/ #48

```
[> with( plots ):
[> f := (x^3-x)/(x^6+1);
```

$$f \coloneqq \frac{x^3 - x}{x^6 + 1}$$
(1.1)

An antiderivative of f is > int(f, x);

$$\frac{1}{6}\ln(x^4 - x^2 + 1) - \frac{1}{3}\ln(x^2 + 1)$$
(1.2)

If you are curious how this answer could possibly be correct, notice that the denominator can be factored: **factor(denom(f));**

$$(x^2+1)(x^4-x^2+1)$$
 (1.3)

Then, the partial fraction decomposition of the integrand is

> convert(f, parfrac, x);

 $\frac{1}{3} \frac{x(2x^2-1)}{x^4-x^2+1} - \frac{2}{3} \frac{x}{x^2+1}$ (1.4)

Each term can now be integrated with a u-substitution with $u=x^4-x^2+1$ for the first term and $u=x^2+1$ for the second term. All-in-all, not so bad.

The problem asks us for the antiderivative with F(0)=0. The value of Maple's antiderivative, at x=0, is **eval((1.2), x=0);** 0
(1.5)

so this function satisfies F(0)=0: F := (1.2); $F := \frac{1}{6} \ln(x^4 - x^2 + 1) - \frac{1}{3} \ln(x^2 + 1)$ (1.6)

> fFplot;

Plot for Section 7.6 #48 0|30. 0.1 -2 **4**1 2 3 х 0.2-0.3y=F(x)y=f(x)The extreme points of F occur when F'=f=0. The numerator of f is x^3-x^2 , which is zero when x=-1, x=0, or x=1. > pt := [x,F]; $pt := \left[x, \frac{1}{6} \ln(x^4 - x^2 + 1) - \frac{1}{3} \ln(x^2 + 1) \right]$ (1.8)> eval(pt, x=-1); evalf(%); $\left[-1, -\frac{1}{3}\ln(2)\right]$ [-1., -0.2310490602] (1.9) > eval(pt, x=0); [0, 0](1.10)eval(pt, x=1); evalf(%); $\left[1, -\frac{1}{3}\ln(2)\right]$ [1., -0.2310490602] (1.11)The local (and global) maximum of F occurs at the point (0,0). There are two local extrema, which are also global minimums, at $(1, -\ln(2)/3)$ and at $(-1, -\ln(2)/3)$. The approximate value of $\ln(2)/3$ is -0.231.

The plot suggets that there will be 4 inflection points. To find the location of these points, we need to find where F'' = f' = 0. > df := diff(f, x);

(1.12)

$$df := \frac{3 x^2 - 1}{x^6 + 1} - \frac{6 (x^3 - x) x^5}{(x^6 + 1)^2}$$
(1.12)
> simplify((1.12));

$$-\frac{3 x^8 - 5 x^6 - 3 x^2 + 1}{(x^6 + 1)^2}$$
(1.13)

This suggests:
> solve(df=0, x);

$$\sqrt{RootOf(3 _ Z^{4} - 5 _ Z^{3} - 3 _ Z + 1, index = 1)},$$

 $-\sqrt{RootOf(3 _ Z^{4} - 5 _ Z^{3} - 3 _ Z + 1, index = 2)},$
 $\sqrt{RootOf(3 _ Z^{4} - 5 _ Z^{3} - 3 _ Z + 1, index = 2)},$
 $\sqrt{RootOf(3 _ Z^{4} - 5 _ Z^{3} - 3 _ Z + 1, index = 3)},$
 $-\sqrt{RootOf(3 _ Z^{4} - 5 _ Z^{3} - 3 _ Z + 1, index = 3)},$
 $\sqrt{RootOf(3 _ Z^{4} - 5 _ Z^{3} - 3 _ Z + 1, index = 3)},$
 $\sqrt{RootOf(3 _ Z^{4} - 5 _ Z^{3} - 3 _ Z + 1, index = 4)},$
 $-\sqrt{RootOf(3 _ Z^{4} - 5 _ Z^{3} - 3 _ Z + 1, index = 4)},$

This is not useful. I can force Maple to give me a floating point answer if the problem includes floating point numbers. The easiest way to do this is to change 0 to 0.0 (or just 0.)

> solve(df=0.0, x); -0.5452863556, 0.5452863556, -1.376934896, 1.376934896, -0.5028148771 - 0.7184239178 I, (1.15) 0.5028148771 + 0.7184239178 I, -0.5028148771 + 0.7184239178 I, 0.5028148771 - 0.7184239178 I

Note that the final four solutions are complex-valued; these can be ignored. That leaves the first four (real-valued) values of x. These are about where would expect them to be. The actual inflection points are:

l	>	eval(pt, $x=(1.15)[1]$);	
L	_		[-0.5452863556, -0.1258322930]	(1.16)
ſ	>	eval(pt, x=(1.15)[2]);	
L	_		[0.5452863556, -0.1258322930]	(1.17)
	>	eval(pt, x=(1.15)[3]);	
L	-		[-1.376934896, -0.1889775145]	(1.18)
	>	eval(pt, x=(1.15)[4]);	
L	_		[1.376934896, -0.1889775145]	(1.19)
<pre>> ExtrPts := plot([(1.9), (1.10), (1.11)], style=point, symbol=circ] color=red, symbolsize=16);</pre>				
L	_		ExtrPts := PLOT()	(1.20)
ſ	>	<pre>> InflPts := plot([(1.16), (1.17), (1.18), (1.19)], style=point, symbol=box, color=green, symbolsize=16);</pre>		
L	_		InflPts := PLOT()	(1.21)
ſ	>	display([fFplot,Ex	trPts,InflPts]);	

Note that in terms of the derivative (f), the extreme points of F occur where f(x)=0 and the inflection points of F occur where f'(x) changes sign.

Additional Observation

---0

If the value of Maple's antiderivative at x=0 was not zero, we would have to subtract this value from Maple's antiderivative. Let's see this on a different example: > f := $x^8 \sin(x)$;

$$f := x^8 \sin(x)$$
 (1.1.1)

> int(f, x); $-x^8 \cos(x) + 8x^7 \sin(x) + 56x^6 \cos(x) - 336x^5 \sin(x) - 1680x^4 \cos(x) + 6720x^3 \sin(x)$ (1.1.2) $+20160 x^{2} \cos(x) - 40320 \cos(x) - 40320 x \sin(x)$

> F := (1.1.2) - eval((1.1.2), x=0);
F :=
$$-x^8 \cos(x) + 8x^7 \sin(x) + 56x^6 \cos(x) - 336x^5 \sin(x) - 1680x^4 \cos(x) + 6720x^3 \sin(x)$$
 (1.1.3)
+ 20160x² cos(x) - 40320 cos(x) - 40320x sin(x) + 40320

If you look closely at this you will see that it's just the Fundamental Theorem of Calculus: F(x) = int(f, f)x=0..x); int (f --) -

$$-x^{8}\cos(x) + 8x^{7}\sin(x) + 56x^{6}\cos(x) - 336x^{5}\sin(x) - 1680x^{4}\cos(x) + 6720x^{3}\sin(x)$$
(1.1.4)
+ 20160x^{2}\cos(x) - 40320\cos(x) - 40320x\sin(x) + 40320