MATH 550 (Section 501) Prof. Meade

Exam 1 February 19, 2009 University of South Carolina Spring 2009

Name: ______ Section 501

Instructions:

- 1. There are a total of 7 problems on 7 pages. Check that your copy of the exam has all of the problems.
- 2. Calculators may not be used for any portion of this exam.
- 3. You must show all of your work to receive credit for a correct answer.
- 4. Your answers must be written legibly in the space provided. You may use the back of a page for additional space; please indicate clearly when you do so.

Problem	Points	Score
1	10	
2	10	
3	20	
4	20	
5	12	
6	12	
7	16	
Total	100	

1. (10 points) A bug finds itself in a toxic environment. The toxicity level is given by $T(x, y) = 2x^2 - 4y^2$. The bug is at (-1, 2). In what direction should the bug move to lower the toxicity the fastest?

2. (10 points) Write an iterated triple integral that represents the volume of the solid bounded by x/a + y/b + z/c = 1 and the coordinate planes.

NOTE: Do not attempt to evaluate this integral.

- 3. (20 points) Let $\mathbf{F}(x, y) = f(x^2 + y^2)(-y\mathbf{i} + x\mathbf{j}).$
 - (a) Calculate $\nabla \cdot \mathbf{F}$.

(b) Calculate **curl F**.

- 4. (20 points) Let B be the region in the first quadrant bounded by the curves xy = 1, xy = 3, $x^2 y^2 = 1$, and $x^2 y^2 = 4$.
 - (a) Graph B.

(b) Graph $B^* = T(B)$ for the change of variables given by $u = x^2 - y^2$ and v = xy.

(c) Evaluate $\iint_B (x^2 + y^2) dx dy$.

5. (12 points) Find the volume of the solid bounded below by $x^2 + y^2 = z$ and above by $x^2 + y^2 + z^2 = 2$.

6. (12 points) Suppose the density of a sphere of radius R is given by $\delta = (1 + d^3)^{-1}$ where d is the distance to the center of the sphere. Find the total mass of the sphere.

- 7. (16 points) Consider the double integral $\iint_D x e^{-y^3} dx dy$ where $D = \{(x, y) | 0 \le x \le y < \infty\}$.
 - (a) Why is this an improper integral?

(b) Evaluate the integral.

NOTE: Clearly identify the proper integral that you evaluate and the limits used to complete the evaluation of the improper integral.