MATH 141 (Section 3 & 4) Prof. Meade

Exam 4 November 23, 2009 University of South Carolina Fall 2009

Name: ______ Section: 003 / 004 (circle one)

Instructions:

- 1. There are a total of 8 problems (including the Extra Credit problem) on 7 pages. Check that your copy of the exam has all of the problems.
- 2. Calculators may not be used for any portion of this exam.
- 3. You must show all of your work to receive credit for a correct answer.
- 4. Your answers must be written legibly in the space provided. You may use the back of a page for additional space; please indicate clearly when you do so.

Problem	Points	Score
1	14	
2	20	
3	9	
4	8	
5	7	
6	12	
7	15	
8	15	
Total	100	

Happy Thanksgiving!

1. (14 points) Sketch the graph of $f(x) = \frac{x-5}{(x-4)^2}$ on the interval $0 \le x \le 10$. Be sure to clearly identify the intervals of increase and decrease, the intervals of concavity, all local maximum and local minimum points, all inflection points, and all asymptotes.

NOTE:
$$f'(x) = \frac{6-x}{(x-4)^3}$$
 and $f''(x) = \frac{2(x-7)}{(x-4)^4}$
HINT: $2/9 \approx 0.22$

2. (20 points) Evaluate each of the following limits. Be sure to indicate each time l'Hôpital's Rule is applied.

(a)
$$\lim_{x \to 0} \frac{e^{4x} - 1 - 4x}{x^2}$$

(b)
$$\lim_{t \to 0} \frac{5^t + 3^{-t}}{t^2}$$

(c)
$$\lim_{x \to \infty} x^2 e^{-x^2}$$

(d)
$$\lim_{x \to 0^+} (\cos(x))^{1/x^2}$$

(e) [Extra Credit (5pts)]
$$\lim_{n\to\infty} \sum_{i=1}^{n} \frac{2}{n} \left(5 - \frac{2i}{n}\right)^{3}$$

HINT: Recognize this limit as a definite integral.

3. (9 points) Find the function f with $f'(t) = 2\cos(t) + \sec^2(t)$ for $-\pi/2 < t < \pi/2$ and $f(\pi/3) = 4$.

4. (8 points) If
$$\int_{1}^{5} f(x) dx = 12$$
, $\int_{4}^{5} f(x) dx = 4$ and $\int_{2}^{4} f(x) dx = -2$, find $\int_{1}^{2} f(x) dx$.

5. (7 points) Suppose
$$g(x) = \int_{-1}^{x} \frac{u^2 - 1}{u^2 + 1} \, du$$
. Find $g'(3)$.

- 6. (12 points) Consider the region under the graph of $f(x) = 1 + x^2$ from x = -1 to x = 2.
 - (a) Sketch the region.

(b) Estimate the area of this region using three rectangles and right-hand endpoints. Is this estimate smaller or larger than the exact area?
HINT: Draw the three rectangles on the sketch in (a).

(c) Find the exact area of this region.

7. (15 points) Evaluate each indefinite integral.

(a)
$$\int (2x - e^x) dx$$

(b)
$$\int (y-1)(2y-1) \, dy$$

(c)
$$\int \frac{x}{x^2+1} dx$$

8. (15 points) Evaluate each definite integral.

(a)
$$\int_0^1 (\sqrt{t} - t^2) dt$$

(b)
$$\int_0^1 \frac{4}{t^2 + 1} dt$$

(c)
$$\int_{-\pi/2}^{\pi/2} \cos(x) e^{\sin(x)} dx$$