
Chapter 9

Polar Coordinates and Plane
Curves

This chapter presents further applications of the derivative and integral. Sec-
tion 9.1 describes polar coordinates. Section 9.2 shows how to compute the
area of a flat region that has a convenient description in polar coordinates.
Section 9.3 introduces a method of describing a curve that is especially useful
in the study of motion.

The speed of an object moving along a curved path is developed in Sec-
tion 9.4. It also shows how to express the length of a curve as a definite
integral. The area of a surface of revolution as a definite integral is introduced
in Section 9.5. The sphere is an instance of such a surface.

Section 9.6 shows how the derivative and second derivative provide tools
for measuring how curvy a curve is at each of its points. This measure, called
“curvature,” will be needed in Chapter 15 in the study of motion along a curve.
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684 CHAPTER 9 POLAR COORDINATES AND PLANE CURVES

9.1 Polar Coordinates

Rectangular coordinates provide only one of the ways to describe points in the
plane by pairs of numbers. This section describes another coordinate system
called “polar coordinates.”

Polar Coordinates

The rectangular coordinates x and y describe a point P in the plane as the
intersection of two perpendicular lines. Polar coordinates describe a point P
as the intersection of a circle and a ray from the center of that circle. They
are defined as follows.

(a) (b)

Figure 9.1.1:

When we say “The storm is
10 miles northeast,” we are

using polar coordinates:
r = 10 and θ = π/4.

Select a point in the plane and a ray emanating from this point. The
point is called the pole, and the ray the polar axis. (See Figure 9.1.1(a).)
Measure positive angles θ counterclockwise from the polar axis and negative
angles clockwise. Now let r be a number. To plot the point P that corresponds
to the pair of numbers r and θ, proceed as follows:

• If r is positive, P is the intersection of the circle of radius r whose center
is at the pole and the ray of angle θ from the pole. (See Figure 9.1.1(b).)

• If r is 0, P is the pole, no matter what θ is.

• If r is negative, P is at a distance |r| from the pole on the ray directly
opposite the ray of angle θ, that is, on the ray of angle θ + π.

In each case P is denoted (r, θ), and the pair r and θ are called the polar
coordinates of P . The point (r, θ) is on the circle of radius |r| whose center
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§ 9.1 POLAR COORDINATES 685

is the pole. The pole is the midpoint of the points (r, θ) and (−r, θ). Notice
that the point (−r, θ + π) is the same as the point (r, θ). Moreover, changing
the angle by 2π does not change the point; that is, (r, θ) = (r, θ + 2π) =
(r, θ + 4π) = · · · = (r, θ + 2kπ) for any integer k (positive or negative).

EXAMPLE 1 Plot the points (3, π/4), (2,−π/6), (−3, π/3) in polar coor-
dinates. See Figure 9.1.2.

Figure 9.1.2:

SOLUTION

• To plot (3, π/4), go out a distance 3 on the ray of angle π/4 (shown in
Figure 9.1.2).

• To plot (2,−π/6), go out a distance 2 on the ray of angle −π/6.

• To plot (−3, π/3), draw the ray of angle π/3, and then go a distance 3
in the opposite direction from the pole.

�

Figure 9.1.3:

It is customary to have the polar axis coincide with the positive x-axis as
in Figure 9.1.3. In that case, inspection of the diagram shows the relation
between the rectangular coordinates (x, y) and the polar coordinates of the
point P :

The relation between polar
and rectangular coordinates.

x = r cos(θ) y = r sin(θ)

r2 = x2 + y2 tan(θ) =
y

x

These equations hold even if r is negative. If r is positive, then r =√
x2 + y2. Furthermore, if −π/2 < θ < π/2, then θ = arctan(y/x).

Graphing r = f(θ)

Just as we may graph the set of points (x, y), where x and y satisfy a certain
equation, we may graph the set of points (r, θ), where r and θ satisfy a certain
equation. Keep in mind that although each point in the plane is specified by a
unique ordered pair (x, y) in rectangular coordinates, there are many ordered
pairs (r, θ) in polar coordinates that specify each point. For instance, the point
whose rectangular coordinates are (1, 1) has polar coordinates (

√
2, π/4) or

(
√

2, π/4 + 2π) or (
√

2, π/4 + 4π) or (−
√

2, π/4 + π) and so on.
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686 CHAPTER 9 POLAR COORDINATES AND PLANE CURVES

The simplest equation in polar coordinates has the form r = k, where k is
a positive constant. Its graph is the circle of radius k, centered at the pole.
(See Figure 9.1.4(a).) The graph of θ = α, where α is a constant, is the line
of inclination α. If we restrict r to be nonnegative, then θ = α describes the
ray (“half-line”) of angle α. (See Figure 9.1.4(b).)

(a) (b)

Figure 9.1.4:

EXAMPLE 2 Graph r = 1 + cos θ.

Figure 9.1.5: A cardioid
is not shaped like a real
heart, only like the conven-
tional image of a heart.

SOLUTION Begin by making a table: Since cos(θ) has period 2π, we con-

θ 0 π
4

π
2

3π
4

π 5π
4

3π
2

7π
4

2π

r 2 1 +
√

2
2

1 1−
√

2
2

0 1−
√

2
2

1 1 +
√

2
2

2
≈ 1.7 ≈ 0.3 ≈ 0.3 ≈ 1.7

Table 9.1.1:

sider only θ in [0, 2π].
As θ goes from 0 to π, r decreases; as θ goes from π to 2π, r increases.

The last point is the same as the first. The graph begins to repeat itself. This
heart-shaped curve, shown in Figure 9.1.5, is called a cardioid. �

Spirals turn out to be quite easy to describe in polar coordinates. This is
illustrated by the graph of r = 2θ in the next example.

EXAMPLE 3 Graph r = 2θ for θ ≥ 0.

Figure 9.1.6:

SOLUTION First make a table:

θ 0 π
2

π 3π
2

2π 5π
2
· · ·

r 0 π 2π 3π 4π 5π · · ·

Increasing θ by 2π does not produce the same value of r. As θ increaes, r
increases. The graph for θ ≥ 0 is an endless sprial, going infinitely often
around the pole. It is indicated in Figure 9.1.6. �
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§ 9.1 POLAR COORDINATES 687

If a is a nonzero constant, the graph of r = aθ is called an Archimedean
spiral for a good reason: Archimedes was the first person to study the curve,
finding the area within it up to any angle and also its tangent lines. The spiral
with a = 2 is sketched in Example 3.

Polar coordinates are also convenient for describing loops arranged like the
petals of a flower, as Example 4 shows.

EXAMPLE 4 Graph r = sin(3θ).
SOLUTION Note that sin(3θ) stays in the range −1 to 1. For instance,
when 3θ = π/2, sin(3θ) = sin(π/2) = 1. That tells us that when θ = π/6,
r = sin(3θ) = sin(3(π/6)) = sin(π/2) = 1. This case suggest that we calculate
r at integer multiples of π/6, as in Table 9.1.2: The variation of r as a function

θ 0 π
6

π
3

π
2

2π
3

5π
6

π 3π
2

2π
3θ 0 π

2
π 3π

2
2π 5π

2
3π 9π

2
6π

r = sin(3θ) 0 1 0 −1 0 1 0 1 0

Table 9.1.2:

of θ is shown in Figure 9.1.7(a). Because sin(θ) has period 2π, sin(3θ) has
period 2π/3.

