MATH 141 (Section 5 & 6) Prof. Meade

Exam 2 October 9, 2013 University of South Carolina Fall 2013

Name: ______ Section: 005 / 006 (circle one)

Instructions:

- 1. There are a total of 6 problems on 4 pages. Check that your copy of the exam has all of the problems.
- 2. Calculators may not be used for any portion of this exam.
- 3. You must show all of your work to receive credit for a correct answer.
- 4. Your answers must be written legibly in the space provided. You may use the back of a page for additional space; please indicate clearly when you do so.

Problem	Points	Score
1	40	
2	16	
3	15	
4	12	
5	12	
6	5	
Total	100	

Good Luck!

1. (40 points) Differentiate each function. (Be sure to label your results.)

(a)
$$F(x) = 4x^3 - 10x^{2/5} - \pi - 3\ln(x)$$

(b)
$$y = 2\sqrt{x}\tan(x)$$

(c)
$$B(\theta) = \frac{3^{\theta}}{\sin(\theta)}$$

(d)
$$g(x) = \cos(a^3 + x^3 + e^{3x})$$

(e)
$$f(x) = \arccos(x) + \tan^{-1}(x^2)$$

- 2. (16 points) The equation of motion of a particle is $s = t^3 3t$, where s is in meters and t is in seconds (t > 0). Find
 - (a) the velocity as a function of t
 - (b) the acceleration as a function of t
 - (c) the acceleration after 2 s, and
 - (d) the acceleration when the velocity is 0.

3. (15 points) Find an equation of the normal line to the curve $x^2 + 4xy = 19 + y^2$ at the point (2,3). (Note that the equation implicitly defines y as a function of x: y = y(x).)

4. (12 points) If a snowball melts so that its surface area decreases at a rate of π cm²/min, find the rate at which the radius is changing when the radius is 10 cm.

5. (12 points) Find h' in terms of f' and g' when $h(x) = \frac{f(x)g(x)}{f(x) + g(x)}$. (Note: Your answer should be a fraction; be sure to simplify the numerator.)

6. (5 points) Write $|x| = \sqrt{x^2}$ and use the Chain Rule to show that $\frac{d}{dx}|x| = \frac{x}{|x|}$ for all $x \neq 0$.