Math 300
Chapter 10 Homework Solutions
1- a) Work forward from " n is odd" ; work backward from " $n \wedge 2$ is odd"
b) work forward from " T is bounded", backward from " S is bounded"

2- a) work forward form " $n>p$ ", backward from " n does not divide p "
3- No because Bob's claim was that $A \Rightarrow B$ but Mary claimed that $B \Rightarrow A$ which does not hold true.
$4-\mathrm{B}$; work forward from the assumption that there is a t with $0<\mathrm{t}<\pi / 4$, such that $\sin (\mathrm{t})$ $=r \cos (t)$. B results from squaring both sides the replacing $\cos ^{\wedge} 2(t)$ with $\left(1-\sin ^{\wedge} 2(t)\right)$.

5-C

7- D is correct because the key question should refer to the conclusion, and when using the contrapositive method, the conclusion is the NOT of A.

A is incorrect because it refers to the NOT of B and is too specific
B is incorrect because it is too specific.
C is incorrect because it refer the the NOT of B.
8 - D is correct because the key question should refer to the conclusion, and when using the contrapositive method, the conclusion is the NOT of A.

A is incorrect because it refers to B
B is incorrect because it is too specific.
C is incorrect because it refer the the NOT of B.
9 - The contradiction method is used in this proof because the author works forward from A and NOT B to reach the contradiction that the integer $p>p$.

15- Assume $p=q$. Therefore $\sqrt{ }(p q)=\sqrt{ }\left(p^{\wedge} 2\right)=p=(2 p) / 2=(p+p) / 2=(p+q) / 2$. By the contrapositive method, since $\sqrt{ }(p q)=(p+q) / 2$, the proof is complete.

16- By contrapositive, assume $(a+b) / 2 \leq \sqrt{ }(a b)$ to show $a=b$. Work forward form $(a+b) / 2 \leq \sqrt{ }(a b)$ to get $(a+b)^{\wedge} 2 \leq 4 a b$, under the conditions that $a+b$ and $2 \sqrt{ }(a b)$ are both greater than 0 , which is true because a and b are both greater than 0 . Then $a^{\wedge} 2+2 a b$ $+b^{\wedge} 2 \leq 4 a b$, subtract $4 a b$ from both sides to get $a^{\wedge} 2-2 a b+b^{\wedge} 2 \leq 0$; so $(a-b)^{\wedge} 2 \leq 0$. Because a square can not be less than $0,(a-b)^{\wedge} 2=0$. Therefore, $a-b=0$ and $a=b$.Since we've shown that $(a+b) / 2<=\operatorname{sqrt}(\mathrm{ab})$ implies $\mathrm{a}=\mathrm{b}$, the contrapositive implication is also true, namely: a does not equal b implies $(a+b) / 2>=s q r t(a b) . "$

