FIRST MIDTERM EXAMINATION MATHEMATICS 700 26 SEPTEMBER 1997 Professor George McNulty

Problem 1.

Let **V** and **W** be vector spaces over the field **F** and let *T* be a function from *V* into *W*. Recall that such a function is a set of ordered pairs; in fact, $T \subseteq V \times W$. Prove that $T \in \mathcal{L}(\mathbf{V}, \mathbf{W})$ if and only if $T \in \text{Sub}(\mathbf{V} \times \mathbf{W})$. [That is the function *T* is a linear transformation if and only if it is a subspace of $\mathbf{V} \times \mathbf{W}$.]

PROBLEM 2.

Let V be a vector space over the field F and let X, Y, and Z be subspaces of V. Prove that if $X \supseteq Z$, then

$$\mathbf{X} \cap (\mathbf{Y} + \mathbf{Z}) = (\mathbf{X} \cap \mathbf{Y}) + \mathbf{Z}.$$

Problem 3.

Let **V** be a vector space over either \mathbb{R} or \mathbb{C} . Let $T \in \mathcal{L}(\mathbf{V})$ such that $T^2 = I$ (that is $T \circ T$ is the identity map). Let

$$U = \{ \mathbf{u} \in V : T\mathbf{u} = \mathbf{u} \}$$

and

$$V = \{ \mathbf{w} \in V : T\mathbf{w} = -\mathbf{w} \}.$$

- a. Prove that both U and W are subspaces of \mathbf{V} .
- b. Prove that $\mathbf{V} = \mathbf{U} \oplus \mathbf{W}$.

Problem 4.

Let **V** be a finite dimensional vector space and let $T \in \mathcal{L}(\mathbf{V})$. Prove that if range $T + \operatorname{null} T = \mathbf{V}$, then range $T \oplus \operatorname{null} T = \mathbf{V}$ and range $T = \operatorname{range} T^2$.

Problem 5.

- a. Let **F** be a field and let *T* be a function from *F* into *F*. Prove that $T \in \mathcal{L}(\mathbf{F})$ if and only if there is $a \in F$ such that Tx = ax for all $x \in F$.
- b. \mathbb{C} can be construed as a vector space of dimension 2 over \mathbb{R} , and also as a vector space of dimension 1 over \mathbb{C} . Let $\mathcal{L}_{\mathbb{R}}(\mathbb{C})$ denote the set of linear operators on \mathbb{C} construed as a vector space over \mathbb{R} , while $\mathcal{L}_{\mathbb{C}}(\mathbb{C})$ denotes the set of linear operators on \mathbb{C} construed as a vector space over \mathbb{C} . Prove that $\mathcal{L}_{\mathbb{C}}(\mathbb{C})$ is a proper subset of $\mathcal{L}_{\mathbb{R}}(\mathbb{C})$.