MATH 141 (Section 1 & 2) Prof. Meade University of South Carolina Fall 2004

Exam 1 September 15, 2004 Name: Key
SS #:

Instructions:

- 1. There are a total of 7 problems on 6 pages. Check that your copy of the exam has all of the problems.
- 2. Calculators may not be used for any portion of this exam.
- 3. You must show all of your work to receive credit for a correct answer.
- 4. Your answers must be written legibly in the space provided. You may use the back of a page for additional space; please indicate clearly when you do so.

Problem	Points	Score
1	12	
2	12	V-10-10-10-10-10-10-10-10-10-10-10-10-10-
3	16	
4	12	
5	12	
6	21	, x32
7	15	1.0,10
Total	100	ada by Be

- 1. (12 points) [2 points for each blank] Short Answer. Fill in the blank with the word, equation, or short phrase that best completes each statement.
 - (a) The equation 2x + 3y = 5 represents a line with slope $\frac{-2/3}{3}$. 2x + 3y = 5(b) $\lim_{x \to a} f(x) = L$ if and only if $\lim_{x \to a^{-}} f(x) = \frac{L}{3}$ and $\lim_{x \to a^{+}} f(x) = \frac{L}{3}$. 4x + 3y = 53y = 5 - 2x
 - (c) The limit property for quotients states that

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)} except \text{ when } \underbrace{\lim_{x \to a} g(x) = 0}.$$

(d) The line y = 3 is a horizontal asymptote of the graph of y = f(x), then either

2. (12 points) [4 points each] Find the natural domain of each of the following functions.

(a)
$$f(x) = \frac{x-2}{x^2-4}$$
 $\chi^2 - 4 = 0$ when $\chi = \pm 2$

(b)
$$g(\theta) = \sin(\theta)$$
 design is all real numbers

(c)
$$h(t) = \frac{\sqrt{x-2}}{\sqrt[3]{x}-2}$$
 $\sqrt{x-2}$ has depoin $x \ge 2$
 $\sqrt{x-2}$ has depoin $(-\infty, +\infty)$

but you can't divide by zero and

 $\sqrt[3]{x}-2=0$ when $x^{1/3}=2$
 $x=8$.

So, the depoin of h is $x \ge 2$ except $x=8$

or, $[2,8)\cup(8,\infty)$.

- 3. (16 points) Let f(x) = 2|x| 2x + 3.
 - (a) [10 points] Express f(x) in piecewise form without using absolute values.

$$f(x) = 2|x| - 2x + 3$$

$$= 2 \begin{cases} x & \text{if } x > 0 \\ -x & \text{if } x < 0 \end{cases} - 2x + 3$$

$$= \begin{cases} 2x - 2x + 3 & \text{if } x > 0 \\ -2x - 2x + 3 & \text{if } x < 0 \end{cases}$$

$$= \begin{cases} 3 & \text{if } x > 0 \\ 4x + 3 & \text{if } x < 0 \end{cases}$$

(b) [6 points] Graph y = f(x) on the axes provided.

- 4. (12 points) [6 points each] Sketch the graph of the following functions on the axes provided.
 - (a) $f(x) = \frac{1}{x-2}$

the graph of $y = \frac{1}{x}$ shifted 2 to the right.

(b) $f(x) = 2 + \sqrt{x+4}$

10

9-

the graph of $y = \sqrt{x}$ shifted 4 both left and up 2.

- 5. (12 points) [6 points each]
 - (a) Consider the parametric curve with $x = \sqrt{t} 2$ and y = 3t + 4. Express this curve in the form of either y = f(x) or x = g(y).

(b) Find parametric equations for the portion of the circle $x^2 + y^2 = 1$ that lies in the first quadrant, oriented counterclockwise.

(cost, sint)

Sin t + cos t=1 - unit and (t is the argle of the x-axis)

osts 172. __ 1st quodrant if me let |x=cost, y=sint for 0 sts 172]

6. (21 points) [3 points each] For the function F graphed below, find each of the following limits. If a limit does not exist, explain why the limit does not exist (briefly).

(a)
$$\lim_{x \to -2^+} F(x) = 2$$

(b)
$$\lim_{x \to -2^{-}} F(x) = -\infty$$

(b)
$$\lim_{x\to -2^-} F(x) = -\infty$$

(c) $\lim_{x\to -2} F(x) = \text{d.n.e.}$ because the one-sided limits are not equal.

(d)
$$\lim_{x \to 2^{-}} F(x) = 2$$

(e)
$$\lim_{x \to 2^+} F(x) = 2$$

$$(f) \lim_{x \to 2} F(x) = 2$$

(g)
$$\lim_{x \to -\infty} F(x) = \bigcirc$$

7. (15 points) [3 points each] Find the following limits.

(a)
$$\lim_{y \to 6^+} \frac{y+6}{y^2+36} = \frac{646}{36436} = \frac{12}{72} = \frac{1}{6}$$

(b)
$$\lim_{x \to -3} \frac{x^2 - 9}{x^2 + x - 6} = \lim_{x \to -3} \frac{(x-3)(x+3)}{(x-2)(x+3)}$$

$$= \lim_{x \to -3} \frac{x - 3}{x - 2}$$

$$= \frac{-6}{-5} = \frac{6}{5} = 1.2$$

(c)
$$\lim_{x \to \infty} \frac{x^2 - 9}{x^2 + x - 6} = \lim_{x \to \infty} \frac{\chi^2 (1 - 9/x^2)}{\chi^2 (1 + \frac{1}{\chi} - \frac{6}{\chi^2})}$$

$$= \lim_{x \to \infty} \frac{1 - 9/x^2}{1 + \frac{1}{\chi} - \frac{6}{\chi^2}} = \frac{1}{1} = 1.$$

(d)
$$\lim_{y \to 2^{-}} \frac{(y+1)(y-2)}{y-1} = \frac{3(0)}{1} = 0$$

(e)
$$\lim_{y \to 1^{-}} \frac{(y+1)(y-2)}{y-1} = \lim_{y \to 1^{-}} \left(\frac{(y+1)(y-2)}{y-1} \right) \cdot \lim_{y \to 1^{-}} \frac{1}{y-1}$$

$$= 2(-1) \cdot \lim_{y \to 1^{-}} \frac{1}{y-1}$$

$$= -2(-\infty)$$

$$= +\infty$$