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Abstract

The Shrinking Circle Problem is an example of a simple-to-state geometry problem that is
visually appealing yet quite challenging to solve. A combination of geometry and analysis is
used to completely solve the general problem in the plane, and its extension to three dimen-
sions: the Shrinking Sphere Problem. We show why traditional numerical attempts to an-
swer even the simplest problem is futile. The original problem was generalized based on vi-
sual evidence produced by dynamic geometry software. Only with this insight was it possible
to utilize symbolic computation tools to put together the complete proofs. All supplemen-
tal materials that accompany this paper can be found online at either of the folowing URLs:

http: // www. math. sc. edu/ ~meade/ eJMT-Shrink/

http: // www. radford. edu/ ~scorwin/ eJMT/ Content/ Papers/ v1n1p4 .

1 Introduction

The following problem appears, with slightly different notation, as an exercise in [Stewart, 2007,
p. 45, Exercise 56].

Problem 1 (The Original Shrinking Circle Problem) Figure 1 shows a fixed circle C
with equation (x − 1)2 + y2 = 1 and a shrinking circle Cr with radius r and center the ori-
gin. P is the point (0, r), Q is the upper point of intersection of the two circles, and R is the
point of intersection of the line PQ and the x-axis. What happens to R as Cr shrinks, that is,
as r → 0+?
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Figure 1: The Original Shrinking Circle Problem. What happens to R as r → 0+? (Plot
produced with [GSketchpad], [1].)

It is clear that the slope of the segment PR is negative and increasing towards zero as the
point P approaches the origin. One reasonable conjecture is that the point R diverges towards
infinity. In fact, in Section 2, it will be shown that the limit does exist, and is 4. The discussion
in Section 2 is based on an analytic proof of this fact. It also includes the first indication of
some of the subtle analytic features that will be so important in the remainder of the paper.

The Generalized Shrinking Circle Problem is obtained by replacing the fixed circle C with
a fixed general curve (also called C). A geometric proof is given in [Kreczner, 1995] and an
analytic proof has recently been given in [Yang, 2006]. Regardless of the techniques used in the
proof, the key idea is that the behavior of this limit is completely determined by the osculating
circle of the fixed curve at the origin.

The discussions in Sections 2 and 3 lead in a natural way to corresponding problems in three
dimensions. The Original Shrinking Sphere Problem is obtained in Section 4 by replacing C
with S, the fixed unit sphere centered at (1, 0, 0), and replacing Cr with Sr, a shrinking sphere
with radius r and center at the origin.

The Generalized Shrinking Sphere Problem is obtained by replacing the fixed sphere S by
any fixed surface in R3. A complete characterization of the limit in these cases is given in
Section 5. Not surprisingly, this result depends critically on an osculating circle of the fixed
surface at the origin.

In both two and three dimensions, the results are confirmed for several special geometries.
Also, each general result is restated in a form that does not make any reference to a global
coordinate system.

Section 6 revisits the key analytic results involved in the proofs of Theorem 2 and The-
orem 5. This discussion includes specific examples that illustrate the difficulties involved in
trying to gain insight into these problems using only numerical or graphical evidence. Refer-
ences to downloadable electronic materials related to the analysis of these problems are provided
throughout the paper. All of these materials are collected on a single webpage at the URL:
http://www.math.sc.edu/~meade/eJMT-Shrink/.

2 The Original Shrinking Circle Problem

The original problem as it appears in [Stewart, 2007] can be solved by brute force. The equation
of Cr is x2 + y2 = r2 and the point Q where C and Cr intersect in the first quadrant is found

to be
(

r2

2
, r

2

√
4− r2

)
. The x-coordinate of point R where the line PQ intersects the x-axis is

http://www.math.sc.edu/~meade/eJMT-Shrink/
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r d=12 d=10 d=8 d=6 d=4
1.0 3.732 3.732 3.732 3.732 3.731
0.5 3.936 3.936 3.936 3.936 3.906
0.1 3.997 3.997 3.997 4.000 3.333
0.05 3.999 3.999 3.999 3.968 2.500
0.01 3.999 4.000 4.000 3.333 NaN
0.005 3.999 4.000 3.968 2.500 NaN
0.001 4.000 4.000 3.333 NaN NaN
0.0005 4.000 3.968 2.500 NaN NaN
0.0001 4.000 3.333 NaN NaN NaN
0.00005 3.968 2.500 NaN NaN NaN
0.00001 3.333 NaN NaN NaN NaN

