

Condition Numbers and Relative Errors

Susanne Brenner and Li-Yeng Sung
(modified by Douglas B. Meade)

Department of Mathematics

Overview

It does not make any sense to make a statement such as $\mathbf{v} > 0$ or $\mathbf{A} \leq 1$. To talk about inequalities it is necessary to compare scalar quantities. The Euclidean norm of a vector ($\|\mathbf{v}\| = \sqrt{\mathbf{v}^t \mathbf{v}}$) is the standard “norm” for a vector. There are many other norms for both vectors and matrices. The condition number is a scalar quantity that provides useful information about a matrix.

In this lab, norms are used to measure different errors associated with the numerical solution of $\mathbf{Ax} = \mathbf{b}$. You will see that there can be a significant difference between the relative error between the exact solution \mathbf{x}_{ex} and the computed (approximate) solution \mathbf{x}_{ap} ($\frac{\|\mathbf{x}_{ex} - \mathbf{x}_{ap}\|}{\|\mathbf{x}_{ex}\|}$) and the relative error of the right-hand sides ($\frac{\|\mathbf{b} - \mathbf{Ax}_{ap}\|}{\|\mathbf{b}\|}$).

New MATLAB commands introduced in this lab include `norm`, `cond`, and `inv`.

Part I

Let $\mathbf{x} = \begin{bmatrix} -2 \\ 3 \\ 5 \\ -1 \end{bmatrix}$ and $\mathbf{A} = \begin{bmatrix} 1 & 0 & -2 & 5 \\ -3 & 2 & 1 & -4 \\ 5 & -6 & -1 & 0 \\ 2 & 5 & 0 & 12 \end{bmatrix}$.

Vector Norms

```

>> norm( x, 1 )          % vector 1-norm of x
>> norm( x, 2 )          % vector 2-norm of x
>> norm( x )              % default norm for vectors is the 2-norm
>> norm( x, inf )         % vector infinity-norm of x

```

Matrix Norms

```

>> norm( A, 1 )          % matrix 1-norm of A
>> norm( A, 2 )          % matrix 2-norm of A
>> norm( A )              % default matrix norm is the 2-norm
>> norm( A, inf )         % matrix infinity-norm of A

```

The Inverse of a Matrix

```

>> inv( A )                % the inverse of A

```

The Condition Number of a Matrix

The condition number, $\kappa(\mathbf{A})$, of a nonsingular $n \times n$ matrix \mathbf{A} is defined to be $\kappa(\mathbf{A}) = \|\mathbf{A}\| \|\mathbf{A}^{-1}\|$. Note that using different matrix norms gives different condition numbers.

```

>> norm( A ) * norm( inv(A) )      % condition number of A using the default norm (2)
>> cond( A )                      % condition number of A using the default norm (2)
>> cond( A, 1 )                    % condition number of A using the 1-norm
>> cond( A, inf )                  % condition number of A using the infinity-norm

```

Clear all variables before you begin to work on Part II.