MATH 141 (Sections 5 & 6) Prof. Meade

Exam 1 September 20, 2013 University of South Carolina Fall 2013

Name: ______ Section: 005 / 006 (circle one)

Instructions:

- 1. There are a total of 9 problems on 8 pages (front and back). Check that your copy of the exam has all of the problems.
- 2. Calculators may not be used for any portion of this exam.
- 3. You must show all of your work to receive credit for a correct answer.
- 4. Your answers must be written legibly in the space provided. You may use the back of a page for additional space; please indicate clearly when you do so.

Problem	Points	Score
1	16	
2	18	
3	18	
4	15	
5	5	
6	6	
7	12	
8	5	
9	5	
Total	100	

Good Luck!

This page contains no test material.

1. (16 points) The graph of f is given. Draw the graphs of the following functions. Suppose the graph of f is given.

a) ;	y =	f(x)	+ :	2)						
					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
					2-					
					1-					
5	- 5 -	-4	-3	-2	-1 0	1	2	2 (3 4	4
					-1-					
					-2-					
					-3-					
				_	-4-					
					-5					

(c)
$$y = 2 - f(x)$$

(d) $y = \frac{1}{2}f(x) - 1$

2. (18 points)

- (a) Find the exact value of $e^{3\ln(2)}$.
- (b) Find the exact value of $\ln\left(\frac{1}{e^2}\right)$.
- (c) Solve the equation $e^{5-3x} 10 = 0$.

(d) Solve the equation $\ln(x) - \ln(x-1) = 1$.

- (e) Find the exact value of $\arcsin\left(\frac{\sqrt{3}}{2}\right)$.
- (f) Simplify the expression $\cos(\arctan(x))$.

3. (18 points) For the function g whose graph is shown, state the value of each quantity (if it exists). If it does not exist, explain why.

- (a) $\lim_{t \to 0^-} g(t)$
- (b) $\lim_{t \to 0^+} g(t)$
- (c) g(0)
- (d) $\lim_{t \to 2^-} g(t)$
- (e) $\lim_{t\to 2^+} g(t)$
- (f) g(2)
- (g) $\lim_{t \to 0} g(t)$
- (h) $\lim_{t\to 2} g(t)$

(i) $\lim_{t \to 4} g(t)$

4. (15 points) Evaluate each limit, if it exists. If a limit does not exist, explain why it does not exist.

(a)
$$\lim_{x \to 2} \frac{x^2 + x - 6}{x - 2}$$

(b)
$$\lim_{x \to -2} \frac{x^2 - x + 6}{x - 2}$$

(c)
$$\lim_{t \to 0} \frac{1}{t} - \frac{1}{t^2 + t}$$

(d)
$$\lim_{u \to \infty} \frac{4u^4 + 5}{(u-2)^2(2u^2 - 1)}$$

(e)
$$\lim_{s \to \infty} \frac{s+2}{\sqrt{9s^3 + 3s^2 + 4s + 1}}$$

5. (5 points) Use the given graph of f(x) = 1/x to find a number δ such that if $|x - 2| < \delta$ then $\left|\frac{1}{x} - 0.5\right| < 0.2$.

6. (6 points) Let $f(x) = \begin{cases} 1+x^2 & \text{if } x \leq 0\\ 2-x & \text{if } 0 < x < 2\\ (2-x)^2 & \text{if } x \geq 2 \end{cases}$.

Find the numbers at which f is discontinuous.

7. (12 points) For the function f whose graph is shown, state the value of each quantity (if it exists). If it does not exist, explain why.

- (a) $\lim_{x \to \infty} f(x)$
- (b) $\lim_{x \to -\infty} f(x)$
- (c) $\lim_{x \to 3} f(x)$
- (d) $\lim_{x \to 0} f(x)$
- (e) The equation of each horizontal asymptote.
- (f) The equation of each vertical asymptote.

8. (5 points) Find the equation of the tangent line to the graph of a function y = f(x) at x = 5 if f(5) = -3 and f'(5) = 4.

9. (5 points) Use the definition of the derivative of a function to show that the derivative of $g(x) = \sqrt{1+2x}$ is $g'(x) = \frac{1}{\sqrt{1+2x}}$.