Table 1: Numerical approximation to xR for moderately small values of r and different numbers
of significant digits. [All calculations performed with [Maple]. [2].]

xR = −r
m

where m =
r− r

2

√
4−r2

0− r2

2

. Thus, xR = −r
m

= r2

2−
√

4−r2 .

As the circle of Cr shrinks to the point at the origin, the expression for xR is indeterminate
of form 0

0
.

The indeterminate form of this limit interferes wit- attempts to evaluate it numerically.
Table 1 shows numerical values of xR for moderately small values of r when the floating point
arithmetic is performed using d significant digits.1 While the precise value of r where the
computed solutions begin to deteriorate decreases as the number of digits used increases, it is
clear that this behavior will be observed for any fixed finite number of significant digits.2

The values in Table 1 do suggest that the limit, should it exist, is most likely to have a value
of 4. That this is the correct value for this limit is decided once and for all with one application
of l’Hôpital’s Rule:

lim
r→0+

xR = lim
r→0+

r2

2−
√

4− r2
= lim

r→0+

2r
r√

4−r2

= lim
r→0+

2
√

4− r2 = 4.

where l’Hôpital’s Rule is used one time when the limit has indeterminate form 0
0
.

The first step to solving the Original Shrinking Circle Problem is to have a visual under-
standing of the construction of the point R. While this visualization can be accomplished in
a CAS such as Maple [Maple] or Mathematica [Mathematica], the construction is much sim-
pler and the resulting animation is better when a dynamic geometry tool such as Cabri 3D
[Cabri3D], Geometer’s Sketchpad [GSketchpad], and Geometry Expressions [GExpressions] is
used.

1Maple’s default is to use 10 significant digits in all floating-point calculations; many TI calculators use 12
significant digits.

2This is also a good illustration that using d significant digits in all calculations does not guarantee that the
computed value is accurate to d digits.
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3 The Generalized Shrinking Circle Problem

Consider the following extension of the Original Shrinking Circle Problem:

Problem 2 (The Generalized Shrinking Circle Problem) Let C be a fixed curve and let
Cr be the circle with center at the origin and radius r. P is the point (0, r), Q is the upper
point of intersection of C and Cr, and R is the point of intersection of the line PQ and the
x-axis. What happens to R as Cr shrinks, that is, as r → 0+?

A first observation is that if C does not include the point at the origin, then the points R
are not defined for all values of r in a one-sided neighborhood of 0.

An explicit general formula for the coordinates of R is not going to be readily available,
except in special cases. This means that neither of the approaches used to analyze the Original
Shrinking Circle Problem (calculus and numerical) will be useful for the general case.

An important step towards analyzing the Generalized Shrinking Circle Problem is to con-
sider the case when the fixed curve is any circle that passes through the origin.

Lemma 1 Let C be the circle with center (a, b) that includes the origin: (x− a)2 + (y − b)2 =
a2 + b2. Let Cr, P , Q, and R be defined as in the Generalized Shrinking Circle Problem. Then

lim
r→0+

R =

{
(4a, 0) if b = 0
(0, 0) otherwise

Proof. 3

The full step-by-step derivation of this result has been done in a Maple worksheet [3]. The
highlights of that development are given here:

For these circles it is still possible to obtain explicit formula for the points Q and R:

Q =

(
r

2

ar − b sgn(a)
√

4(a2 + b2)− r2

a2 + b2
,
r

2

br + |a|
√

4(a2 + b2)− r2

a2 + b2

)

R =

 r
(
ra− b sgn(a)

√
4(a2 + b2)− r2

)
2(a2 + b2)− br − |a|

√
4(a2 + b2)− r2

, 0


where sgn is the “sign” function (sgn(x) = 1 if x > 0, sgn(0) = 0, and sgn(x) = −1 if x < 0).

