
MATLAB Lab for Math 526 Week 2

Solving Triangular Systems

Susanne Brenner and Li-Yeng Sung
(modified by Douglas B. Meade)

Department of Mathematics

Overview
The goals of this week’s lab are to implement both forward and backward substitution (i.e.,
solving triangular systems) in MATLAB.

Part I

In this part an implementation of the forward substitution method for solving a lower trian-
gular system is developed. While this discussion addresses only 4× 4 systems, you should be
thinking about the changes required for a general n× n triangular system.

• Enter Problem
Define the following lower triangular matrix A and vector b:

A =


2 0 0 0
1 1 0 0
4 5 2 0
3 −2 1 1

 , b =


2
1
6
4

 .

• Explicit Solution by Forward Substitution
>> x(1)=b(1)/A(1,1) % solution to a1,1x1 = b1

>> x(2)=(b(2)-A(2,1)*x(1))/A(2,2) % solution to a2,1x1 + a2,2x2 = b2

>> x(3)=(b(3)-A(3,1)*x(1)-A(3,2)*x(2))/A(3,3)
>> x(4)=(b(4)-A(4,1)*x(1)-A(4,2)*x(2)-A(4,3)*x(3))/A(4,4)
>> x = x′ % convert row vector to column vector

• Forward Substitution using Matrix Multiplication
Note that the product A(4,1)*x(1)+A(4,2)*x(2)+A(4,3)*x(3) can be written as the
matrix product A(4,1:3)*x(1:3)′. (See Lab 1 if you have any questions about the
syntax used in this command.)
The implementation of forward substitution can be rewritten as:
>> clear x % remove x from MATLAB’s memory
>> x(1) = b(1)/A(1,1)
>> x(2) = (b(2)-A(2,1:1)*x(1:1)′)/A(2,2)
>> x(3) = (b(3)-A(3,1:2)*x(1:2)′)/A(3,3)
>> x(4) = (b(4)-A(4,1:3)*x(1:3)′)/A(4,4)

Note: It is not necessary to type each command in its entirety. For example, after
making the assignment to x(2), press the up arrow key (once) and then edit the previous
command (the assignment to x(2)) — a total of seven (7) changes are needed.

Version 3 (Fall 2005) Created 31 August 2005

http://www.mathworks.com/
http://www.mathworks.com/

MATLAB Lab for Math 526 Week 2

• Forward Substitution with a for Loop
For a large system it would be very tedious to compute x with a separate command for
each component. The for statement can be used to simplify the coding. (See help for
for detailed information on the syntax of the for statement.)
>> clear x % remove x from MATLAB’s memory
>> x(1) = b(1)/A(1,1)
>> for i = 2:1:4, % i starts at 2, end at 4, w/ steps of 1
>> x(i) = (b(i)-A(i,1:i-1)*x(1:i-1)′)/A(i,i);
>> end
>> x = x′ convert and display result as column

• Forward Substitution for 4× 4 Lower Triangular Systems with an M-file
Notice that the commands used in the loop can be used to solve any 4× 4 lower trian-
gular system (with non-zero components on the diagonal). Instead of typing the same
commands for every 4 × 4 lower triangular system, the commands can be placed in an
M-file that can be executed for specific choices of the matrix A and vector b.
To create a new M-file either navigate the menus to File → New → M-file or click on
the new document icon (at the far left end of tool bar). Once you have an empty M-file
in the MATLAB Editor/Debugger, enter the following lines:

%FORWARD Forward substitution for 4x4 lower triangular systems
% Written by <YOUR NAME> on <TODAY’S DATE>
function x = forward(A, b)
x(1) = b(1)/A(1,1);
for i = 2:1:4, % i starts at 2, end at 4, w/ steps of 1

x(i) = (b(i)-A(i,1:i-1)*x(1:i-1)’)/A(i,i);
end
x = x’; % convert and display result as column

Save this file as forward.m.
Return to the MATLAB Command Window and enter the following commands:
>> clear x
>> x = forward(A, b)

• Forward Substitution for Lower Triangular Systems of Any Size
The only part of the code in forward.m that restricts it to 4 × 4 systems is the upper
limit of the index in the for statement. The built-in size command can be used to
make the implementation work for any square lower triangular system (with non-zero
components on the diagonal).
>> [m,n] = size(A) % # rows and columns of matrix A
>> [m,n] = size(b) % # rows and columns of vector b

To increase the utility of this M-file, modify forward.m as follows:

%FORWARD Forward substitution for lower triangular systems
% Written by <YOUR NAME> on <TODAY’S DATE>
function x = forward(A, b)
[m,n] = size(A);
if m ~= n, % check if # rows ~= # columns in A

Version 3 (Fall 2005) Created 31 August 2005

http://www.mathworks.com/

MATLAB Lab for Math 526 Week 2

error(’The input matrix, A, is not a square matrix.’)
end
x(1) = b(1)/A(1,1);
for i = 2:1:m, % i starts at 2, end at 4, w/ steps of 1

x(i) = (b(i)-A(i,1:i-1)*x(1:i-1)’)/A(i,i);
end
x = x’; % convert and display result as column

Return focus to the MATLAB Command Window and test your implementation by
finding the solution to Ax = b:
>> x = forward(A, b)

Next, let B be the 3×4 matrix formed by the first three rows of A and attempt to solve
Bx = b. Execute the commands:
>> B = A(1:3,:);
>> x = forward(B,b) % explain this result

Use help if and help error to learn more about the if and error statements. What
modifications to forward.m are needed to detect incompatibilities between the size of A
and b?
Lastly, execute the two commands:
>> type forward
>> help forward % see also type help.m

Explain what each of these commands returns. (Do not forget to consult the on-line
help for additional details.)

Version 3 (Fall 2005) Created 31 August 2005

