Math 544
Prof. Meade

Exam 1
February 15, 2000

University of South Carolina
Spring 2000

Name: \qquad
SS \#: \qquad

Instructions:

1. There are a total of 6 problems on 5 pages. Check that your copy of the exam has all of the problems.
2. You must show all of your work to receive credit for a correct answer.
3. Your answers must be written legibly in the space provided. You may use the back of a page for additional space; please indicate clearly when you do so.

Problem	Points	Score
1	20	
2	21	
3	25	
4	12	
5	10	
6	12	
Total	100	

Happy (Belated) Valentine's Day!

1. (20 points) Consider the following system of linear equations:

$$
\begin{array}{r}
x_{1}+x_{2}-2 x_{3}-2 x_{4}=0 \\
x_{2}+3 x_{4}=0 \\
-x_{1}-3 x_{2}+2 x_{3}-4 x_{4}=0
\end{array}
$$

(a) Use the algorithm developed in class to write the general solution in parametric form.
(b) Write a set of two or three vectors that spans the solution set found in (a).
2. (21 points) Let

$$
A=\left[\begin{array}{rr}
-4 & 12 \\
1 & -3 \\
-3 & 8
\end{array}\right], \quad B=\left[\begin{array}{rrr}
2 & 7 & 0 \\
-4 & -6 & 5 \\
6 & 13 & -3
\end{array}\right], \quad C=\left[\begin{array}{rrrr}
1 & 5 & -3 & 2 \\
0 & 4 & -9 & 18 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

For each of the above matrices, determine whether its columns are linearly independent. Give a reason for your answer. (Use as few row operations as possible.)
3. (25 points) Let $T: \mathrm{R}^{3} \rightarrow \mathrm{R}^{3}$ be a linear transformation such that

$$
T\left(\mathbf{e}_{1}\right)=\left[\begin{array}{l}
1 \\
0 \\
4
\end{array}\right], \quad T\left(\mathbf{e}_{2}\right)=\left[\begin{array}{l}
2 \\
3 \\
6
\end{array}\right], \quad T\left(\mathbf{e}_{3}\right)=\left[\begin{array}{r}
0 \\
-8 \\
5
\end{array}\right],
$$

(a) Find $T\left(\left[\begin{array}{l}2 \\ 3 \\ 5\end{array}\right]\right)$.
(b) Find the standard matrix of T.
(c) Determine if T maps R^{3} onto R^{3}.
(d) Do you have enough information to determine if T is a one-to-one without doing any additional computations? If so, is T one-to-one? If not, what additional information would you need?
4. (12 points) Use the inverse of a matrix to solve the system:

$$
\begin{aligned}
5 x_{1}-6 x_{2} & =1 \\
-7 x_{1}+8 x_{2} & =-3
\end{aligned}
$$

5. (10 points) Assume A, B, C, and D are invertible $n \times n$ matrices. Solve the matrix equation $A\left(X B^{-1}+C\right)=D$ for X.
6. (12 points) Identify each statement as either True or False. You do not have to justify your answer.
(a) In some cases, it is possible for six vectors to span R^{5}.
(b) If a matrix A is $n \times n$ and if the equation $A \mathbf{x}=\mathbf{b}$ has a solution for some \mathbf{b}, then the columns of A span R^{n}.
(c) If a system of linear equations has two different solutions, then it has infinitely many solutions.
(d) ___ Every matrix is row equivalent to a unique matrix in echelon form.