(a) (b)

Figure 9.1.7:

As θ increases from 0 up to π/3, 3θ increases from 0 up to π. Thus r,
which is sin(3θ), starts at 0 (for θ = 0) up to 1 (for θ = π/6) and then back
to 0 (for θ = π/3). This gives one of the three loops that make up the graph
of r = sin(3θ). For θ in [π/3, 2π/3], r = sin(3θ) is negative (or 0). This yields
the lower loop in Figure 9.1.7(b). For θ in [2π/3, π], r is again positive, and
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688 CHAPTER 9 POLAR COORDINATES AND PLANE CURVES

we obtain the upper left loop. Further choices of θ lead only to repetition of
the loops already shown. �

The graph of r = sin(nθ) or r = cos(nθ) has n loops when n is an odd
integer and 2n loops when n is an even integer. The next example illustrates
the case when n is even.

EXAMPLE 5 Graph the four-leaved rose, r = cos(2θ).

Figure 9.1.8:

SOLUTION To isolate one loop, find the two smallest nonnegative values of
θ for which cos(2θ) = 0. These values are the θ that satisfy 2θ = π/2 and
2θ = 3π/2; thus θ = π/4 and θ = 3π/4. One leaf is described by letting θ go
from π/4 to 3π/4. For θ in [π/4, 3π/4], 2θ is in [π/2, 3π/2]. Since 2θ is then
a second- or third-quadrant angle, r = cos(2θ) is negative or 0. In particular,
when θ = π/2, cos(2θ) reaches its smallest value, −1. This loop is the bottom
one in Figure 9.1.8. The other loops are obtained similarly. Of course, we
could also sketch the graph by making a table of values. �

EXAMPLE 6 Transform the equation y = 2, which describes a horizontal
straight line, into polar coordinates.
SOLUTION Since y = r sin θ, r sin θ = 2, or

r =
2

sin(θ)
= 2 csc(θ).

This is more complicated than the Cartesian version of this equation, but is
still sometimes useful. �

EXAMPLE 7 Transform the equation r = 2 cos(θ) into rectangular coor-
dinates and graph it.
SOLUTION Since r2 = x2 + y2 and r cos θ = x, first multiply the equation
r = 2 cos θ by r, obtaining

r2 = 2r cos(θ)

Hence

x2 + y2 = 2x.

To graph this curve, rewrite the equation as

Figure 9.1.9:

x2 − 2x+ y2 = 0

and complete the square, obtaining

(x− 1)2 + y2 = 1.

The graph is a circle of radius 1 and center at (1, 0) in rectangular coordinates.
It is graphed in Figure 9.1.9. �
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§ 9.1 POLAR COORDINATES 689

Caution: The step in Example 7 where we multiply by r deserves
some attention. If r = 2 cos(θ), then certainly r2 = 2r cos(θ).
However, if r2 = 2r cos(θ), it does not follow that r = 2 cos(θ). We
can “cancel the r” only when r is not 0. If r = 0, it is true that
r2 = 2r cos(θ), but it not necessarily true that r = 2 cos(θ). Since
r = 0 satisfies the equation r2 = 2r cos θ, the pole is on the curve
r2 = 2r cos θ. Luckily, it is also on the original curve r = 2 cos(θ),
since θ = π/2 makes r = 0. Hence the graphs of r2 = 2r cos(θ) and
r = 2 cos(θ) are the same.

However, as you may check, the graphs of r = 2 + cos(θ) and
r2 = r(2 + cos(θ)) are not the same. The origin lies on the second
curve, but not on the first.

The Intersection of Two Curves

Finding the intersection of two curves in polar coordinates is complicated by
the fact that a given point has many descriptions in polar coordinates. Exam-
ple 8 illustrates how to find the intersection.

Figure 9.1.10:

EXAMPLE 8 Find the intersection of the curve r = 1 − cos(θ) and the
circle r = cos(θ).
SOLUTION First graph the curves. The curve r = cos(θ) is a circle half the
size of the one in Example 7. Both curves are shown in Figure 9.1.10. (The
curve r = 1 − cos(θ) is a cardioid, being congruent to r = 1 + cos(θ).) It
appears that there are three points of intersection.

A point of intersection is produced when one value of θ yields the same
value of r in both equations, we would have

1− cos(θ) = cos(θ).

Hence cos(θ) = 1
2
. Thus θ = π/3 or θ = −π/3 (or any angle differing from

these by 2nπ, n an integer). This gives two of the three points, but it fails to
give the origin. Why?

How does the origin get to be on the circle r = cos(θ)? Because, when
θ = π/2, r = 0. How does it get to be on the cardioid r = 1 − cos(θ)?
Because, when θ = 0, r = 0. The origin lies on both curves, but we would not
learn this by simply equating 1− cos(θ) and cos(θ). �

When checking for the intersection of two curves, r = f(θ) and r = g(θ) in
polar coordinates, examine the origin separately. The curves may also interect
at other points not obtainable by setting f(θ) = g(θ). This possibility is
due to the fact the point (r, θ) is the same as the points (r, θ + 2nπ) and
(−r, θ + (2n + 1)π) for any integer n. The safest procedure is to graph the

Calculus October 22, 2010



690 CHAPTER 9 POLAR COORDINATES AND PLANE CURVES

two curves first, identify the intersections in the graph, and then see why the
curves intersect there.

Summary

We introduced polar coordinates and showed how to graph curves given in the
form r = f(θ). Some of the more common polar curves are listed below.

Equation Curve
r = a, a > 0 circle of radius a, center at pole
r = 1 + cos(θ) cardioid
r = aθ, a > 0 Archimedean spiral (traced clockwise)
r = sin(nθ), n odd n-leafed rose (one loop symmetric about θ = π/n)
r = sin(nθ), n even 2n-leafed rose
r = cos(nθ), n odd n-leafed rose (one loop symmetric about θ = 0)
r = cos(nθ), n even 2n-leafed rose
r = a csc(θ) the line y = a
r = a sec(θ) the line x = a
r = a cos(θ), a > 0 circle of radius a/2 through pole and (a/2, 0)
r = a sin(θ), a > 0 circle of radius a/2 through pole and (0, a/2)

Table 9.1.3:

To find the intersection of two curves in polar coordinates, first graph them.

October 22, 2010 Calculus



§ 9.1 POLAR COORDINATES 691

EXERCISES for Section 9.1 Key: R–routine,
M–moderate, C–challenging

1.[R] Plot the points whose polar coordinates are

(a) (1, π/6)

(b) (2, π/3)

(c) (2,−π/3)

(d) (−2, π/3)

(e) (2, 7π/3)

(f) (0, π/4)

2.[R] Find the rectangular coordinates of the points
in Exercise 1.

3.[R] Give at least three pairs of polar coordinates
(r, θ) for the point (3, π/4),

(a) with r > 0,

(b) with r < 0.

4.[R] Find polar coordinates (r, θ) with 0 ≤ θ < 2π
and r positive, for the points whose rectangular coor-
dinates are

(a) (
√

2,
√

2)

(b) (−1,
√

3)

(c) (−5, 0)

(d) (−
√

2,−
√

2)

(e) (0,−3)

(f) (1, 1)

In Exercises 5 to 8 transform the equation into one in
rectangular coordinates.

