MATH 241 Prof. Meade University of South Carolina Spring 2001

Exam 2 April 26, 2001 Name: _______ SS #: _____

Instructions:

- 1. There are a total of 7 problems on 7 pages. Check that your copy of the exam has all of the problems.
- 2. You must show all of your work to receive credit for a correct answer.
- 3. Your answers must be written legibly in the space provided. You may use the back of a page for additional space; please indicate clearly when you do so.

Problem	Points	Score
1	10	
2	10	
3	20	
4	13	
5	25	
6	10	
7	12	
Total	100	

- 1. (10 points)
 - (a) In what direction is $f(x, y) = x^2 + y^4$ increasing most rapidly at the point (-2, 1)?
 - (b) If $F(x,y) = x^3 xy$, $x = 2\cos(3t)$, and $y = 3\sin(t)$, find $\frac{dF}{dt}$ at t = 0. (Express your answer as a function of t.)

2. (10 points) Find each limit or explain why it does not exist.

(a)
$$\lim_{(x,y)\to(2,2)} \frac{x^2 - 2y}{x^2 + 2y}$$

(b)
$$\lim_{(x,y)\to(0,0)} \frac{x^2 - 4y^2}{x^2 + 2y^2}$$

- 3. (20 points) For $f(x, y) = \frac{x^2}{2} + y^2$,
 - (a) find the equation of the level curve that goes through the point (4, 1);

(b) find the gradient vector, ∇f , at (4, 1);

(c) draw the level curve and draw the gradient vector with its initial point at (4, 1);

(d) what special geometric relationship is there between the gradient vector at a point and the level curve through that point?

- 4. (13 points) Let $f(x, y) = x^2y 6y^2 3x^2$.
 - (a) Find all critical points of f.

(b) Classify each of the critical points as a local maximum, local minimum, or saddle point, if possible.

5. (25 points)

(a) Evaluate
$$\int_0^1 \int_x^{\sqrt{x}} xy \, dy \, dx$$
.

(b) Interchange the order of integration in the iterated integral $\int_0^1 \int_x^1 f(x,y) \, dy \, dx$. HINT: Make a sketch first.

(c) Evaluate $\int_S \int \frac{1}{x^2 + y^2} dA$ where S is the region between the circles $x^2 + y^2 = 4$ and $x^2 + y^2 = 9$.

- 6. (10 points) Let S be the solid bounded by $z = x^2 + y^2$, z = 0, and $x^2 + (y 1)^2 = 1$.
 - (a) Show that the cylinder $x^2 + (y 1)^2 = 1$ can be written as $r = 2\sin\theta$ in cylindrical coordinates.

(b) Setup a triple iterated integral for the volume of S in cylindrical coordinates.

(c) Evaluate the r and z integrals in the triple integral to show that the volume is $\int_0^{\pi} 4\sin^4\theta \, d\theta$. NOTE: The numerical value of this final integral is $\frac{3\pi}{2}$. Do not repeat this computation.

- 7. (12 points) Recall that the sphere of radius a is $x^2 + y^2 + z^2 = a^2$. Write the triple iterated integrals for the volume of a sphere of radius a in
 - (a) Cartesian coordinates

(b) cylindrical coordinates

(c) spherical coordinates

Which of these three integrals would you evaluate if you were asked to find the volume of a sphere of radius a? (Explain, but do *not* evaluate any integrals.)