \mathbb{C} construed as a vector space over \mathbb{C}. Prove that $\mathcal{L}_{\mathbb{C}}(\mathbb{C})$ is a proper subset of $\mathcal{L}_{\mathbb{R}}(\mathbb{C})$.

