

The Sherman–Morrison Formula

Susanne Brenner and Li-Yeng Sung
(modified by Douglas B. Meade)

Department of Mathematics

Overview

To solve $\mathbf{Bx} = \mathbf{b}$ when \mathbf{B} is an $n \times n$ matrix using Gaussian elimination with partial pivoting requires $O(n^3)$ operations. If \mathbf{B} has a special form, e.g., triangular or tridiagonal, the computational complexity can be reduced to $O(n^2)$ or $O(n)$. The Sherman–Morrison formula provides an efficient algorithm for solving $\mathbf{Ax} = \mathbf{b}$ when \mathbf{A} is almost one of the special forms for which a more efficient solution algorithm exists.

The primary goal of this lab is to implement the Sherman–Morrison formula. This implementation does not require the creation of an M-file, but does utilize the `forward` and `trisolve` commands implemented in earlier labs.

Part I

The Sherman–Morrison formula provides an explicit formula for the inverse of a matrix $\mathbf{A} = \mathbf{B} - \mathbf{uv}^t$ where \mathbf{B} is a nonsingular $n \times n$ matrix and \mathbf{u} and \mathbf{v} are column n -vectors. First, \mathbf{A} is nonsingular if and only if $1 - \mathbf{v}^t(\mathbf{B}^{-1}\mathbf{u}) \neq 0$ and, in this case, the Sherman–Morrison formula is

$$\mathbf{A}^{-1} = \left(\mathbf{I} + \frac{1}{1 - \mathbf{v}^t(\mathbf{B}^{-1}\mathbf{u})} (\mathbf{B}^{-1}\mathbf{u})\mathbf{v}^t \right) \mathbf{B}^{-1}.$$

Sherman–Morrison Algorithm

The following algorithm for solving $\mathbf{Ax} = \mathbf{0}$ is based on the Sherman–Morrison formula:

STEP 1. Solve $\mathbf{Bz} = \mathbf{u}$.

STEP 2. Compute $\gamma = 1 - \mathbf{v}^t(\mathbf{B}^{-1}\mathbf{u}) = 1 - \mathbf{v}^t\mathbf{z}$.

- If $\gamma = 0$ then \mathbf{A} is singular and \mathbf{A}^{-1} does not exist.
- If $\gamma \neq 0$ then \mathbf{A} is nonsingular; continue with Step 2.

STEP 3. Solve $\mathbf{By} = \mathbf{b}$.

STEP 4. Compute $\beta = \frac{\mathbf{v}^t\mathbf{y}}{\gamma}$.

STEP 5. The solution to $\mathbf{Ax} = \mathbf{B}$ is $\mathbf{x} = \mathbf{y} + \beta\mathbf{z}$.

Observe that this algorithm requires the solution of two systems involving \mathbf{B} (Steps 1 and 3), two inner products (Steps 2 and 4), a scalar–scalar division (Step 2), and a scalar–vector multiplication (Step 5). The number of floating-point operations required to complete this algorithm is of the same order as finding the solution to a linear system with coefficient matrix \mathbf{B} .

An Example

Consider the system

$$\begin{bmatrix} 1 & 0 & 0 & -1 \\ -1 & 1 & 0 & 2 \\ 2 & 0 & 1 & 1 \\ 0 & 1 & -1 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \\ 0 \\ 1 \end{bmatrix}$$

where

$$\mathbf{B} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ 2 & 0 & 1 & 0 \\ 0 & 1 & -1 & -1 \end{bmatrix}, \quad \mathbf{u} = \begin{bmatrix} 1 \\ -2 \\ -1 \\ 0 \end{bmatrix}, \quad \text{and} \quad \mathbf{v} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}.$$

Notice that \mathbf{B} is a lower triangular matrix.

Create \mathbf{A} , \mathbf{B} , \mathbf{u} , \mathbf{v} , and \mathbf{b} in MATLAB. Then execute the following commands:

```
>> A = (B - u*v') % check that A = B - uv^t
>> z = forward( B, u ) % Step 1: B lower-triangular so z = B^-1u
>> gamma = 1 - v'*z % Step 2: if gamma = 0, then A is singular - STOP!
>> y = forward( B, b ) % Step 3: solve By = b (B lower triangular)
>> beta = (v*y)/gamma % Step 4:
>> x = y + beta*z % Step 5: solution to Ax = b
>> A*x-b % check accuracy of solution
```

Clear all variables before you begin to work on Part II.