Chapter 5 Solutions

1) a) Object: real number x

Property:
Something: $\mathrm{f}(\mathrm{x}) \leq \mathrm{f}\left(\mathrm{x}^{*}\right)$
b) Object: element x

Property: $x \in S$
Something: $g(x) \geq f(x)$
c) Object: element x

Property: $x \in S$
Something: $\mathrm{x} \leq \mathrm{u}$
2) a) Object: real numbers x and y

Property: $x<y$
Something: $\mathrm{f}(\mathrm{x})<\mathrm{f}(\mathrm{y})$
b) Object : elements x, y and real number t

Property: $\mathrm{x}, \mathrm{y} \in \mathrm{C}$ and $0 \leq \mathrm{t} \leq 1$
Something: $t x+(1-t) y \in C$
c) Object: real numbers x and y, real number t

Property: $0 \leq \mathrm{t} \leq 1$
Something: $f(t x+(1-t) y) \leq t f(x)+(1-t) f(y)$
4) a) If p is a prime number, then $\mathrm{p}+7$ is a composite.
b) If A, B, and C are sets with $\mathrm{A} \subseteq \mathrm{B}$ and $\mathrm{B} \subseteq \mathrm{C}$, then $\mathrm{A} \subseteq \mathrm{C}$.
c) If p and q are integers with $\mathrm{q} \neq 0$, then p / q is rational.
5) a) Choose a real number x '

Show that $\mathrm{f}\left(\mathrm{x}^{\prime}\right) \leq \mathrm{f}\left(\mathrm{x}^{*}\right)$
b) Choose an element x^{\prime}

Show that $g\left(x^{\prime}\right) \geq f\left(x^{\prime}\right)$
c) Choose an element $x^{`} \in S$

Show that $\mathrm{x} \leq \mathrm{u}$.
6) a) Choose real numbers $x^{`}$ and $y^{`}$, with $x^{`}<y^{`}$

Show that $\mathrm{f}\left(\mathrm{x}^{`}\right)<\mathrm{f}\left(\mathrm{y}^{\prime}\right)$
b) Choose elements $\mathrm{a}, \mathrm{b} \in \mathrm{C}$, and t^{\prime} with $0 \leq \mathrm{t}^{`} \leq 1$ Show that $\mathrm{t}^{`} \mathrm{a}+\left(1-\mathrm{t}^{\prime}\right) \mathrm{b} \in \mathrm{C}$
c) Choose real numbers x^{\prime} and y^{\prime}, and t^{\prime} with $0 \leq t^{\prime} \leq 1$.

Show that: $f\left(t^{\prime} x^{`}+\left(1-t^{\prime}\right) y^{`}\right) \leq t^{\prime} f\left(x^{\prime}\right)+\left(1-t^{\prime}\right) f\left(y^{\prime}\right)$.
8) Key Question: How can I show that a set is a subset of another set.

Answer: Show that every element of the subset is an element of the set.
Need to show that:

$$
\mathbf{B}_{1}: \text { For all } r \in R, r \in T \text {. }
$$

The forward process would begin with:
$\mathbf{A}_{\mathbf{1}}$: Choose an element $\mathrm{r}^{`} \in \mathrm{R}$.
Must show that,

$$
\mathbf{B}_{2}: \mathrm{r}^{`} \in \mathrm{~T} .
$$

10) Key Question: How do you show that a function is increasing?

Answer: $\mathrm{f}(\mathrm{y})>\mathrm{f}(\mathrm{x})$ for all x, y with $\mathrm{x}<\mathrm{y}$.
\mathbf{A}_{1} : Choose real numbers x^{\prime} and y^{\prime}, with $x^{\prime}<y^{\prime}$.
To show,

$$
\mathbf{B}_{2}: \mathrm{f}\left(\mathrm{x}^{\prime}\right)<\mathrm{f}\left(\mathrm{y}^{\prime}\right) .
$$

13) a) Incorrect: x `and \(y\)` should be chosen $\in S$, not T.
b) Correct
c) Incorrect: A_{1} should be $\left(\mathrm{x}^{`}, \mathrm{y}^{`}\right) \in \mathrm{S}$
B_{1} should be $\left(\mathrm{x}^{`}, \mathrm{y}^{`}\right) \in \mathrm{T}$
d) Incorrect: the values should be general, not specific
e) Correct, but it would be better to use different letters than x and y.
14) The choose method is used in the first sentence of the proof: "Let x be a real number".
The key question "How can I show that a real number is a maximizer of a function?"

In order to answer this it needs to be shown that:
B1: For all real numbers $x, f\left(x^{*}\right) \geq f(x)$.
There are two cases that can be addressed here.
Case 1:
$\mathrm{A}_{1}: \mathrm{x}^{*} \geq \mathrm{x}$
$\mathrm{A}_{2}: \mathrm{x}^{*}-\mathrm{x} \geq 0$
$\mathrm{A}_{3}: \mathrm{a}\left(\mathrm{x}^{*}+\mathrm{x}\right)+\mathrm{b} \geq 0 . \quad$ Check that this is true!
(Algebraically using $x^{*}=-b / 2 a$ from the proposition.)