5.[R] r = sin(θ)
6.[R] r = csc(θ)
7.[R] r = 4 cos(θ) +
5 sin(θ)

8.[R] r = 3/(4 cos(θ) +
5 sin(θ))

In Exercises 9 to 12 transform the equation into one in
polar coordinates.

9.[R] x = −2
10.[R] y = x2

11.[R] xy = 1

12.[R] x2 + y2 = 4x

In Exercises 13 to 22 graph the given equations.

13.[R] r = 1 + sin θ
14.[R] r = 3 + 2 cos(θ)
15.[R] r = e−θ/π

16.[R] r = 4θ/π, θ > 0
17.[R] r = cos(3θ)
18.[R] r = sin(2θ)

19.[R] r = 2

20.[R] r = 3

21.[R] r = 3 sin(θ)

22.[R] r = −2 cos(θ)

23.[M] Suppose r = 1/θ for θ > 0.

(a) What happens to the y coordinate of (r, θ) as
θ →∞?

(b) What happens to the x coordinate of (r, θ) as
θ →∞?

(c) Sketch the curve.

24.[R] Suppose r = 1/
√
θ for θ > 0.

(a) What happens to the y coordinate of (r, θ) as
θ →∞?

(b) What happens to the x coordinate of (r, θ) as
θ →∞?

(c) Sketch the curve.
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692 CHAPTER 9 POLAR COORDINATES AND PLANE CURVES

In Exercises 25 to 30, find the intersections of the
curves after drawing them.

25.[R] r = 1+cos(θ) and
r = cos(θ)− 1
26.[R] r = sin(2θ) and
r = 1
27.[R] r = sin(3θ) and
r = cos(3θ)
28.[R] r = 2 sin(2θ) and

r = 1

29.[R] r = sin(θ) and
r = cos(2θ)

30.[R] r = cos(θ) and
r = cos(2θ)

A curve r = 1 + a cos(θ) (or r = 1 + a sin(θ)) is called
a limaçon (pronounced lee’ · ma · son). Its shape de-
pends on the choice of the constant a. For a = 1 we
have the cardioid of Example 2. Exercises 31 to 33
concern other choices of a.

31.[R] Graph r = 1 +
2 cos(θ). (If |a| > 1, then
the graph of r = 1 +
a cos θ crosses itself and
forms two loops.)
32.[R] Graph r = 1 +
1
2 cos(θ).
33.[C] Consider the
curve r = 1 + a cos(θ),
where 0 ≤ a ≤ 1.

(a) Relative to the same
polar axis, graph
the curves corre-
sponding to a = 0,
1/4, 1/2, 3/4, 1

(b) For a = 1/4 the
graph in (a) is con-

vex, but not for
a = 1. Show that
for 1/2 < a ≤ 1
the curve is not con-
vex. Note: “Con-
vex” is defined
in Section 2.5
on page 115.
Hint: Find the
points on the curve
farthest to the left
and compare them
to the point on the
curve corresponding
to θ = π.

34.[M]

(a) Graph r = 3 + cos(θ)

(b) Find the point on the graph in (a) that has the
maximum y coordinate.

35.[M] Find the y coordinate of the highest point on
the right-hand leaf of the four-leaved rose r = cos(2θ).

36.[M] Graph r2 = cos(2θ). Note that, if cos(2θ) is
negative, r is not defined and that, if cos(2θ) is positive,
there are two values of r,

√
cos(2θ) and −

√
cos(2θ).

This curve is called a lemniscate.

In Appendix E it is shown that the graph of r =
1/(1 + e cos(θ)) is a parabola if e = 1, an ellipse if
0 ≤ e < 1, and a hyperbola if e > 1. (e here denotes
“eccentricity,” not Euler’s number.) Exercises 37 to 38
concern such graphs.

37.[M]

(a) Graph r = 1
1+cos(θ) .

(b) Find an equation in
rectangular coordi-
nates for the curve
in (a).

38.[M]

(a) Graph r =
1

1−(1/2) cos(θ) .

(b) Find an equation in
rectangular coordi-
nates for the curve
in (a).

39.[C] Where do the spirals r = θ and r = 2θ, for
θ ≥ 0, intersect?
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§ 9.2 COMPUTING AREA IN POLAR COORDINATES 693

9.2 Computing Area in Polar Coordinates

Figure 9.2.1:

In Section 6.1 we saw how to compute the area of a region if the lengths of
parallel cross sections are known. Sums based on rectangles led to the formula

Area =

b∫
a

c(x) dx

where c(x) denotes the cross-sectional length. Now we consider quite a different
situation, in which sectors of circles, not rectangles, provide an estimate of the
area.

Let R be a region in the plane and P a point inside it, that we take as the
pole of a polar coordinate system. Assume that the distance r from P to any
point on the boundary of R is known as a function r = f(θ). Also, assume
that any ray from P meets the boundary of R just once, as in Figure 9.2.1.

Figure 9.2.2:

The cross sections made by the rays from P are not parallel. Instead, like
the spokes in a wheel, they all meet at the point P . It would be unnatural to
use rectangles to estimate the area, but it is reasonable to use sectors of circles
that have P as a common vertex.

Begin by recalling that in a circle of radius r a sector of central angle θ has
area (θ/2)r2. (See Figure 9.2.2.) This formula plays the same role now as the
formula for the area of a rectangle did in Section 6.1.

Area in Polar Coordinates
Assume f(θ) ≥ 0.

Figure 9.2.3:

Let R be the region bounded by the rays θ = α and θ = β and by the curve
r = f(θ), as shown in Figure 9.2.3. To obtain a local estimate for the area
of R, consider the portion of R between the rays corresponding to the angles
θ and θ + dθ, where dθ is a small positive number. (See Figure 9.2.4(a).) The
area of the narrow wedge is shaded in Figure 9.2.4(a) is approximately that of
a sector of a circle of radius r = f(θ) and angle dθ, shown in Figure 9.2.4(b).
The area of the sector in Figure 9.2.4(b) is

f(θ)2

2
dθ. (9.2.1)

Having found the local estimate of area (9.2.1), we conclude that the area of
R is The area of the region bounded by the rays θ = α and θ = β and by the How to find area in polar

coordinates.curve r = f(θ) is

β∫
α

f(θ)2

2
dθ or simply

β∫
α

r2

2
dθ. (9.2.2)
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694 CHAPTER 9 POLAR COORDINATES AND PLANE CURVES

(a) (b) (c)

Figure 9.2.4:

Formula 9.2.2 is applied in Section 15.1 (and a CIE) to the motion of satellites
and planets.

Remark: It may seem surprising to find (f(θ))2, not just f(θ), inArea has dimensions of
length squared. the integrand. But remember that area has the dimension “length

times length.” Since θ, given in radians, is dimensionless, being
defined as “length of circular arc divided by length of radius”,
dθ is also dimensionless. Hence f(θ) dθ, having the dimension
of length, not of area, could not be correct. But 1

2
(f(θ))2 dθ,

having the dimension of area (length times length), is plausible.
For rectangular coordinates, in the expressions f(x) dx, both f(x)
and dx have the dimension of length, one along the y-axis, the other
along the x-axis; thus f(x) dx has the dimension of area. As an aidMemory device

in remembering the area of the narrow sector in Figure 9.2.4(b),
note that it resembles a triangle of height r and base r dθ, as shown
in Figure 9.2.4(c). Its area is

Figure 9.2.5:

1

2
· r︸︷︷︸

height

· rdθ︸︷︷︸
base

=
r2dθ

2
.