For b = 0, the expression for the x-component of R is xR = ar2

2a2−|a|
√

4z2−r2 . A straightforward

calculation shows that xR → 4a as r → 0+. When b 6= 0, R does not have an indeterminate
form and R → 0 as r → 0+.

Let C denote the osculating circle of C at the origin. This means C intersects C at the
origin, is tangent to C at the origin, and has the same curvature as C at the origin. Another
way to express this is to say that C and C have 3-point contact at the origin.

Suppose C has curvature κ at the origin. The osculating circle C will be the circle with
radius ρ = 1

κ
whose center (a, b) is on the normal line to C at the origin. Thus, a2 + b2 = ρ2.

3A purely geometric proof of Lemma 1 has been suggested to the authors by Tom Banchoff. This proof will
be the subject of a separate paper, yet to be written.
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Figure 2: Construction for the proof of Theorem 2. (Plot produced with [GSketchpad], [4].)

Theorem 2 Let C be a curve in the plane that includes the origin and is twice continuously
differentiable at the origin. Define Cr, P , Q, and R as in the Generalized Shrinking Circle
Problem. If the curvature at the origin, κ, is positive, the osculating circle of C at the origin
has radius ρ = 1

κ
and center (a, b) where a2 + b2 = ρ2. Then,

lim
r→0+

R =

{
(4ρ, 0) if b = 0
(0, 0) otherwise.

Proof. This proof is based on the one found in [Kreczner, 1995].
The osculating circle of C at the origin, C, has radius ρ = 1

κ
and center (a, b) where

a2 + b2 = ρ2.
Case 1: Assume b = 0 and a = ρ. This means that, near the origin, the graph of C is

concave down and in the first quadrant. Let Cε denote the circle with radius ρ + ε
4

and center
(ρ + ε

4
, 0). Note that C0 = C, the osculating circle of C at the origin. Define Qε to be the

intersection of Cr and Cε in the first quadrant and Rε to be the intersection of the line through
P and Qε with the (positive) x-axis. Even though C0 = C, Q0 and R0 do not necessarily coincide
with Q and R, respectively.

Let ε > 0 be given. For r > 0 but sufficiently close to 0, the points R0, R, and Rε appear in
order from left to right on the positive x-axis (see Figure 2). By Lemma 1, R0 → (4ρ, 0) and
Rε → (4ρ + ε, 0) as r → 0+, for all ε > 0.

Now, let ε → 0+, and conclude that limr→0+ R = (4ρ, 0).
Case 2: When b = 0 and a = −ρ, the graph of C is concave down and in the second

quadrant. Reflection across the y-axis transforms the problem into Case 1.
Case 3: A similar approach can be used when b 6= 0. The difference here is that R0 and

Rε both approach (0, 0) as r → 0+. This case also includes the situations where κ = 0.

3.1 Other Geometries

Theorem 2 can be verified for other curves besides a circle. Table 2 shows the results for
three general classes of curves. The ellipse is a natural generaliation from the circle. The lines
through the origin have κ = 0 and hence an osculating circle does not exist. The parabola is
the example considered in [Kreczner, 1995], for which Mathematica was reportedly unable to
correctly evaluate. The details for each case are provided in supplemental Maple worksheets.
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Curve C κ limr→0+ R Reference

ellipse
(

x−a
a

)2
+ y2 = 1 a 4

a
[5]

line y = ax 0 0 [6]

parabola y2 = ax 2
a

2a [7]

Table 2: Summary of results for non-circular fixed curves. Each worksheet contains the full
derivation for the specfic geometry, including an animation of the limiting process.

3.2 Coordinate-Free Version

The solution to the Generalized Shrinking Circle Problem can be restated without any mention
to a global coordinate system. The analysis used in the proof of Theorem 2 does depend on a
particular choice for the coordinate system. This is not the only way to give the proof. Putting
aside some of the complicated symbolic representations for Q and R, the essential ideas are all
geometric. To emphasize the geometric nature of the problem, and its solution, we restate the
result without any use of coordinates.