Then, using in the function $f(x)=a x^{2}+b x+c$, we get: $a\left(x^{* \wedge} 2-x^{2}\right)+b x^{*}-b x+c>c$ Arranging the terms on their proper sides yields:
$a x^{* \wedge} 2+b x^{*}+c>a x^{2}+b x+c$
This is $B_{1}: f\left(x^{*}\right)>f(x)$, therefore the proof is complete.
Case 2 can be done similarly for when $\mathrm{x}^{*}<\mathrm{x}$.
16) Choose method: The choose method is used in the second sentence: "let $x \in R \cap$ S." The choose method is used here because in order to show that $\mathrm{R} \cap \mathrm{S} \subseteq \mathrm{T}$, it is required to show that for all $x \in R \cap S, x \in T$.
18) $\quad A_{1}: t \in T$
$\mathbf{A}_{2}: x \in S$
$\mathbf{A}_{3}: x(x-3) \leq 0$
$\mathbf{A}_{4}: x \geq 0, x-3 \leq 0$.
$\mathbf{A}_{5}: 0 \leq \mathrm{x} \leq 3$
$\mathbf{A}_{6}: \mathrm{t} \geq 3$

From the choose method
From the choose method.
A_{3} and A_{4} follow from the definition of S (note $x \leq 0, x-3 \geq 0$ cannot happen - why?) This is gotten working forward from A_{4}. This is given as a condition of set T in the Proposition.
A_{7} : Combining A_{5} and A_{6} yields $\mathrm{x} \leq 3 \leq \mathrm{t}$, showing $\mathrm{x} \leq \mathrm{t}$.
\mathbf{A}_{8} : Showing that $\mathrm{x} \leq \mathrm{t}$ completes the proof as all elements of S are now lower than all elements of T , showing that all elements $\mathrm{t} \in \mathrm{T}$ are upper bounds for the set S .

19) Analysis of Proof:

The appearance of the quantifier "for all" in the conclusion suggests the choose method.

The choose method is used in the first sentence of the proof in saying that r, q are the same sign and $\mathrm{p} /(\mathrm{qr})>0$, and that p is a positive integer.
A_{1} : Let q and r have the same sign, $\mathrm{q}, \mathrm{r} \neq 0$. Let p be a positive integer.
A_{2} : Then $\mathrm{p} /(\mathrm{qr})>0$.
This is true because p is a positive integer and q, r have the same sign therefore the denominator will be positive.
$A_{3}: q<r \quad$ This is given in the hypothesis.
A_{4} : Multiplying both sides of the inequality in A_{3} by $\mathrm{p} /(\mathrm{qr})$ gives:

$$
(\mathrm{pq} / \mathrm{qr})<(\mathrm{pr} / \mathrm{qr})
$$

A_{5} : This reduces to $(\mathrm{p} / \mathrm{r})<(\mathrm{p} / \mathrm{q})$.
Therefore the proof is complete.
22) Key Question: How can I show that a set is a convex set?

Answer (\mathbf{B}_{1}): For every $\mathrm{x}, \mathrm{y} \in \mathrm{C}$, and for every real number t with $0 \leq \mathrm{t} \leq 1$, $t(x)+(1-t)(y) \in C$. (From the definition of a convex set.)
\mathbf{A}_{1} : Let $\mathrm{x}^{\prime}, \mathrm{y}^{\prime} \in \mathrm{C}, \mathrm{t}^{\prime}$ with $0 \leq \mathrm{t}^{\prime} \leq 1$.
For which it must be shown that,
$\mathbf{B}_{2}: \mathrm{t}^{\prime}\left(\mathrm{x}^{\prime}\right)+\left(1-\mathrm{t}^{\prime}\right)\left(\mathrm{y}^{\prime}\right) \in \mathrm{C}$, meaning that $\mathrm{a}(\mathrm{tx}+(1-\mathrm{t}) \mathrm{y}) \leq \mathrm{b}$. (Because set C is real numbers $x: a x \leq b$)

Because x and y are in C, it can be shown that
$\mathbf{A}_{2}: \mathrm{ax}^{\prime} \leq \mathrm{b}$, and $\mathrm{ay}{ }^{\prime} \leq \mathrm{b}$.
Multiplying A_{2} by t ' and (1-t') and adding the two inequalities gives:
$\mathbf{A}_{3}: \mathrm{t}^{\prime} \mathrm{ax}{ }^{\prime}+\left(1-\mathrm{t}^{\prime}\right) \mathrm{ay}^{\prime} \leq \mathrm{t}^{\prime} \mathrm{b}^{\prime}+\left(1-\mathrm{t}^{\prime}\right) \mathrm{b}^{\prime}=\mathrm{b}^{\prime}$
Proof: Let $x^{\prime}, y^{\prime} \in \mathrm{C}$, and t^{\prime} be a real number with $0 \leq \mathrm{t}^{\prime} \leq 1$. From the definition of C : $\mathrm{ax}{ }^{\prime} \leq \mathrm{b}$, and $\mathrm{ay}{ }^{\prime} \leq \mathrm{b}$. Multiplying each of these inequalities by both $t^{\prime} \geq 0$ and $\left(1-t^{\prime}\right) \geq 0$, respectively, and performing algebra yields $a\left[t^{\prime} x x^{\prime}+(1-\right.$ $\left.\left.t^{\prime}\right) y^{\prime}\right] \leq b$. By showing this, it means that $t\left(x^{\prime}\right)+(1-t)\left(y^{\prime}\right) \in C$, from the definition of a convex set. Therefore, the set C is a convex set and the proof is complete.