EXAMPLE 1 Find the area of the region bounded by the polar curve
r = 3 + 2 cos(θ), shown in Figure 9.2.5.
SOLUTION This cardiod is traced once for 0 ≤ θ ≤ 2π. By the formula just
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§ 9.2 COMPUTING AREA IN POLAR COORDINATES 695

obtained, this area is

2π∫
0

1

2
(3 + 2 cos(θ))2dθ =

1

2

2π∫
0

(9 + 12 cos(θ) + 4 cos2(θ))dθ

=
1

2

2π∫
0

(9 + 12 cos(θ) + 2(1 + cos(2θ)) dθ

=
1

2
(9θ + 12 sin(θ) + 2θ + sin(2θ))

∣∣∣∣2π
0

= 11π.

�

EXAMPLE 2 Find the area of the region inside one of the eight loops of
the eight-leaved rose r = cos(4θ).

Figure 9.2.6:

SOLUTION To graph one of the loops, start with θ = 0. For that angle,
r = cos(4·0) = cos 0 = 1. The point (r, θ) = (1, 0) is the outer tip of a loop. As
θ increases from 0 to π/8, cos(4θ) decreases from cos(0) = 1 to cos(π/2) = 0.
One of the eight loops is therefore bounded by the rays θ = π/8 and θ = −π/8.
It is shown in Figure 9.2.6.

The area of this loop, which is bisected by the polar axis, is

π/8∫
−π/8

r2

2
dθ =

π/8∫
−π/8

cos2(4θ)

2
dθ = 2 · 1

4

π/8∫
0

(1 + cos(8θ)) dθ

=
1

2

(
θ +

sin(8θ)

4

)∣∣∣∣π/8
0

=
1

2

(
π

8
+

sin(π)

8

)
− 0 =

π

16
≈ 0.19635.

Notice how the fact that the integrand is an even function simplifies this cal-
culation. �

The Area between Two Curves

Figure 9.2.7:

Assume that r = f(θ) and r = g(θ) describe two curves in polar coordinates
and that f(θ) ≥ g(θ) ≥ 0 for θ in [α, β]. Let R be the region between these
two curves and the rays θ = α and θ = β, as shown in Figure 9.2.7.

The area of R is obtained by subtracting the area within the inner curve,
r = g(θ), from the area within the outer curve, r = f(θ).

EXAMPLE 3 Find the area of the top half of the region inside the cardioid
r = 1 + cos(θ) and outside the circle r = cos(θ).
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696 CHAPTER 9 POLAR COORDINATES AND PLANE CURVES

SOLUTION The region is shown in Figure 9.2.8. The top half of the circleWe must integrate over two
different intervals to find

the two areas.
r = cos(θ) is swept out as θ goes from 0 to π/2. The area of this region is

1

2

π/2∫
0

cos2(θ) dθ =
π

8
.

Figure 9.2.8: It’s even eas-
ier to see this area as half
the area of a circle of ra-
dius 1/2: 1

2
π
(

1
2

)2
= π

8
.

The top half of the cardioid is swept out by r = 1 + cos(θ) as θ goes from
0 to π; so its area is

1

2

π∫
0

(1 + cos(θ))2dθ =
1

2

π∫
0

(
1 + 2 cos(θ) + cos2(θ)

)
dθ

=
1

2

π∫
0

(
1 + 2 cos(θ) +

1 + cos(2θ)

2

)
dθ

=
1

2

π∫
0

(
3

2
+ 2 cos(θ) +

cos(2θ)

2

)
dθ

=
1

2

(
3θ

2
+ 2 sin(θ) +

sin(2θ)

4

)∣∣∣∣π
0

=
3π

4
.

Thus the area in question is

3π

4
− π

8
=

5π

8
≈ 1.96349.

�

Summary

In this section we saw how to find the area within a curve r = f(θ) and the
rays θ = α and θ = β. The heart of the method is the local approximation by
a narrow sector of radius r and angle dθ, which has area r2dθ/2. (It resembles
a triangle of height r and base rdθ.) This approximation leads to the formula,

Area =

β∫
α

r2

2
dθ.

It is more prudent to remember the triangle than the area formula because
you may otherwise forget the 2 in the denominator.
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EXERCISES for Section 9.2 Key: R–routine,
M–moderate, C–challenging

In each of Exercises 1 to 6, draw the bounded region
enclosed by the indicated curve and rays and then find
its area.

1.[R] r = 2θ, α = 0,
β = π

2

2.[R] r =
√
θ, α = 0,

β = π

3.[R] r = 1
1+θ , α = π

4 ,
β = π

2

4.[R] r =
√

sin(θ),

α = 0, β = π
2

5.[R] r = tan(θ), α = 0,
β = π

4

6.[R] r = sec(θ), α = π
6 ,

β = π
4

In each of Exercises 7 to 16 draw the region bounded
by the indicated curve and then find its area.

7.[R] r = 2 cos(θ)
8.[R] r = eθ, 0 ≤ θ ≤ 2π

9.[R] Inside the cardioid
r = 3 + 3 sin(θ) and out-
side the circle r = 3.
10.[R] r =

√
cos(2θ)

11.[R] One loop of r =
sin(3θ)
12.[R] One loop of r =
cos(2θ)
13.[R] Inside one loop of

r = 2 cos(2θ) and outside
r = 1

14.[R] Inside r = 1 +
cos(θ) and outside r =
sin(θ)

15.[R] Inside r = sin(θ)
and outside r = cos(θ)

16.[R] Inside r = 4 +
sin(θ) and outside r =
3 + sin(θ)

17.[M] Sketch the graph of r = 4 + cos(θ). Is it a
circle?

18.[M]

(a) Show that the area of the triangle in Fig-
ure 9.2.9(a) is

∫ β
0

1
2 sec2(θ)dθ.

(b) From (a) and the fact that the area of a tri-
angle is 1

2(base)(height), show that tan(β) =∫ β
0 sec2(θ)dθ.

(c) With the aid of the equation in (b), obtain an-
other proof that (tan(x))′ = sec2(x).

(a) (b)

Figure 9.2.9:
19.[M] Show that the area of the shaded crescent
between the two circular arcs is equal to the area of
square ABCD. (See Figure 9.2.9(b).) This type of
result encouraged mathematicians from the time of
the Greeks to try to find a method using only straight-
edge and compass for constructing a square whose area
equals that of a given circle. This was proved impos-
sible at the end of the nineteenth century by showing
that π is not the root of a non-zero polynomial with
integer coefficients.

20.[M]

(a) Graph r = 1/θ for 0 < θ ≤ π/2.

(b) Is the area of the region bounded by the curve
drawn in (a) and the rays θ = 0 and θ = π/2
finite or infinite?

21.[M]

(a) Sketch the curve r = 1/(1 + cos(θ)).

(b) What is the equation of the curve in (a) in rect-
angular coordinates?

(c) Find the area of the region bounded by the curve
in (a) and the rays θ = 0 and θ = 3π/4, using
polar coordinates.

(d) Solve (c) using retangular coordinates and the
equation in (b).
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22.[M] Use Simpson’s method to estimate the area of
the bounded region between r = 3

√
1 + θ2, θ = 0, and

θ = π/2 that is correct to three decimal places.

23.[C] Estimate the area of the region bounded by
r = eθ, r = 2 cos(θ) and θ = 0. Hint: You may need
to approximate a limit of integration.

