\#48

[> with(plots):
[> f := $\left(x^{\wedge} 3-x\right) /\left(x^{\wedge} 6+1\right)$;

$$
\begin{equation*}
f:=\frac{x^{3}-x}{x^{6}+1} \tag{1.1}
\end{equation*}
$$

[An antiderivative of f is
$\overline{>}$ int(f, x);

$$
\begin{equation*}
\frac{1}{6} \ln \left(x^{4}-x^{2}+1\right)-\frac{1}{3} \ln \left(x^{2}+1\right) \tag{1.2}
\end{equation*}
$$

[If you are curious how this answer could possibly be correct, notice that the denominator can be factored:
[> factor(denom(f));

$$
\begin{equation*}
\left(x^{2}+1\right)\left(x^{4}-x^{2}+1\right) \tag{1.3}
\end{equation*}
$$

[Then, the partial fraction decomposition of the integrand is
[> convert(f, parfrac, x);

$$
\begin{equation*}
\frac{1}{3} \frac{x\left(2 x^{2}-1\right)}{x^{4}-x^{2}+1}-\frac{2}{3} \frac{x}{x^{2}+1} \tag{1.4}
\end{equation*}
$$

[Each term can now be integrated with a u-substitution with $u=x \wedge 4-x^{\wedge} 2+1$ for the first term and $u=x \wedge 2+1$ for the second term. All-in-all, not so bad.
[The problem asks us for the antiderivative with $F(0)=0$. The value of Maple's antiderivative, at $x=0$, is
> eval((1.2), $x=0$);

$$
\begin{equation*}
0 \tag{1.5}
\end{equation*}
$$

[so this function satisfies $\mathrm{F}(0)=0$:
> F := (1.2);

$$
\begin{equation*}
F:=\frac{1}{6} \ln \left(x^{4}-x^{2}+1\right)-\frac{1}{3} \ln \left(x^{2}+1\right) \tag{1.6}
\end{equation*}
$$

> fFplot := plot([f,F], $x=-4.4$, linestyle=[dash, solid], legend=["y=f (x)", "y=F(x)"], title="Plot for Section 7.6 \#48");
fFplot := PLOT (...)
> fFplot;

The extreme points of F occur when $\mathrm{F}^{\prime}=\mathrm{f}=0$. The numerator of f is $\mathrm{x}^{\wedge} 3$ - $\mathrm{x} \wedge 2$, which is zero when $\mathrm{x}=-1, \mathrm{x}=0$, or $\mathrm{x}=1$.
> pt := [x,F];

$$
\begin{equation*}
p t:=\left[x, \frac{1}{6} \ln \left(x^{4}-x^{2}+1\right)-\frac{1}{3} \ln \left(x^{2}+1\right)\right] \tag{1.8}
\end{equation*}
$$

> eval(pt, x=-1); evalf(\%);

$$
\begin{gather*}
{\left[-1,-\frac{1}{3} \ln (2)\right]} \\
{[-1 .,-0.2310490602]} \tag{1.9}
\end{gather*}
$$

> eval(pt, $x=0$);

$$
\begin{equation*}
[0,0] \tag{1.10}
\end{equation*}
$$

[> eval(pt, x=1); evalf(\%);

$$
\begin{gather*}
{\left[1,-\frac{1}{3} \ln (2)\right]} \\
{[1 .,-0.2310490602]} \tag{1.11}
\end{gather*}
$$

The local (and global) maximum of F occurs at the point $(0,0)$. There are two local extrema, which are also global minimums, at $(1,-\ln (2) / 3)$ and at $(-1,-\ln (2) / 3)$. The approximate value of $\ln (2) / 3$ is -0.231 .

The plot suggets that there will be 4 inflection points. To find the location of these points, we need to find where F" = $\mathrm{f}^{\prime}=0$.
"> df := diff(f, x);

$$
\begin{equation*}
d f:=\frac{3 x^{2}-1}{x^{6}+1}-\frac{6\left(x^{3}-x\right) x^{5}}{\left(x^{6}+1\right)^{2}} \tag{1.12}
\end{equation*}
$$

/> simplify((1.12));

$$
\begin{equation*}
-\frac{3 x^{8}-5 x^{6}-3 x^{2}+1}{\left(x^{6}+1\right)^{2}} \tag{1.13}
\end{equation*}
$$