Theorem 3 Let O be a point on a curve C in the plane where the osculating circle to C at O
exists. Let T and N be the unit tangent and normal vectors to C at O, respectively. Let κ be
the curvature of C at O. (N is oriented so that O + 1

κ
N is the center of the osculating circle

to C at O.) For any r > 0, define

• Cr to be the circle with radius r centered at O,

• P = O + rT, the point at the top of Cr,

• Q to be the intersection of C and Cr, and

• R to be the point on the line through P and Q such that OR is parallel with N

Then, as r decreases to 0, R converges to the point R0 = O + 4
κ
N.

This formulation of the solution to the Generalized Shrinking Circle Problem will be used
in the analysis of the corresponding three-dimensional problem, the Shrinking Sphere Problem.

4 The Simplest Shrinking Sphere Problem

The success with the two-dimensional problems piques interest in the corresponding three-
dimensional problems.
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Figure 3: The coordinate-free geometry of Theorem 3. (Plot produced with [GSketchpad], [8].)

Problem 3 (The Simplest Shrinking Sphere Problem) Let S be the unit sphere centered
at (0, 1, 0) and let Sr denote the sphere centered at the origin with radius r. Let P be the point at
the top of Sr, (0, 0, r), let Q be the intersection of spheres S and Sr, and let R be the projection
of Q onto the x− y plane. What is limr→0+ R?

The intersection, Q, between Sr and S is a circle. In fact, it is the circle perpendicular
to the y-axis with radius r

2

√
4− r2 and center (0, r2

2
, 0). The projection of the point (0, 0, r)

through the highest point on Q to the z = 0 plane corresponds to the Original Shrinking Circle
Problem discussed in Section 2; this point must converge to (4, 0, 0) as r → 0+.

The projection of P through each point of Q onto the z = 0 plane forms a new curve R.
In this case the points on R satisfy x2 + (y − 2)2 = 4 − r2, the circle in the z = 0 plane with
center (0, 2, 0) with radius

√
4− r2. As Sr shrinks to the single point at the origin, these curves

converge to the circle x2 + (y − 2)2 = 4.
The analysis of the Simplest Shrinking Sphere Problem is more subtle than it first appears.

To illustrate, for each point (x, y, z) define the angle θ = arctan x
z
∈ (−π, π] with the signs of x

and z used to determine the appropriate quadrant for the angle. Note that θ is the angle made
with the positive z-axis measured in the plane parallel to the y = 0 plane. Let θ ∈ (−π, π] be
given. Consider the cross-section of the construction with S and Sr obtained by slicing with
the plane that makes an angle θ with the positive z-axis. Note that the y-axis is contained in
this cross-section, hence the centers of both S and Sr are included. The slice of Sr is a circle
with radius r centered at the origin. The slice of S is a fixed circle with the same center and
radius as S. Their intersection is a point on Q and its projection onto the z = 0 plane, from
P = (0, 0, r), is a point on R; denote these last two points as Qθ and Rθ, respectively. When
θ = 0 (and θ = π) the point P is also in this plane. This is precisely the setup for the Shrinking
Circle Theorem; in this case the point Rθ approaches the point ( 4

κ
, 0) as r → 0+. For all other

values of θ the point P is not in the plane. This is similar to Lemma 1 when b 6= 0. The general
observation from this is that if the points Qθ and Rθ do not lie in the plane that includes the
centers of S and Sr and the point P , then these points approach the origin as Sr shrinks to the
point at the origin.
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Figure 4: The Simplest Shrinking Sphere Problem. (Plot created with [Maple], [9].)

This observation will be confirmed in the next section during the proof of the solution to
the Generalized Shrinking Sphere Problem.

5 The Generalized Shrinking Sphere Problem

We are now prepared to extend the results of the Simplest Shrinking Sphere Problem to surfaces
S that are not spheres.

Problem 4 (The Generalized Shrinking Sphere Problem) Let S be a fixed surface and
let Sr be the sphere with center at the origin and radius r. P is the point (0, 0, r), Q is the
curve of intersection between S and Sr, and R is the projection from P through Q onto the
z = 0 plane. Describe limr→0+ R.

The general ideas used in the Generalized Shrinking Circle Problem can be extended to
three dimensions. This suggests approximating the surface S with an appropriate sphere.

