Chapter 4 Solutions

Math 300 - Spring 2014

1. c) Object: a point (x, y)

Certain Property: $x \geq 0, y \geq 0$
Something Happens: $\mathrm{y}=\mathrm{m}_{1} \mathrm{x}+\mathrm{b}_{1}$ and $\mathrm{y}=\mathrm{m}_{2} \mathrm{x}+\mathrm{b}_{2}$
e) Object: integers m and n

Certain Property: at least one of m and n is not zero and $\operatorname{gcd}(m, n)=c$
Something Happens: $a m+b n=c$
3. a) Show that a positive integer n satisfies the "something happens": $n!>3^{n}$
b) Show that an integer p is greater than 1 and satisfies the "something happens": $p \mid n$
c) Show that $a_{0}+a_{1} x+a_{2} x^{2}+\ldots a_{n} x^{n}$ has n roots.
4. b) Find an integer solution to $f(x)=0$.
c) Find the solution(s) to $y=m_{1} x+b_{1}$ and $y=m_{2} x+b_{2}$, and check that they are nonnegative.
e) Find integers m and n such that $a m+b n=c$
6. The construction method is used in this proof in the first sentence: "Because n is an even integer, there is an integer k for which $\mathrm{n}=2 \mathrm{k}$." Now that k has been introduced in the problem, square this relationship: $n^{2}=4 \mathrm{k}^{2}$ and write $4 \mathrm{k}^{2}=2\left(2 \mathrm{k}^{2}\right)=2 \mathrm{j}$ where $\mathrm{j}=2 \mathrm{k}^{2}$. Since $n^{2}=2 j$, with j an integer, n^{2} is even.
9. a)

Positive Integer n	$\mathrm{n}!$	3^{n}
0	1	1
1	1	3
2	2	9
3	6	27
4	24	81
5	120	243
6	720	729
7	5040	2187

Through trial and error, the smallest positive integer that satisfies $n!>3^{n}$ is $n=7$.
b)

P	n	$(1+\mathrm{r} / 100)^{\wedge} \mathrm{nP}$
1	1	1.05
1	5	1.2762
1	10	1.6288
1	14	1.9799
1	15	2.0789
1	16	2.1828

By inspection of this table, the principal will double with $\mathrm{n}=15$.
c) Through trial and error using a graphing calculator and the $\cos (x)$ function we can see that the angle is between 0 and $\mathrm{pi} / 4$ for which the first three decimals are the same: is the angle in decimal form 0.739 .

12 The author implicitly assumes $\log 2(r)>0$. If $\log 2(r)<0$, then $n>1 / \log 2(r)$ is true for $\mathrm{n}=0$, but then $1 / \mathrm{n}$ is not defined.
15. The proof isn't correct. The author uses x for an element in $R \cap S$ and also, in a similar manner, $\mathrm{S} \cap \mathrm{T}$. The elements should be different names.
16. This proof is not correct. In the printed "proof" there is no correlation between n and p ; you can construct p from n .
17. There are two errors in this proof. First, the requirement that m be even is never applied; it should say that $\mathrm{m}=2 \mathrm{k}$ for some integer k . Also, in their calculations, they show $\mathrm{m}^{2}+\mathrm{n}^{2}-1=2 \mathrm{k}$, which says that $\mathrm{m}^{2}+\mathrm{n}^{2}-1$ is even - not divisible by 4 .
18. If $p=m+1$, then there is no integer between m and p, so the first sentence in the proof is not correct.
19. Analysis of Proof: The forward-backward method gives rise to the key question, "How can I show that an integer (namely, a) divides another integer (namely, c)?"
By the definition, one answer is to show that
B 1 : There is an integer k such that $\mathrm{c}=\mathrm{ak}$.
There are two hypotheses:
$\mathrm{H} 1: \mathrm{a} \mid \mathrm{b}$ (there exists an integer m so that $\mathrm{b}=\mathrm{ma}$)
H 2 : $\mathrm{b} \mid \mathrm{c}$ (there exists an integer n so that $\mathrm{c}=\mathrm{nb}$)
Combining H 1 and H 2 we determine that
$\mathrm{A} 1: \mathrm{c}=\mathrm{nb}=\mathrm{n}(\mathrm{ma})=(\mathrm{nm}) \mathrm{a}=\mathrm{ka}$ where $\mathrm{k}=\mathrm{nm}$ is an integer.
This is exactly what we need to complete the proof.
Proof: Because $a \mid b$ and $b \mid c$, by definition, there are integers p and q for which $b=a p$ and $\mathrm{c}=\mathrm{bq}$. But then $\mathrm{c}=\mathrm{bq}=(\mathrm{ap}) \mathrm{q}=\mathrm{a}(\mathrm{pq})$, where pq is an integer, and so $\mathrm{a} \mid \mathrm{c}$.
22. The goal we seek to fulfill is:
$B 1$: There are integers p and q with $\mathrm{q}=0$ such that $\mathrm{s} / \mathrm{t}=\mathrm{p} / \mathrm{q}$.
There are two hypotheses:
H 1 : s is rational (e.g. there exist integers a and b , with $\mathrm{b}<>0$, such that $\mathrm{s}=\mathrm{a} / \mathrm{b}$.
H 2 : t is rational and $\mathrm{t}<>0$ (e.g. there exist integers c and d with $\mathrm{c}<>0$ and $\mathrm{d}<>0$ such that $t=c / d$)
Then, continuing from H 1 and H 2 : $\mathrm{s} / \mathrm{t}=(\mathrm{a} / \mathrm{b}) /(\mathrm{m} / \mathrm{n})=\mathrm{an} / \mathrm{bm}=\mathrm{p} / \mathrm{q}$ where $\mathrm{p}=a n$ is an integer and $\mathrm{q}=\mathrm{bm}$ and p and q are integers and q is not zero.

Proof: Because s and t are rational, there are integers a, b, c, and d, with $b<>0$ and $d<>0$, such that $s=a / b$ and $t=c / d$. Then $s / t=a d / b c=k / m$, with $m<>0$ so s / t is rational.

