Math 544
Prof. Meade
University of South Carolina
Spring 2000

Final Exam
May 2, 2000
Name: \qquad
SS \#: \qquad

Instructions:

1. There are a total of 8 problems on 9 pages. Check that your copy of the exam has all of the problems.
2. You must show all of your work to receive credit for a correct answer.
3. Your answers must be written legibly in the space provided. You may use the back of a page for additional space; please indicate clearly when you do so.

Problem	Points	Score
1	25	
2	15	
3	20	
4	10	
5	20	
6	30	
7	15	
8	15	
Total	150	

1. (25 points) Assume the matrices A and B are row equivalent.

$$
A=\left[\begin{array}{rrrrrr}
1 & -2 & 4 & -3 & 6 & 5 \\
2 & -4 & 9 & -8 & 12 & 6 \\
3 & -6 & 12 & -9 & 17 & 10 \\
-5 & 10 & -9 & -7 & -15 & 6
\end{array}\right] \quad B=\left[\begin{array}{rrrrrr}
1 & -2 & 4 & -3 & 6 & 5 \\
0 & 0 & 1 & -2 & 0 & -4 \\
0 & 0 & 0 & 0 & -1 & -5 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

(a) Find a basis for $\operatorname{Nul} A$.
(b) Is the equation $A \mathbf{x}=\mathbf{b}$ consistent for all \mathbf{b} in R^{4} ? (Why or why not?)
2. (15 points) Let A be an $n \times n$ matrix. Which of the following statements is equivalent to the statement that A is invertible.
___ the equation $A \mathbf{x}=\mathbf{b}$ has no solution for some \mathbf{b}
\qquad the equation $A \mathbf{x}=\mathbf{b}$ has exactly one solution for $\mathbf{b}=\mathbf{0}$
\qquad $\operatorname{det} A>0$
\qquad $\operatorname{det} A=0$
$\operatorname{det} A \neq 0$
\qquad A is row equivalent to the identity matrix
\qquad A is row equivalent to a matrix with a row of zeroes
\qquad A is row equivalent to the zero matrix
\qquad A has n distinct eigenvalues
\qquad A is diagonalizable
\qquad $\lambda=0$ is an eigenvalue of A
\qquad $\lambda=0$ is not an eigenvalue of A
\qquad $\operatorname{rank} A<n$
\qquad $\operatorname{rank} A=n$
\qquad $\operatorname{rank} A>n$
3. (20 points) Let A be a 12×5 matrix.
(a) What is the largest possible value for $\operatorname{rank} A$?
(b) What is the smallest possible value for $\operatorname{rank} A$?
(c) What is the largest possible value for $\operatorname{dim} \operatorname{Nul} A$?
(d) What is the smallest possible value for $\operatorname{dim} \operatorname{Nul} A$?
(e) What is the size of $A^{T} A$?
(f) Use the Rank Theorem to express rank A in terms of $\operatorname{dim} \operatorname{Nul} A$.
(g) Use the Rank Theorem and the fact that $\operatorname{Nul}\left(A^{T} A\right)=\operatorname{Nul} A$ to express $\operatorname{rank}\left(A^{T} A\right)$ in terms of $\operatorname{dim} \operatorname{Nul} A$.
(h) What is the relationship between $\operatorname{rank} A$ and $\operatorname{rank}\left(A^{T} A\right)$?
(i) Suppose the columns of A are linearly independent. Explain why $A^{T} A$ is invertible.
4. (10 points) Consider the linear transformation $T: \mathrm{R}^{3} \rightarrow \mathrm{R}^{2}$ that maps the standard basis vectors, $\mathbf{e}_{1}, \mathbf{e}_{2}$, and \mathbf{e}_{3} onto $\left[\begin{array}{l}5 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 2\end{array}\right]$, and $\left[\begin{array}{l}9 \\ 3\end{array}\right]$.
(a) What is $T\left(\left[\begin{array}{r}2 \\ -1 \\ 1\end{array}\right]\right)$?
(b) Find the matrix A of the linear transformation.
(c) Find all solutions to $T(\mathbf{x})=\mathbf{0}$.
5. (20 points) Let $A=\left[\begin{array}{rrr}0 & 4 & 2 \\ 4 & 0 & -2 \\ 2 & -2 & 3\end{array}\right], \mathbf{v}_{1}=\left[\begin{array}{r}-2 \\ 2 \\ 1\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]$, and $\mathbf{v}_{3}=\left[\begin{array}{l}1 \\ 0 \\ 2\end{array}\right]$. The vectors $\mathbf{v}_{1}, \mathbf{v}_{2}$, and \mathbf{v}_{3} are eigenvectors for A.
(a) What are the eigenvalues of A ?
(b) Find matrices P and D that diagonalize A and write the equation that relates A to P and D.
6. (30 points) Let $\mathbf{v}_{1}=\left[\begin{array}{l}5 \\ 0 \\ 0 \\ 0\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{r}3 \\ 2 \\ -2 \\ -2\end{array}\right], \mathbf{v}_{3}=\left[\begin{array}{r}1 \\ -1 \\ 1 \\ 1\end{array}\right], \mathbf{x}=\left[\begin{array}{r}-2 \\ 3 \\ 0 \\ -3\end{array}\right], \mathbf{y}=\left[\begin{array}{r}0 \\ 3 \\ 6 \\ -3\end{array}\right]$, and $W=\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$.
(a) Determine whether \mathbf{x} is in W.
(b) Find a basis for W.
(c) What is the dimension of W ?
(d) What is the dimension of W^{\perp}, the orthogonal complement of W.
(e) Determine whether \mathbf{y} is in W^{\perp}.
7. (15 points) Find an orthogonal basis for the matrix

$$
\left[\begin{array}{rrr}
-1 & 6 & 6 \\
3 & -8 & 3 \\
1 & -2 & 6 \\
1 & -4 & -3
\end{array}\right]
$$

8. (15 points)

(a) Find the equation $y=\beta_{0}+\beta_{1} x$ of the least-squares line for the data $(-1,0),(0,1)$, $(-1,1),(1,2)$, and $(2,4)$.
(b) Suppose an experiment produces (x, y) data $(2,5),(3,6),(4,8),(5,11)$ and a scientist wants to model this data with an equation of the form $y=\beta_{1} x+\beta_{2} x^{2}+\beta_{3} e^{x}$. Write the design matrix and the observation vector for this problem. What is the unknown parameter vector?

