Ш

1. A vector field \mathbf{F} is illustrated below. Find a path C_1 from P to Q so that $\int_{C_1} \mathbf{F} \cdot d\mathbf{s}$ is negative, a path C_2 from P to Q so that $\int_{C_2} \mathbf{F} \cdot d\mathbf{s}$ is positive, and a path C_3 from P to Q so that $\int_{C_3} \mathbf{F} \cdot d\mathbf{s}$ is zero. What conclusion can you draw concerning \mathbf{F} ?

F' can not be a
gradient vector field
(is not "Conservative")
since independence of
path fails.

2. Compute dS (scalar) for the surface given by $x=u^3$, y=1/v , $z=e^{-uv}$.

 $(2, y, \bar{z}) = T(u, v) = (\bar{u}, \frac{1}{2}, e^{-uv})$ $\vec{T}_{u} = (3u^{2}, 0, -ve^{-uv})$ $\vec{T}_{v} = (0, -\frac{1}{2}, -ue^{-uv})$ $\vec{T}_{u} \times \vec{T}_{v} = (\frac{1}{2}e^{uv}, 3ue^{-uv}, -\frac{3ue^{2}}{v^{2}})$ $dS = ||\vec{T}_{u} \times \vec{T}_{v}|| dudv$ $= (\frac{1}{2}e^{3uv} + 9ue^{-3uv} + \frac{9u^{4}}{v^{4}})^{3} dudv$

 $(over \rightarrow)$

 $\int \cos^2 t \, dt = (2t + \sin(2t))/4.$ $d\vec{S} = \left(\frac{dx}{dt}, \frac{dy}{dt}, \frac{dz}{dt}\right) dt \qquad x = 3 \cos t$ $= \left(-3 \sin \frac{\pi}{2}\right) 3 \cos \frac{\pi}{2}, 0 dt \qquad z = 1$ $0 \le t \le 2\pi$

Along C, z=1, and $(yz^2-y, xz^2+x, 2xyz)$

= (0, 2x, 2xy)= $(0, 6 \cot, (6 \cot)(3 \sin t))$

So $(\vec{\xi}, d\vec{s}) = \int_{0}^{2\pi} |8c_{0}t| dt = \frac{18}{4}(3t + \sin 2t) \Big|_{0}^{2\pi}$

= 18 TT