

Two-Dimensional Plotting

Susanne Brenner and Li-Yeng Sung
(modified by Douglas B. Meade)

Department of Mathematics

Overview

Any decent mathematical software must provide some ability to present results in a graphical format. MATLAB is decent software, so it must have graphical capabilities. This lab introduces the basics skills needed to create and manipulate MATLAB graphs. (There is no real linear algebra content.)

MATLAB plot commands introduced in this lab include: `plot`, `clf`, `xlabel`, `ylabel`, `title`, `hold`, `figure`, and `close`. Other new MATLAB commands introduced in this lab include the array multiplication (`.*`) and array power (`.^`) commands.

Part I

The best place to start to learn about MATLAB graphics is the online help: `help plot`. *Take a look at this help information - NOW!* Notice that the simplest usage of `plot` is `plot(x, y)` where `x` and `y` are vectors with the same number of elements.

Plotting a Function on an Interval

```

>> x = -4 : 0.04 : 4; % partition interval [-4,4] w/ mesh size 0.04
>> y = sin(x); % apply sine function to each component of x
>> plot( x, y ) % display graph of y = sin x on [-4,4]
>> clf % clear the MATLAB figure window

```

Changing the Line Style in a Plot

```

>> clear x y % clear values from x and y
>> x = -1.5 : 0.01 : 1.5; % partition interval [-1.5,1.5] with mesh size 0.01
>> y = exp(-x.^2); % compute e^{-x^2} for each component of x
>> plot( x, y ) % display graph of y = e^{-x^2} on [-4,4]
>> xlabel( 'x-axis' ) % add label to the x-axis
>> ylabel( 'y-axis' ) % add label to the y-axis
>> title( 'My Second MATLAB Plot' ) % add title to the figure

```

This shows only the most basic usage of these commands. Please consult `help xlabel`, `help ylabel`, and `help title` for additional usages of these commands. See `help arith` to better understand array multiplication (`.*`) and array power (`.^`) and how they compare with matrix multiplication (`*`) and matrix power (`^`).

Changing the Line Style in a Plot

```
>> clf % clear any existing figure
>> plot( x, y, '-.' ) % what does the third argument do?
```

Additional information about the line styles, color, and symbols is contained in `help plot`.

Multiple Plots in One Figure

```
>> t = -1.5 : 0.1 : 1.5;
>> s = t.^3; % note the use of .^
>> plot( t, s ) % graph of  $y = x^3$  replaces graph of  $y = e^{-x^2}$ 
>> hold on % future plot commands add to existing figure
>> plot( x, y ) % graph of  $y = e^{-x^2}$  and graph of  $y = x^3$ 
```

Two plots can be shown in the same figure using a single `plot` command as follows:

```
>> figure % create a new figure (plotting window)
>> plot( x,y,'ro', x,x.^3,'b+' ) % graphs of  $y = e^{-x^2}$  with red circles
>> % and graph of  $y = x^3$  with blue plusses
>> close all % close all figure windows
```

Please remember that a figure that looks good on the screen (in color) might not look very good when printed on a black-and-white printer.

In Part II you will be asked to use MATLAB to create some specific figures.

Clear all variables before you begin to work on Part II.