24.[C] Figure 9.2.10 shows a point P inside a convex
region R.

(a) Assume that P cuts each chord through P into
two intervals of equal length. Must each chord
through P cut R into two regions of equal areas?

(b) Assume that each chord through P cuts R into
two regions of equal areas. Must P cut each
chord through P into two intervals of equal
lengths?

Figure 9.2.10:
25.[C] Let R be a convex region in the plane and P
be a point on the boundary of R. Assume that every
chord of R that has an end at P has length at least 1.

(a) Draw several examples of such an R.

(b) Make a general conjecture about the area R.

(c) Prove it.

26.[C] Repeat Exercise 25, except that each chord
through P has length not more than 1.

27.[C]

(a) Show that each line through the origin intersects
the region bounded by the curve in Example 1
in a segment of length 6.

(b) Each line through the center of a disk of radius
3 also intersects the disk in a segment of length
6. Does it follow that the disk and the region in
Example 1 have the same areas?

28.[C] Consider a convex region R in the plane and a
point P inside it. If you know the length of each chord
that passes through P . Can you then determine the
area of R

(a) if P is on the border of R?

(b) if P is in the interior of R?

Exercises 29 to 31, contributed by Rick West, are re-
lated.
29.[C] The graph of r = cos(nθ) has 2n loops when
n is even. Find the total area within those loops.

30.[C] The graph of r = cos(nθ) has n loops when n

is odd. Find the total area within those loops.

31.[C] Find the total area of all the petals within
the curve r = sin(nθ), where n is a positive integer.
Hint: Take the cases n even or odd separately.
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9.3 Parametric Equations

Figure 9.3.1:

Up to this point we have considered curves described in three forms: “y is
a function of x”, “x and y are related implicitly”, and “r is a function of θ”.
But a curve is often described by giving both x and y as functions of a third
variable. We introduce this situation as it arises in the study of motion. It
was the basis for the CIE on the Uniform Sprinkler in Chapter 5.

Two Examples

EXAMPLE 1 If a ball is thrown horizontally out of a window with a speed
of 32 feet per second, it falls in a curved path. Air resistance disregarded,
its position t seconds later is given by x = 32t, y = −16t2 relative to the
coordinate system in Figure 9.3.1. Here the curve is completely described, para meaning “together,”

meter meaning “measure”.not by expressing y as a function of x, but by expressing each of x and y as
functions of a third variable t. The third variable is called a parameter. The
equations x = 32t, y = −16t2 are called parametric equations for the curve.

In this example it is easy to eliminate t and so find a direct relation between
x and y:

t =
x

32
.

Hence

y = −16
( x

32

)2

= − 16

(32)2
x2 = − 1

64
x2.

The path is part of the parabola y = − 1
64
x2. �

In Example 2 elimination of the parameter would lead to a complicated
equation involving x and y. One advantage of parametric equations is that
they can provide a simple description of a curve, although it may be impossible
to find an equation in x and y that describes the curve.

Figure 9.3.2:
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EXAMPLE 2 As a bicycle wheel of radius a rolls along, a tack stuck in its
circumference traces out a curve called a cycloid, which consists of a sequence
of arches, one arch for each revolution of the wheel. (See Figure 9.3.2.) Find
the position of the tack as a function of the angle θ through which the wheel
turns.
SOLUTION Assume that the tack is initially at the bottom of the wheel.
The x coordinate of the tack, corresponding to θ, is

|AF | = |AB| − |ED| = aθ − a sin(θ),

and the y coordinate is

|EF | = |BC| − |CD| = a− a cos(θ).

Then the position of the tack, as a function of the parameter θ, is

x = aθ − a sin(θ), y = a− a cos(θ).

In this case, eliminating θ leads to a complicated relation between x and y. �See Exercise 36.

Any curve can be described parametrically. For instance, consider the curve
y = ex+x. It is perfectly legal to introduce a parameter t equal to x and write

x = t, y = et + t.

This device may seem a bit artificial, but it will be useful in the next section in
order to apply results for curves expressed by means of parametric equations
to curves given in the form y = f(x).

How to Find dy
dx and d2y

dx2

How can we find the slope of a curve that is described parametrically by the
equations

x = g(t), y = h(t)?

An often difficult, perhaps impossible, approach is to solve the equation x =
g(t) for t as a function of x and substitute the result into the equation y = h(t),
thus expressing y explicitly in terms of x; then differentiate the result to find
dy/dx. Fortunately, there is a very easy way, which we will now describe.
Assume that y is a differentiable function of x. Then, by the Chain Rule,

dy

dt
=
dy

dx

dx

dt
,

from which it follows that
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Slope of a parameterized curve

dy

dx
=

dy
dt
dx
dt

. (9.3.1)

It is assumed that in formula (9.3.1) dx/dt is not 0. To obtain d2y/dx2 just
replace y in (9.3.1) by dy/dx, obtaining

d2y

dx2
=

d

dx

(
dy

dx

)
=

d
dt

(
dy
dx

)
dx
dt

.

EXAMPLE 3 At what angle does the arch of the cycloid shown in Exam-
ple 2 meet the x-axis at the origin?
SOLUTION The parametric equations of the cycloid are

x = aθ − a sin(θ) and y = a− a cos(θ).

Here θ is the parameter. Then

dx

dθ
= a− a cos(θ) and

dy

dθ
= a sin(θ).

Consequently,

dy

dx
=

dy/dθ

dx/dθ
=

a sin(θ)

a− a cos(θ)
=

sin(θ)

1− cos(θ)
.

When θ = 0, (x, y) = (0, 0) and dy
dx

is not defined because dx
dθ

= 0. But, when
θ is near 0, (x, y) is near the origin and the slope of the cycloid at (0, 0) can
be found by looking at the limit of the slope, which is sin θ/(1 − cos(θ)), as
θ → 0+. L’Hôpital’s Rule applies, and we have

lim
θ→0+

sin(θ)

1− cos(θ)
= lim

θ→0+

cos(θ)

sin(θ)
=∞.

Thus the cycloid comes in vertically at the origin, as shown in Figure 9.3.2. �

EXAMPLE 4 Find d2y/dx2 for the cycloid of Example 2.
SOLUTION In Example 3 we found

dy

dx
=

sin(θ)

1− cos(θ)
.
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As shown in Example 3, dx/dθ = a− a cos(θ). To find d2y
dx2 we first compute

d

dθ

(
dy

dx

)
=

(1− cos(θ)) cos(θ)− sin(θ)(sin(θ))

(1− cos(θ))2
=

cos(θ)− 1

(1− cos(θ))2
=

−1

1− cos(θ)
.

Thus
d2y

dx2
=

d
dθ

(
dy
dx

)
dx
dθ

=

−1
1−cos(θ)

a− a cos(θ)
=

−1

a(1− cos(θ))2
.

Since the denominator is positive (or 0), the quotient, when defined, is nega-
tive. This agrees with Figure 9.3.2, which shows each arch of the cycloid as
concave down. �

Summary

This section described parametric equations, where x and y are given as func-
tions of a third variable, often time (t) or angle (θ). We also showed how to
compute dy/dx and d2y/dx2:

dy

dx
=
dy/dt

dx/dt

and replacing y by dy
dx

,

d2y

dx2
=

d
dt

(
dy
dx

)
dx
dt

.
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EXERCISES for Section 9.3 Key: R–routine,
M–moderate, C–challenging

1.[R] Consider the parametric equations x = 2t + 1,
y = t− 1.