Lemma 4 Let S be the sphere centered at (0, a, b) that includes the origin: x2 +(y−a)2 +(z−
b)2 = a2 + b2. Let Sr, P , Q, and R be defined as in the Generalized Shrinking Sphere Problem.
Then,

lim
r→0+

R =

{
x2 + (y − 2a)2 = 4a2 if a 6= 0 and b = 0
(0, 0) otherwise

Before proving this result, take a minute to notice how Lemma 4 is a natural extension of
Lemma 1. In both cases the interesting cases are when (i) the radial vector from the center of
the fixed object to the origin and the vector from the origin to the point P are perpendicular
and (ii) the point P and the centers of Sr and S are coplanar. In these cases, limr→0+ R is the
set of points x that satisfies ‖x− a‖ = 2‖a‖ where ‖ · ‖ is the appropriate Euclidean norm.
Proof. 4

4Additional justification of the steps in this proof are provided in a supplemental Maple worksheet [9].



The Electronic Journal of Mathematics and Technology, Volume 1, Issue 1, ISSN 1933-2823

The intersection, Q, of S and Sr is a circle whose center lies along the line through the
origin, O, and the center of S. As r → 0+, the center of Q approaches the origin and the radius
of Q approaches 0. The curve R is the projection through P of Q onto the z = 0 plane. In
general, this curve also converges to the single point at the origin.

There is one exception: when the vector from O to the center of S is perpendicular to OP ,
i.e., b = 0. In this case it is once again possible to obtain explicit formula for the curves Q and
R.

Although the parametric forms will not be suitable when it comes time to evaluate the limit
as r → 0+, these representations can be useful in identifying general properties of R.

Let θ = arctan x
z
∈ (−π, π] denote the angle, measured parallel to the y = 0 plane, that a

point (x, y, z) makes with the positive z-axis (as described in Section 4). It does not take much
effort to see that Q is the circle in the y = r2

2
plane with center (0, r2

2
, 0) and radius r

2

√
4a2 − r2.

A parametric representation of Q is

Q : x = r
2

√
4a2 − r2 sin θ, y = r2

2
, z = r

2

√
4a2 − r2 cos θ, for −π < θ ≤ π

Working with this parametric representation we find a parametric representation for R:

R : x = r
√

4a2−r2 sin θ
2a−

√
4a2−r2 cos θ

, y = r2

2a−
√

4a2−r2 cos θ
, z = 0, for −π < θ ≤ π

The visual evidence suggests that R is also a circle. With this ansatz it is straightforward to
show that R is the circle in the z = 0 plane with center (0, 2a, 0) and radius

√
4a2 − r2.

It is now clear that when r → 0+, R converges to the circle in the z = 0 plane with center
(0, 2a, 0) and radius 2|a|: x2 + (y − 2a)2 = 4a2.

We are now ready to state and prove the general result for non-spherical fixed surfaces.

Theorem 5 Let S be a surface that includes the origin and is twice continuously differentiable
at the origin. Define Sr, P , Q, and R as in the Generalized Shrinking Sphere Problem. Let the
restriction of S to the x = 0 plane be denoted by S|x=0, let the osculating circle to S|x=0 at the
origin have radius ρ and center (0, a, b). Then, with a2 + b2 = ρ2,

lim
r→0+

R =

{
x2 + (y − 2ρ)2 = 4ρ2 if b = 0
(0, 0) otherwise.

Proof. The proof is an adaptation to three dimensions of the proof of Theorem 2. We focus
only on the case when b = 0 and a = ρ 6= 0. Let Sε denote the sphere centered at (0, ρ + ε

2
, 0)

with radius ρ + ε
2
. Note that S|x=0 is a great circle on S0. Define Qε to be the intersection of

