1.) Part a:

Statement S : The real number x^{*} is a maximizer of the function f if and only if for every real number $\mathrm{x}, f(\mathrm{x}) \leq f\left(\mathrm{x}^{*}\right)$.

Not S: The real number $x *$ is not a maximizer of the function f if and only if there is a real number x such that $f(x)>f\left(x^{*}\right)$.

Part b:

Statement S: Suppose that f and g are functions of one variable. Then $g \geq f$ on the set S of real numbers if and only if for every element $\mathrm{x} \in \mathrm{S}, g(\mathrm{x}) \geq f(\mathrm{x})$.

Not S: Suppose that f and g are functions of one variable. Then g is not greater than or equal to f on the set S of real numbers if and only if there is an element $x \in S$ such that $g(x)<f(x)$.

Part c:

Statement S : A real number is an upper bound for a set S of real numbers if and only if for all elements $x \in S, x \leq u$.

Not S : A real number u is not an upper bound for a set S of real numbers if and only if there is an element $\mathrm{x} \in \mathrm{S}$ such that $\mathrm{x}>\mathrm{u}$.

2.) Part a:

Statement S: A function f of one real variable is strictly increasing if and only if for all real numbers x and y with $\mathrm{x}<\mathrm{y}, f(\mathrm{x})<f(\mathrm{y})$.

Not S: A function f of one real variable is not strictly increasing if and only if there exists real numbers x and y with $\mathrm{x}<\mathrm{y}$ such that $f(\mathrm{x}) \geq f(\mathrm{y})$.

Part b:

Statement S : The set C of real numbers is a convex set if and only if for all elements $x, y \in C$, and for every real number t with $0 \leq \mathrm{t} \leq 1$, $\mathrm{tx}+(1-\mathrm{t}) \mathrm{y} \in \mathrm{C}$.

Not S : The set C of real numbers is not a convex set if and only if there exists elements $x, y \in C$, and there exists a real number t with $0 \leq \mathrm{t} \leq 1$ such that $\mathrm{tx}+(1-\mathrm{t}) \mathrm{y} \in \mathrm{C}$.

Part c:

Statement S : The function f of one real variable is a convex function if and only if for all real numbers x and y and for all real numbers t with $0 \leq \mathrm{t} \leq 1$, it follows that $f(\mathrm{tx}+(1-\mathrm{t}) \mathrm{y}) \leq \mathrm{t} f(\mathrm{x})+$ (1-t)f(y).

Not S : The function f of one real variable is not a convex function if and only if there exists real numbers x and y and there is a real number t with $0 \leq \mathrm{t} \leq 1$, such that $f(\mathrm{tx}+(1-\mathrm{t}) \mathrm{y})>\mathrm{t} f(\mathrm{x})+(1-$ t) $f(\mathrm{y})$.

3.) Part a:

A positive integer $\mathrm{p}>1$ is not prime if there is an integer n with $2 \leq \mathrm{n}<\mathrm{p}$ such that n divides p .
Part b:
A sequence $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots$ of real numbers is not increasing if there exists an integer $\mathrm{k}=1,2, \ldots$ such that $\mathrm{x}_{\mathrm{k}} \geq \mathrm{x}_{\mathrm{k}+1}$.

Part c:

A sequence $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots$ of real numbers is not decreasing if there exists an integer $\mathrm{k}=1,2, \ldots, \mathrm{x}_{\mathrm{k}} \leq$ $\mathrm{X}_{\mathrm{k}+1}$.

4.) Part a:

There does not exist an element $x \in S$ such that $x \in T$.

Part b:

For every angle t between 0 and 2π it is not the case that either $\sin (t)>\cos (t)$ or $\sin (t)<\cos (t)$.

5.) Part a:

The negation of the conclusion is: For all real numbers $\mathrm{x}, \mathrm{x}>\mathrm{a}^{-\mathrm{x}}$, or $\mathrm{x}<\mathrm{a}^{-\mathrm{x}}$.
Part b:
The negation of the conclusion is: B.
6.) Part b:
(C or D) implies B
-Work forward from not B
-Work backward from (not C) and (not D)

Part d:

A implies (C or D)
-Work forward from (not C) and (not D)
-Work backward from not A
7.) Part a:
-Work forward from k divides $\mathrm{n}+1$
-Work backward from: k is an integer that does divide an integer n

Part b:

-Work forward from mn is not divisible by 4 and n is divisible by 4
-Work backward from n is an odd integer or m is an even integer
10.) Part a:

Statement S : For every real number $\mathrm{x}>0, \sqrt{x} \leq x$.
Not S: There exists a real number $\mathrm{x}>0, \sqrt{x}>x$.
Now, use the construction method because of the "there exists" in the Not S. Construct $x=\frac{1}{4}$ so that $\sqrt{\frac{1}{4}}=\frac{1}{2}>\frac{1}{4}$ so that Not S is true.

Part b:

Statement S: For every positive integer $n, n^{2}+n+41$ is prime (the only positive integers to divide integer p where $\mathrm{p}>1$ are 1 and p).

Not S: There exists a positive integer n , where $n^{2}+n+41$ is not prime.

Now, use the construction method $\mathrm{n}=41$ so that $(41)^{2}+41+41=1763$ (which is divisible by 41 and 43).

Part c:

Statement S : If p is a positive integer that is not prime, then for every integer m with $1<\mathrm{m} \leq \sqrt{p}$, m does not divide p .

Not S : There exists an integer m with $1<\mathrm{m} \leq \sqrt{p}$ such that m divides the positive integer that is not prime p .

Now, use the construction method to make $\mathrm{p}=100$ and $\mathrm{m}=10$ so that $1<10 \leq \sqrt{100}=10$ and 10 divides $100(10 \mathrm{k}=100$ where integer k is 10$)$.

