MATH 544 Prof. Meade University of South Carolina Spring 2000

Final Exam May 2, 2000

Instructions:

- 1. There are a total of 8 problems on 9 pages. Check that your copy of the exam has all of the problems.
- 2. You must show all of your work to receive credit for a correct answer.
- 3. Your answers must be written legibly in the space provided. You may use the back of a page for additional space; please indicate clearly when you do so.

$\operatorname{Problem}$	Points	Score
1	25	
2	15	
3	20	
4	10	
5	20	
6	30	
7	15	
8	15	
Total	150	

1. (25 points) Assume the matrices A and B are row equivalent.

$$A = \begin{bmatrix} 1 & -2 & 4 & -3 & 6 & 5 \\ 2 & -4 & 9 & -8 & 12 & 6 \\ 3 & -6 & 12 & -9 & 17 & 10 \\ -5 & 10 & -9 & -7 & -15 & 6 \end{bmatrix} \qquad B = \begin{bmatrix} 1 & -2 & 4 & -3 & 6 & 5 \\ 0 & 0 & 1 & -2 & 0 & -4 \\ 0 & 0 & 0 & 0 & -1 & -5 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

(a) Find a basis for $\operatorname{Nul} A$.

(b) Is the equation $A\mathbf{x} = \mathbf{b}$ consistent for all \mathbf{b} in \mathbb{R}^4 ? (Why or why not?)

2. (15 points) Let A be an $n \times n$ matrix. Which of the following statements is equivalent to the statement that A is invertible. _____ the equation $A\mathbf{x} = \mathbf{b}$ has no solution for some \mathbf{b} _____ the equation $A\mathbf{x} = \mathbf{b}$ has exactly one solution for $\mathbf{b} = \mathbf{0}$ $_$ det A > 0 $_$ det A = 0 $_$ det $A \neq 0$ _____ A is row equivalent to the identity matrix $_$ A is row equivalent to a matrix with a row of zeroes _____ A is row equivalent to the zero matrix $_$ A has *n* distinct eigenvalues $_$ A is diagonalizable $_$ $\lambda = 0$ is an eigenvalue of A _____ $\lambda = 0$ is not an eigenvalue of A $_$ rank A < n $_$ rank A = n $_$ rank A > n

- 3. (20 points) Let A be a 12×5 matrix.
 - (a) What is the largest possible value for rank A?
 - (b) What is the smallest possible value for rank A?
 - (c) What is the largest possible value for $\dim \operatorname{Nul} A$?
 - (d) What is the smallest possible value for $\dim \operatorname{Nul} A$?
 - (e) What is the size of $A^T A$?
 - (f) Use the Rank Theorem to express rank A in terms of dim Nul A.
 - (g) Use the Rank Theorem and the fact that $\operatorname{Nul}(A^T A) = \operatorname{Nul} A$ to express $\operatorname{rank}(A^T A)$ in terms of dim Nul A.
 - (h) What is the relationship between rank A and rank $(A^T A)$?
 - (i) Suppose the columns of A are linearly independent. Explain why $A^{T}A$ is invertible.

4. (10 points) Consider the linear transformation $T : \mathbb{R}^3 \to \mathbb{R}^2$ that maps the standard basis vectors, \mathbf{e}_1 , \mathbf{e}_2 , and \mathbf{e}_3 onto $\begin{bmatrix} 5\\1 \end{bmatrix}$, $\begin{bmatrix} 1\\2 \end{bmatrix}$, and $\begin{bmatrix} 9\\3 \end{bmatrix}$.

(a) What is
$$T(\begin{bmatrix} 2\\ -1\\ 1 \end{bmatrix})$$
?

(b) Find the matrix A of the linear transformation.

(c) Find all solutions to $T(\mathbf{x}) = \mathbf{0}$.

- 5. (20 points) Let $A = \begin{bmatrix} 0 & 4 & 2 \\ 4 & 0 & -2 \\ 2 & -2 & 3 \end{bmatrix}$, $\mathbf{v}_1 = \begin{bmatrix} -2 \\ 2 \\ 1 \end{bmatrix}$, $\mathbf{v}_2 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$, and $\mathbf{v}_3 = \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix}$. The vectors \mathbf{v}_1 , \mathbf{v}_2 , and \mathbf{v}_3 are eigenvectors for A.
 - (a) What are the eigenvalues of A?

(b) Find matrices P and D that diagonalize A and write the equation that relates A to P and D.

6. (30 points) Let
$$\mathbf{v}_1 = \begin{bmatrix} 5\\0\\0\\0 \end{bmatrix}$$
, $\mathbf{v}_2 = \begin{bmatrix} 3\\2\\-2\\-2\\-2 \end{bmatrix}$, $\mathbf{v}_3 = \begin{bmatrix} 1\\-1\\1\\1 \end{bmatrix}$, $\mathbf{x} = \begin{bmatrix} -2\\3\\0\\-3 \end{bmatrix}$, $\mathbf{y} = \begin{bmatrix} 0\\3\\6\\-3 \end{bmatrix}$, and $W = \text{Span}\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}.$

7

(a) Determine whether \mathbf{x} is in W.

(b) Find a basis for W.

- (c) What is the dimension of W?
- (d) What is the dimension of W^{\perp} , the orthogonal complement of W.
- (e) Determine whether \mathbf{y} is in W^{\perp} .

7. (15 points) Find an orthogonal basis for the matrix $% \left(1 + \frac{1}{2} \right) = 0$

$$\begin{bmatrix} -1 & 6 & 6 \\ 3 & -8 & 3 \\ 1 & -2 & 6 \\ 1 & -4 & -3 \end{bmatrix}$$

8. (15 points)

(a) Find the equation $y = \beta_0 + \beta_1 x$ of the least-squares line for the data (-1,0), (0,1), (-1,1), (1,2), and (2,4).

(b) Suppose an experiment produces (x, y) data (2, 5), (3, 6), (4, 8), (5, 11) and a scientist wants to model this data with an equation of the form $y = \beta_1 x + \beta_2 x^2 + \beta_3 e^x$. Write the design matrix and the observation vector for this problem. What is the unknown parameter vector?