Sr and Sε and define Rε to be the projection from P = (0, 0, r) of Qε onto the z = 0 plane.
Let ε > 0 be given. For r > 0 but sufficiently close to 0, R is contained within the annulus

bounded by the curves R0 and Rε in the z = 0 plane. In the limit as r decreases to 0, R0

converges to the circle with center (0, 2ρ, 0) and radius 2ρ and Rε converges to the circle with
center (0, 2ρ + ε, 0) and radius 2ρ + ε. And, limr→0+ R must be in the annulus between these
two circles. Since this is true for all ε > 0, it must also be true in the limit. Thus, limr→0+ R
is the circle centered at (0, 2ρ, 0) with radius 2ρ.
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Surface S κ limr→0+ R Reference

ellipsoid x2

a2 +
(

y−b
b

)2
+ z2

c2
= 1 b

c2
x2 +

(
y − 2c2

b

)
=
(

2c2

b

)2

[10]

cone x2 + (y − a)2 = (z − b)2 0 (0, 0, 0) [11]

paraboloid x2

a2 + z2

c2
= y

b
b

2c2
x2 +

(
y − c2

b

)2

=
(

c2

b

)2

[12]

Table 3: Application of Theorem 5 to non-spherical fixed surfaces. The curvature, κ is the
curvature of S|x=0.

5.1 Other Geometries

Theorem 5 can be verified for other curves besides a circle. Table 3 shows the results for three
general classes of surfaces. The ellipsoid is a natural generalization from the sphere. The cones
that are studied have been selected because their restriction to the x = 0 plane have zero
curvature. The paraboloid extends the special case of the parabola to the three dimensional
problem. These cases are complicated by the fact that it is not practical to obtain explicit
non-parametric representations for the curves Q and R, yet the limits do converge — to a circle
or to the point at the origin.

5.2 Coordinate-Free Version

Theorem 6 Let O be a point on a surface S in R3 with a well-defined normal vector, N, at
O. Let C be a curve on S such that, at O, the unit tangent vector to C on S is T and the
principal normal vector for the curve C coincides with the normal vector to S at O, that is,
N =

∣∣dT
ds

∣∣ (where s is arclength). For any r > 0, define:

• Sr to be the sphere with radius r centered at O,

• P = O + rT, the point at the top of Sr,

• Q to be the intersection (curve) of S and Sr, and

• R to be the curve that is the projection from P through Q onto the plane containing O
that is normal to T.

Then, as r → 0+, R converges to the circle with radius 2
κ
, centered at O + 2

κ
N, and lies in the

plane with normal vector T.
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6 Discussion of Numerical Limits and Visualization

The geometric descriptions of the Shrinking Circle and Shrinking Sphere Problems are easily
visualized – in our mind’s eye. Creating an animation that accurately captures the limiting
process is another matter. In this section the derivations leading to Theorem 2 and Theorem 5
are revisited with the additional objective of producing visualizations consistent with the general
theory.

One of the authors began his investigation of the Original Shrinking Circle Problem using
ClassPad Manager. The results obtained from this analysis supported a conjecture that the
limit would be either infinite or zero [Yang, 2006]. Kreczner reported that Mathematica incor-
rectly evaluates the limit when the fixed curve is a parabola y2 = 2ax [Kreczner, 1995]. Both
of these problem could have been avoided if it had been noticed that the limit in the Shrinking
Circle Problem has indeterminate form 0

0
(Section 2).

The crux of the analysis for the two-dimensional problem is Lemma 1, where C is a circle
centered at (a, b) with radius a2 + b2. Because the limiting value of R exhibits a discontinuity
when b = 0, any loss of precision in representing the center of C could interfere with numeric
and graphic attempts to evaluate this limit.

In three dimensions, the parameterization of Q and R introduced in Section4 is very ap-
pealing. But, it is not useful for completing the limits involved in this problem. The special
behavior with θ = 0 leads to piecewise-defined (discontinuous) results. These limitations are
real. They appear in attempts to create accurate visual representations of the curve R using a
finite sampling of points from Q.

The Mathematica experience reported in [Kreczner, 1995] shows that a brute force symbolic
attack to the problem is not guaranteed to be successful. The powerful symbolic tools available
with a computer algebra system such as Maple or Mathematica have to be used with care and
intelligence.

The only effective way to work with the curve R (and the curve Q) is to be able to identify the
curve geometrically, as was done in the proof of Theorem 4. Dynamic geometry software such as
Cabri3D [Cabri3D], ClassPad Manager [ClassPad], Geometer’s Sketchpad [GSketchpad], and
Geometry Expressions [GExpressions] avoid the analytical indeterminate forms by working
directly with the geometric objects — circles, lines, intersections, projections, . . . .

