MATH 141 (Section 5 & 6) Prof. Meade

Exam 4 November 25, 2009 University of South Carolina Fall 2009

Name: ______ Section: 005 / 006 (circle one)

Instructions:

- 1. There are a total of 8 problems (including the Extra Credit problem) on 6 pages. Check that your copy of the exam has all of the problems.
- 2. Calculators may not be used for any portion of this exam.
- 3. You must show all of your work to receive credit for a correct answer.
- 4. Your answers must be written legibly in the space provided. You may use the back of a page for additional space; please indicate clearly when you do so.

Problem	Points	Score
1	27	
2	18	
3	10	
4	9	
5	10	
6	8	
7	9	
8	9	
Total	100	

Happy Thanksgiving! Beat Clemson!!

1. (27 points) Evaluate each definite integral.

(a)
$$\int_0^1 (\sqrt{t} - t^2) dt$$

(b)
$$\int_{2}^{4} (3-t)^{9} dt$$

(c)
$$\int_{-\pi/2}^{\pi/2} \cos(x) e^{\sin(x)} dx$$

 $2.\ (18 \ {\rm points})$ Evaluate each indefinite integral.

(a)
$$\int (2x - e^x) dx$$

(b)
$$\int y\sqrt{y+2} \, dy$$

(c)
$$\int \frac{x+1}{x^2+2x+5} dx$$

3. (10 points) Find the function f with $f'(t) = 2\cos(t) + \sec^2(t)$ for $-\pi/2 < t < \pi/2$ and $f(\pi/3) = 4\sqrt{3}$.

4. (9 points) If
$$\int_{1}^{5} f(x) dx = 12$$
, $\int_{4}^{5} f(x) dx = 4$ and $\int_{2}^{4} f(x) dx = -2$, find $\int_{1}^{2} f(x) dx$.

5. (10 points) Let $f(x) = \begin{cases} x+1 & \text{if } -3 \le x \le 0\\ \sqrt{1-x^2} & \text{if } 0 < x \le 1 \end{cases}$. Evaluate $\int_{-3}^{1} f(x) \, dx$ by interpreting the integral as a difference of areas.

6. (8 points)

(a) Write $\int_0^3 (2-x^2) dx$ as the limit of an appropriate summation.

(b) Evaluate the answer in (a). (Work that involves the Fundamental Theorem of Calculus earns no credit.)

8. (9 points) Suppose $g(x) = \int_{-1}^{x^3} \frac{u^3}{u^2 + 1} du$.

(a) Find
$$g'(x)$$
.

(b) Find g(-1).

(c) Explain why g(1) = 0.

HINT: No part of this problem requires any integration, just properties of definite integrals and the FTC.