Chapter 6 Solutions

3) a) x^{*} is a maximizer of f
i) look for a specific real number, y, to which the specialization applies
ii) no additional property
iii) conclude that $\mathrm{f}(\mathrm{y}) \leq \mathrm{f}\left(\mathrm{x}^{*}\right)$
b) $g \geq f$ on S
i) look for a specific element, y , to which the specialization applies
ii) show that $y \in S$
iii) conclude that $g(y) \geq f(y)$
c) u is an upper bound for S
i) look for a specific element, y , to which the specialization applies
ii) show that $y \in S$
iii) conclude that $\mathrm{y} \leq \mathrm{u}$
4) a) No. The quantifiers are "there exists", not "for all".
b) No. While the quantifier is "for all", it's in the hypothesis.
c) Yes. There is a "for all" quantifier in the hypothesis.
d) Yes. There is a "for all" quantifier in the hypothesis.
5) a) The number, m, must be prime.
b) The real number, y, must be positive and in the set S
c) The side $A B$ must have length c such that $c^{2}=2 m^{2}-2 m^{2} \cos (C)$.
d) The two sides CD and EC of triangle CDE are parallel to the two sides FD and DA of triangle FDA.
6) a) $\mathrm{a}=\mathrm{b}=\mathrm{X}: \sin (2 \mathrm{X})=\sin (\mathrm{X}+\mathrm{X})=\sin (\mathrm{X}) \cos (\mathrm{X})+\cos (\mathrm{X}) \sin (\mathrm{X})=2 \sin (\mathrm{X}) \cos (\mathrm{X})$
b) $\mathrm{A}=\mathrm{S}^{\mathrm{c}}$ and $\mathrm{B}=\mathrm{T}^{\mathrm{c}}:(\mathrm{A} \cup \mathrm{B})^{\mathrm{c}}=\left(\mathrm{S}^{\mathrm{c}} \cup \mathrm{T}^{\mathrm{c}}\right)^{\mathrm{c}}=\left(\mathrm{S}^{\mathrm{c}}\right)^{\mathrm{c}} \cap\left(\mathrm{T}^{\mathrm{c}}\right)^{\mathrm{c}}=\mathrm{A}^{\mathrm{c}} \cap \mathrm{B}^{\mathrm{c}}$
7) a) $x=0, y=1, t=1 / 2$:

Note that $\mathrm{tx}+(1-\mathrm{t}) \mathrm{y}=(1 / 2) 0+(1-1 / 2) 1=1 / 2$ so that $\mathrm{f}(\mathrm{tx}+(1-\mathrm{t}) \mathrm{y}) \leq \operatorname{tf}(\mathrm{x})+(1-\mathrm{t}) \mathrm{f}(\mathrm{y})$ becomes $\mathrm{f}(1 / 2) \leq 1 / 2 \mathrm{f}(0)+(1-1 / 2) \mathrm{f}(1)=(\mathrm{f}(0)+\mathrm{f}(1)) / 2$.
b) $\mathrm{c}=(\mathrm{a}+\mathrm{b}) / 2, \mathrm{~d}=(\mathrm{a}-\mathrm{b}) / 2$: Note $\mathrm{c}^{2}-\mathrm{d}^{2}=\left(\mathrm{a}^{2}+2 \mathrm{ab}+\mathrm{b}^{2}\right) / 4-\left(\mathrm{a}^{2}-2 \mathrm{ab}+\mathrm{b}^{2}\right) / 4=\mathrm{ab} \geq 0$ so $\mathrm{c}^{2} \geq \mathrm{d}^{2}$. Then $\left(c^{2}-d^{2}\right)^{1 / 2} \leq c$ becomes $(a b)^{1 / 2} \leq(a+b) / 2$.
13) Proof: Let x in R be chosen arbitrarily. Since $R \subseteq S$, we know $x \in S$. Turning to the second hypothesis, $x \in T$. In the same way, $S \subseteq T$ implies $x \in T$. Since this argument works for any x we have successfully proven: $\mathrm{R} \subseteq \mathrm{T}$.
18) Proof: Let $x \in S$ be chosen arbitrarily. By definition of upper bound, $x \leq u$. But, $u \leq v$, and so $\mathrm{x} \leq \mathrm{v}$. Since this holds for any $\mathrm{x} S$, we know $\mathrm{x} \leq \mathrm{v}$ for all $\mathrm{x} S$. This is what it means for v to be an upper bound for S.
19) In online solution.
23) In online solution.
24) Discussed in class.