A full collection of symbolic, numeric, and graphic resources for investigating the Shrinking
Circle Problem can be found online at http://www.math.sc.edu/~meade/eJMT-Shrink/ or
http://www.radford.edu/~scorwin/eJMT/Content/Papers/v1n1p4.

The two-dimensional result (Lemma 1) has direct ramifications for the three-dimensional
Shrinking Sphere Problem (Lemma 4). Here, the critical issue is pointwise versus uniform
convergence. Recall that Q is the circle formed by the intersection of S, the fixed sphere
x2 + (y − a)2 + z2 = a2, and Sr, the sphere x2 + y2 + z2 = r2. The curve R is the projection
from P , the top of Sr, onto the z = 0 plane. In the proof of Lemma 4 it was shown that R is
the circle x2 + (y − 2a)2 = 4a2 − r2.

Difficulties arise when the intersection curve Q is represented by a discrete sampling of
points. The point at the apex of Q projects onto the point on R diametrically opposite the
origin: (0, 2a +

√
4a2 − r2, 0). As r → 0+, this point approaches (4a, 0, 0). All other points on

R converge to the origin. That is, while the (uniform) limit of the projected circles is a circle,
the pointwise limit of the projected circles is one of two points: the origin and its diametric
opposite, viz., (0, 0, 0) and (0, 4a, 0).

http://www.math.sc.edu/~meade/eJMT-Shrink/
http://www.radford.edu/~scorwin/eJMT/Content/Papers/v1n1p4
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(a) (b)

Figure 5: Shrinking Sphere Problem with (a) S1 and (b) S 1
10

. Even though the plots of Q are

formed with 201 points, the lack of uniform convergence is particularly evident in (b). (Plots
produced with [Maple], [13].)

(a) (b)

Figure 6: Shrinking Sphere Problem. These plots are smoother because they are constructed
from the geometry, not from a sampling of points. (Plots produced with [Cabri3D], [15].)

When S is not a sphere, Q and R might not be circles, but R converges to a circle (or a
point). If, by coincidence, it is possible to provide a geometric description of Q and R then
there is a chance to construct a decent animation showing the convergence of R to a circle. If
Q and R cannot be identified, then a discrete sampling of data points can be used effectively
for moderately large values of r, but not as r nears zero.

Figures 5 and 6 show two snapshots from an animation created in Maple and Cabri3D,
respectively. In each plot in Figure 5, the curve Q is represented by a uniform sample of 201
points. The rapid convergence of all points (except one) to the origin is very apparent. Using
more points to represent Q is a possibility, but is not without additional costs in time and
computing. The plots shown in Figure 6 are better because they are created from the geometry
of the problem and not merely a collection of points.

Dynamic geometry software would appear to be the most appropriate choice of software to
use to create effective visualizations of the Shrinking Sphere Problem. Unfortunately, dynamic
geometry software is only now starting to move into the third dimension and has very little to
offer in the way of working with general surfaces, or even ellipsoids, cones, and paraboloids.



The Electronic Journal of Mathematics and Technology, Volume 1, Issue 1, ISSN 1933-2823

7 Conclusion

The Generalized Shrinking Circle and Generalized Shrinking Sphere Problems have been an-
alyzed, with general results stated in terms of properties of an appropriate osculating circle.
The proofs involve a combination of symbolic manipulation and analytic geometry. The results
have been confirmed on other surfaces, and coordinate-free versions are provided.

These results have a strong geometric flavor that beg to be visualized and animated. The dis-
cussion identifies some of the mathematical obstacles to obtaining reliable computer-generated
numeric, graphic, or symbolic results. In particular, it was shown how indeterminate forms
can compromise the reliability of numerical computations and how the absence of uniform con-
vergence with respect to a parameterization of a curve can lead to misleading symbolic and
graphical results.

While these obstacles have been overcome for the problems considered in this paper, they
do point to the need for the development of better software tools for dynamic geometry in both
two and three dimensions.
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