(a) Fill in this table:

t −2 −1 0 1 2
x

y

(b) Plot the five points (x, y) obtained in (a).

(c) Graph the curve given by the parametric equa-
tions x = 2t+ 1, y = t− 1.

(d) Eliminate t to find an equation for the curve in-
volving only x and y.

2.[R] Consider the parametric equations x = t + 1,
y = t2.

(a) Fill in this table:

t −2 −1 0 1 2
x

y

(b) Plot the five points (x, y) obtained in (a).

(c) Graph the curve.

(d) Find an equation in x and y that describes the
curve.

3.[R] Consider the parametric equations x = t2,
y = t2 + t.

(a) Fill in this table:

t −3 −2 −1 0 1 2 3
x

y

(b) Plot the seven points (x, y) obtained in (a).

(c) Graph the curve given by x = t2, y = t2 + t.

(d) Eliminate t and find an equation for the graph
in terms of x and y.

4.[R] Consider the parametric equations x = 2 cos(t),
y = 3 sin(t).

(a) Fill in this table, expressing the entries deci-
mally:

t 0 π
4

π
2

3π
4 π 5π

4
3π
2

7π
4 2π

x

y

(b) Plot the eight distinct points in (a).

(c) Graph the curve given by x = 2 cos(t), y =
3 sin(t).

(d) Using the identity cos2(t)+sin2(t) = 1, eliminate
t.

In Exercises 5 to 8 express the curves parametrically
with parameter t.

5.[R] y =
√

1 + x3

6.[R] y = tan−1(3x)
7.[R] r = cos2(θ)

8.[R] r = 3 + cos(θ)

In Exercises 9 to 14 find dy/dx and d2y/dx2 for the
given curves.

9.[R] x = t3 + t, y =
t7 + t+ 1
10.[R] x = sin(3t),
y = cos(4t)
11.[R] x = 1 + ln(t),
y = t ln(t)

12.[R] x = et
2
, y =

tan(t)

13.[R] r = cos(3θ)

14.[R] r = 2 + 3 sin(θ)

In Exercises 15 to 16 find the equation of the tangent
line to the given curve at the given point.
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15.[R] x = t3 + t2,
y = t5 + t; (2, 2)

16.[R] x = t2+1
t3+t2+1

,

y = sec 3t; (1, 1)

In Exercises 17 and 18 find d2y/dx2.

17.[R] x = t3 + t + 1,
y = t2 + t+ 2
18.[R] x = e3t + sin(2t),

y = e3t + cos(t2)

19.[R] For which values of t is the curve in Exercise 17
concave up? concave down?

20.[R] Let x = t3 + 1 and y = t2 + t + 1. For which
values of t is the curve concave up? concave down?

21.[R] Find the slope of the three-leaved rose,
r = sin(3θ), at the point (r, θ) = (

√
2/2, π/12).

22.[R]

(a) Find the slope of the cardioid r = 1 + cos(θ) at
the point (r, θ).

(b) What happens to the slope in (a) as θ approaches
π from the left?

(c) What does (b) tell us about the graph of the
cardioid? (Show it on the graph.)

23.[R] Obtain parametric equations for the circle of
radius a and center (h, k), using as parameter the an-
gle θ shown in Figure 9.3.3(a).

24.[R] At time t ≥ 0 a ball is at the point (24t,−16t2+
5t+ 3).

(a) Where is it at time t = 0?

(b) What is its horizontal speed at that time?

(c) What is its vertical speed at that time?

(a) (b)

Figure 9.3.3:
Exercises 25 to 27 analyze the trajectory of a ball
thrown from the origin at an angle α and initial ve-
locity v0, as sketched in Figure 9.3.3(b). These results
are used in the CIE on the Uniform Sprinkler in Chap-
ter 5 (see page 412).
25.[R] It can be shown that if time is in seconds and
distance in feet, then t seconds later the ball is at the
point

x = (v0 cos(α))t, y = (v0 sin(α))t− 16t2.

(a) Express y as a function of x. Hint: Eliminate t.

(b) In view of (a), what type of curve does the ball
follow?

(c) Find the coordinates of its highest point.

26.[R] Eventually the ball in Exercise 25 falls back to
the ground.

(a) Show that, for a given v0, the horizontal distance
it travels is proportional to sin(2θ).

(b) Use (a) to determine the angle that maximizes
the horizontal distance traveled.

(c) Show that the horizontal distance traveled in (a)
is the same when the ball is thrown at an angle
of θ or at an angle of π/2− θ.
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27.[R] Is it possible to extend the horizontal dis-
tance traveled by throwing the ball in Exercise 25
from the top of a hill? (Assume the hill has height d.)
Hint: Work with the horizontal distance traveled, x,
not the distance along the sloped ground.

28.[R] The spiral r = e2θ meets the ray θ = α at an
infinite number of points.

(a) Graph the spiral.

(b) Find the slope of the spiral at each intersection
with the ray.

(c) Show that at all of these points this spiral has
the same slope.

(d) Show that the analog of (c) is not true for the
spiral r = θ.

29.[M] The spiral r = θ, θ > 0 meets the ray θ = α
at an infinite number of points (α, α), (α + 2π, α),
(α + 4π, α), . . . . What happens to the angle between
the spiral and the ray at the point (α + 2πn, α) as
n→∞?

30.[M] Let a and b be positive numbers. Consider
the curve given parametrically by the equations

x = a cos(t) y = b sin(t).

(a) Show that the curve is the ellipse x2

a2 + y2

b2
= 1.

(b) Find the area of the region bounded by the el-
lipse in (a) by making a substitution that ex-
presses 4

∫ a
0 y dx in terms of an integral in which

the variable is t and the range of integration is
[0, π/2].

31.[M] Consider the curve given parametrically by

x = t2 + et y = t+ et

for t in [0, 1].

(a) Plot the points corresponding to t = 0, 1/2, and
1.

(b) Find the slope of the curve at the point (1, 1).

(c) Find the area of the region under the curve and
above the interval [1, e+1]. [See Exercise 30(b).]

32.[M] What is the slope of the cycloid in Figure 9.3.2
at the first point on it to the right of the y-axis at the
height a?

33.[M] The region under the arch of the cycloid

x = aθ − a sin(θ), y = a− a cos(θ) (0 ≤ θ ≤ 2π)

and above the x-axis is revolved around the x-axis.
Find the volume of the solid of revolution produced.

34.[M] Find the volume of the solid of revolution
obtained by revolving the region in Exercise 33 about
the y-axis.

35.[M] Let a be a positive constant. Consider the
curve given parametrically by the equations x =
a cos3(t), y = a sin3(t).

(a) Sketch the curve.

(b) Express the slope of the curve in terms of the
parameter t.

36.[M] Solve the parametric equations for the cycloid,
x = aθ − a sin(θ), y = a− a cos(θ), for y as a function
of x. Note: See Example 1.

37.[C] Consider a tangent line to the curve in Exer-
cise 35 at a point P in the first quadrant. Show that
the length of the segment of that line intercepted by
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the coordinate axes is a.

38.[C] L’Hôpital’s rule in Section 5.5 asserts
that if limt→0 f(t) = 0, limt→0 g(t) = 0, and
limt→0(f ′(t)/g′(t)) exists, then limt→0(f(t)/g(t)) =
limt→0(f ′(t)/g′(t)). Interpret that rule in terms of the
parameterized curve x = g(t), y = f(t). Hint: Make a
sketch of the curve near (0, 0) and show on it the
geometric meaning of the quotients f(t)/g(t) and
f ′(t)/g′(t).