[This suggests:

$$
\begin{align*}
& \text { > solve(df=0, } x \text {); } \\
& \sqrt{\operatorname{RootOf}\left(3 _Z^{4}-5 _Z^{3}-3 _Z+1 \text {, index }=1\right)} \text {, } \tag{1.14}\\
& -\sqrt{\operatorname{RootOf}\left(3 _Z^{4}-5 _Z^{3}-3 _Z+1, \text { index }=1\right)} \text {, } \\
& \sqrt{\operatorname{RootOf}\left(3 _Z^{4}-5 _Z^{3}-3 _Z+1 \text {, index }=2\right)} \text {, } \\
& -\sqrt{\operatorname{RootOf}\left(3 _Z-5 _Z^{3}-3 _Z+1, \text { index }=2\right)} \text {, } \\
& \sqrt{\operatorname{RootOf}\left(3 _Z^{4}-5 _Z^{3}-3 _Z+1 \text {, index }=3\right)} \text {, } \\
& -\sqrt{\operatorname{RootOf}\left(3 _Z^{4}-5 _Z^{3}-3 _Z+1 \text {, index }=3\right)} \text {, } \\
& \sqrt{\operatorname{RootOf}\left(3 _Z^{4}-5 _Z^{3}-3 _Z+1 \text {, index }=4\right)} \text {, } \\
& -\sqrt{\operatorname{RootOf}\left(3 _Z^{4}-5 _Z^{3}-3 _Z+1 \text {, index }=4\right)}
\end{align*}
$$

This is not useful. I can force Maple to give me a floating point answer if the problem includes floating point numbers. The easiest way to do this is to change 0 to 0.0 (or just 0 .)

```
\(>\) solve( df=0.0, \(x\) );
\(-0.5452863556,0.5452863556,-1.376934896,1.376934896,-0.5028148771-0.7184239178\) I,
    \(0.5028148771+0.7184239178\) I, \(-0.5028148771+0.7184239178\) I, 0.5028148771
    -0.7184239178 I
```

Note that the final four solutions are complex-valued; these can be ignored. That leaves the first four (realvalued) values of x. These are about where would expect them to be. The actual inflection points are:
eval(pt, $x=(1.15)[1]$);

$$
\begin{equation*}
[-0.5452863556,-0.1258322930] \tag{1.16}
\end{equation*}
$$

eval(pt, $x=(1.15)[2]$);
[0.5452863556, -0.1258322930]
eval(pt, $x=(1.15)[3]$);

$$
\begin{equation*}
[-1.376934896,-0.1889775145] \tag{1.18}
\end{equation*}
$$

eval(pt, $x=(1.15)[4]$);
[1.376934896, -0.1889775145]
> ExtrPts := plot([(1.9), (1.10), (1.11)], style=point, symbol=circle, color=red, symbolsize=16);
ExtrPts := PLOT (...)
> InflPts := plot([(1.16), (1.17), (1.18), (1.19)], style=point, symbol=box, color=green, symbolsize=16);
InflPts := PLOT (...)
> display([fFplot,ExtrPts,InflPts]);

[Note that in terms of the derivative (f), the extreme points of F occur where $f(x)=0$ and the inflection points of F occur where $f^{\prime}(x)$ changes sign.

Additional Observation

If the value of Maple's antiderivative at $\mathrm{x}=0$ was not zero, we would have to subtract this value from
Maple's antiderivative. Let's see this on a different example:
$\stackrel{>}{ } \mathrm{f}:=\mathrm{x}^{\wedge} 8^{*} \sin (x)$;

$$
\begin{equation*}
f:=x^{8} \sin (x) \tag{1.1.1}
\end{equation*}
$$

$$
\begin{align*}
& {\left[\begin{array}{l}
> \\
\text { int }(\mathbf{f}, \mathbf{x}) \text {; ; } \\
-x^{8} \cos (x)+8 x^{7} \sin (x)+56 x^{6} \cos (x)-336 x^{5} \sin (x)-1680 x^{4} \cos (x)+6720 x^{3} \sin (x) \\
\quad+20160 x^{2} \cos (x)-40320 \cos (x)-40320 x \sin (x)
\end{array}\right.} \\
& {\left[\begin{array}{rl}
> & \text { F }:=(\mathbf{1 . 1 . 2})-\mathbf{e v a l}(\mathbf{(1 . 1 . 2) , \quad \mathbf { x } = 0) ;} \\
F:=-x^{8} \cos (x)+8 x^{7} \sin (x)+56 x^{6} \cos (x)-336 x^{5} \sin (x)-1680 x^{4} \cos (x)+6720 x^{3} \sin (x) \\
\quad+20160 x^{2} \cos (x)-40320 \cos (x)-40320 x \sin (x)+40320
\end{array}\right.} \tag{1.1.2}
\end{align*}
$$

If you look closely at this you will see that it's just the Fundamental Theorem of Calculus: $F(x)=\operatorname{int}(f$, x=0..x);
$>\operatorname{int}(\mathrm{f}, \mathrm{x}=0 . \mathrm{x})$;
$-x^{8} \cos (x)+8 x^{7} \sin (x)+56 x^{6} \cos (x)-336 x^{5} \sin (x)-1680 x^{4} \cos (x)+6720 x^{3} \sin (x)$
$+20160 x^{2} \cos (x)-40320 \cos (x)-40320 x \sin (x)+40320$