Figure 9.3.4:
39.[C] The Folium of Descartes is the graph of

x3 + y3 = 3xy.

The graph is shown in Figure 9.3.4. It consists of a

loop and two infinite pieces both asymptotic to the
line x+y+ 1 = 0. Parameterize the curve by the slope
t of the line joining the origin with (x, y). Thus for the
point (x, y) on the curve, y = xt.

(a) Show that

x =
3t

1 + t3
and y =

3t2

1 + t3
.

(b) Find the highest point on the loop.

(c) Find the point on the loop furthest to the right.

(d) The loop is parameterized by t in [0,∞). Which
values of t parameterize the part in the fourth
quadrant?

(e) Which values of t parameterize the part in the
second quadrant?

(f) Show that the Folium of Descartes is symmetric
with respect to the line y = x.

Note: Visit http://en.wikipedia.org/wiki/

Folium_of_Descartes or do a Google search of
“Folium Descartes” to see its long history that goes
back to 1638.
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9.4 Arc Length and Speed on a Curve

In Section 4.2 we studied the motion of an object moving on a line. If at
time t its position is x(t), then its velocity is the derivative dx

dt
and its speed is∣∣dx

dt

∣∣. Now we will examine the velocity and speed of an object moving along
a curved path.

Arc Length and Speed in Rectangular Coordinates

Consider an object moving on a path given parametrically by{
x = g(t)
y = h(t)

,

where g and h have continuous derivatives. Think of t as time, though the
parameter could be anything, such as angle or even x itself.

First, let us find a formula for its speed.
Let s(t) be the arc length covered from the initial time to an arbitrary time

t. In a short interval of time, ∆t, it travels a distance ∆s along the path. We
want to find

lim
∆t→0

∆s

∆t
.

We take an intuitive approach, and leave a more formal argument for Exer-
cise 30.

Figure 9.4.1:

During the time interval [t, t + ∆t] the object goes from P to Q on the
path, covering a distance ∆s, as shown in Figure 9.4.1. During this time its
x-coordinate changes by ∆x and its y-coordinate by ∆y. The chord PQ has
length

√
(∆x)2 + (∆y)2.

We assume now that the curve is well behaved in the sense that lim∆t→0
∆s
|PQ| =

1. In this case,

lim
∆t→0

∆s

∆t
= lim

∆t→0

|PQ|
∆t

= lim
∆t→0

√
(∆x)2 + (∆y)2

∆t

= lim
∆t→0

√(
∆x

∆t

)2

+

(
∆y

∆t

)2

=

√(
dx

dt

)2

+

(
dy

dt

)2

.

We have just obtained the key result in this section:

ds

dt
=

√(
dx

dt

)2

+

(
dy

dt

)2
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or, stated in terms of differentials,

ds =
√

(dx)2 + (dy)2 =

√(
dx

dt

)2

+

(
dy

dt

)2

dt

Figure 9.4.2:

The rates at which x and y change determine how fast the arc length s changes,
as recorded in Figure 9.4.2.

Now that we have a formula for ds/dt, we simply integrate it to get the
distance along the path covered during a time interval [a, b]:

arc length =

b∫
a

ds =

b∫
a

√(
dx

dt

)2

+

(
dy

dt

)2

dt. (9.4.1)

If the curve is given in the form y = f(x), one is free to use x as the parameter.
Thus, a parametric representation of the curve is

x = x, y = f(x).

Then (9.4.1) becomes

arc length =

b∫
a

√
1 + (f ′(x))2 dx.

WARNING (Sign of ds
dt

) The arclength function is, by definition,
an non-decreasing function. This means ds/dt is never negative.
In fact, in most applications ds/dt will be strictly positive.

Three examples will show how these formulas are applied. The first goes
back to the year 1657, when the 20-year old Englishman, William Neil, found
the length of an arc on the graph of y = x3/2. His method was much more
complicated. Earlier in that century, Thomas Harriot had found the length of
an arc of the spiral r = eθ, but his work was not widely published.

EXAMPLE 1 Find the arc length of the curve y = x3/2 for x in [0, 1]. (See
Figure 9.4.3.)
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SOLUTION By formula (9.4.1),

Figure 9.4.3:

arc length =

1∫
0

√
1 +

(
dy

dx

)2

dx.

Since y = x3/2, we differentiate to find dy/dx = 3
2
x1/2. Thus

arc length =
∫ 1

0

√
1 +

(
3
2
x1/2

)2
dx =

∫ 1

0

√
1 + 9

4
x dx

=
∫ 13/4

1

√
u · 4

9
du (u = 1 + 9

4
x, du = 9

4
dx)

= 4
9
· 2

3
u3/2

∣∣13/4

1
= 8

27

((
13
4

)3/2 − 13/2
)

= 8
27

(
133/2

8
− 1
)

= 133/2−8
27

≈ 1.43971.

�

Incidentally, the arc length of the curve y = xa where a is a non-zero
rational number, usually cannot be computed with the aid of the Fundamental
Theorem of Calculus. The only cases in which it can be computed by the FTC
are a=1 (the graph of y = x) and a = 1 + 1

n
where n is an integer. Exercise 32

treats this question.

Figure 9.4.4:

EXAMPLE 2 In Section 9.3 the parametric equations for the motion of a
ball thrown horizontally with a speed of 32 feet per second (≈ 21.8 mph) were
found to be x = 32t, y = −16t2. (See Example 1 and Figure 9.3.1.) How fast
is the ball moving at time t? Find the distance s which the ball travels during
the first b seconds.
SOLUTION From x = 32t and y = −16t2 we compute dx

dt
= 32 and dy

dt
=

−32t. Its speed at time t is

Speed =

√(
dx

dt

)2

+

(
dy

dt

)2

=
√

(32)2 + (−32t)2 = 32
√

1 + t2 feet per second.

The distance traveled is the arc length from t = 0 to t = b. By formula (9.4.1),

arc length =

b∫
0

√
(32)2 + (−32t)2 dt = 32

b∫
0

√
1 + t2 dt.

This integral can be evaluated with an integration table or with the trigono- See Formula 31 in the
integral table.metric substitution x = tan(θ). An antiderivative is

1

2

(
t
√

1 + t2 + ln
∣∣∣t+
√

1 + t2
∣∣∣)
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and the distance traveled is

16b
√

1 + b2 + 16 ln
(
b+
√

1 + b2
)
.

�

EXAMPLE 3 Find the length of one arch of the cycloid found in Example 2
of Section 9.3.
SOLUTION Here the parameter is θ, x = aθ−a sin(θ), and y = a−a cos(θ).
To complete one arch of the cycloid, θ varies from 0 to 2π.

We compute

dx

dθ
= a− a cos(θ) and

dy

dθ
= a sin(θ).

The square of the speed is

(a− a cos(θ))2 + (a sin(θ))2 = a2
(
(1− cos(θ))2 + (sin(θ))2

)
= a2

(
1− 2 cos(θ) + (cos(θ))2 + (sin(θ))2

)
= a2 (2− 2 cos(θ))

= 2a2(1− cos(θ)).

Using boxed formula (9.4.1) and the trigonometric identity 1 − cos(θ) =
2 sin2(θ/2), we have

the length of one arch =

2π∫
0

√
2a2(1− cos(θ)) dθ = a

√
2

2π∫
0

√
1− cos(θ) dθ

= a
√

2

2π∫
0

√
2 sin

(
θ

2

)
dθ = 2a

2π∫
0

sin

(
θ

2

)
dθ

= 2a

(
−2 cos

(
θ

2

)∣∣∣∣2π
0

)
= 2a (−2(−1)− (−2)(1)) = 8a.

This means that while θ varies from 0 to 2π, a bicycle travels a distance of

Figure 9.4.5:

2πa ≈ 6.28318a and a tack in the tread of the tire travels a distance 8a. �

Arc Length and Speed in Polar Coordinates

So far in this section curves have been described in rectangular coordinates.
Next consider a curve given in polar coordinates by the equation r = f(θ).

We will estimate the length of arc ∆s corresponding to small changes ∆θ
and ∆r in polar coordinates, as shown in Figure 9.4.5. The region bounded
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§ 9.4 ARC LENGTH AND SPEED ON A CURVE 711

by the circular arc AB, the straight segment BC, and AC, the part of the
curve, resembles a right triangle whose two legs have lengths r∆θ and ∆r. We
assume ∆s is well approximated by its hypotenuse,

√
(r∆θ)2 + (∆r)2. Thus

we expect

ds

dθ
= lim

∆θ→0

∆s

∆θ
= lim

∆θ→0

√
(r∆θ)2 + (∆r)2

(∆θ)

= lim
∆θ→0

√
r2 +

(
∆r

∆θ

)2

=

√
r2 +

(
dr

dθ

)2

In short, arc length for r = f(θ).

For a curve given in polar coordinates:

ds

dθ
=

√
r2 +

(
dr

dθ

)2

. or ds =
√

(r dθ)2 + (dr)2 =

√
r2 + (r′)2 dθ.

This formula can also be obtained from the formula for the case of rectangular
coordinates by using x = r cos(θ) and y = r sin(θ). (See Exercise 19.) How-
ever, we prefer the geometric approach because it is (i) more direct, (ii) more
intuitive, and (iii) easier to remember. See Exercise 19.

Arc Length of a Polar Curve r = f(θ)

The length of the curve r = f(θ) for θ in [α, β] is s =
∫ β
α
ds where

ds =

√
r2 + (r′))2 dθ =

√
(f(θ))2 + (f ′(θ))2 dθ.

EXAMPLE 4 Find the length of the spiral r = e−3θ for θ in [0, 2π].
SOLUTION First compute

r′ =
dr

dθ
= −3e−3θ,

Calculus October 22, 2010



712 CHAPTER 9 POLAR COORDINATES AND PLANE CURVES

and then use the formula

Arc Length =

β∫
α

√
r2 + (r′)2 dθ =

2π∫
0

√
(e−3θ)2 + (−3e−3θ)2 dθ

=

2π∫
0

√
e−6θ + 9e−6θ dθ =

√
10

2π∫
0

√
e−6θ dθ

=
√

10

2π∫
0

e−3θ dθ =
√

10
e−3θ

−3

∣∣∣∣2π
0

=
√

10

(
e−3·2π

−3
− e−3·0

−3

)
=
√

10

(
e−6π

−3
+

1

3

)
=

√
10

3

(
1− e−6π

)
≈ 1.054093.

�

Summary

This section concerns speed along a parametric path and the length of the
path. If the path is described in rectangular coordinates, then Figure 9.4.6(a)
conveys the key ideas. If in polar coordinates, Figure 9.4.6(b) is the key. It is
much easier to recall these diagrams than the various formulas for speed and
arc length. Everything depends on our old friend: the Pythagorean Theorem.

(a) (b)

Figure 9.4.6: (a) ds =
√

(dx)2 + (dy)2 (b) ds =
√

(rdθ)2 + (dr)2
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§ 9.4 ARC LENGTH AND SPEED ON A CURVE 713

EXERCISES for Section 9.4 Key: R–routine,
M–moderate, C–challenging

In Exercises 1 to 8 find the arc lengths of the given
curves over the given intervals.

1.[R] y = x3/2, x in [1, 2]

2.[R] y = x2/3, x in [0, 1]

3.[R] y = (ex + e−x)/2,
x in [0, b]
4.[R] y = x2/2 −
(ln(x))/4, x in [2, 3]
5.[R] x = cos3(t), y =

sin3(t), t in [0, π/2]

6.[R] r = eθ, θ in [0, 2π]

7.[R] r = 1 + cos(θ), θ in
[0, π]

8.[R] r = cos2(θ/2), θ in
[0, π]

In each of Exercises 9 to 12 find the speed of the par-
ticle at time t, given the parametric description of its
path.

9.[R] x = 50t, y = −16t2

10.[R] x = sec(3t),
y = sin−1(4t)
11.[R] x = t + cos(t),

y = 2t− sin(t)

12.[R] csc(θ/2), y =
tan−1(

√
t)

13.[R]

(a) Graph x = t2, y = t for 0 ≤ t ≤ 3.

(b) Estimate its arc length from (0, 0) to (9, 3) by
an inscribed polygon whose vertices have x-
coordinates 0, 1, 4, and 9.

(c) Set up a definite integral for the arc length of the
curve in question.

(d) Estimate the definite integral in (c) by using a
partition of [0, 3]] into 3 sections, each of length
1, and the trapezoid method.

(e) Estimate the definite integral in (c) by Simpson’s
method with six sections.

(f) If your calculator has a program to evaluate def-
inite integrals, use it to evaluate the definite in-
tegral in (c) to four decimal places.

14.[R]

(a) Graph y = 1/x2 for x in [1, 2].

(b) Estimate the length of the arc in (a) by using
an inscribed polygon whose vertices at (1, 1),
(5

4 ,
(

4
5

)2), (3
2 ,
(

2
3

)2), and (2, 1
4).

(c) Set up a definite integral for the arc length of the
curve in question.

(d) Estimate the definite integral in (c) by the trape-
zoid method, using four equal length sections.

(e) Estimate the definite integral in (c) by Simpson’s
method with four sections.

(f) If your calculator has a program to evaluate def-
inite integrals, use it to evaluate the definite in-
tegral in (c) to four decimal places.

15.[R] How long is the spiral r = e−3θ, θ ≥ 0?

16.[R] How long is the spiral r = 1/θ, θ ≥ 2π?

17.[R] Assume that a curve is described in rectangu-
lar coordinates in the form x = f(y). Show that

Arc Length =

d∫
c

√
1 +

(
dx

dy

)2

dy

where y ranges in the interval [c, d], using a little tri-
angle whose sides have length dx, dy, and ds.

18.[R] Consider the arc length of the curve y = x2/3

for x in the interval [1, 8].

(a) Set up a definite integral for this arc length using
x as the parameter.

(b) Set up a definite integral for this arc length using
y as the parameter.
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714 CHAPTER 9 POLAR COORDINATES AND PLANE CURVES

(c) Evaluate the easier of the two integrals found in
parts (a) and (b).

Note: See Exercise 17.

19.[M] We obtained the formula ds
dθ =

√
r2 +

(
dr
dθ

)2
geometrically.

(a) Obtain the same result by calculus, starting with(
ds
dt

)2
=
(
dx
dt

)2
+
(
dy
dt

)2
, and using the relations

x = r cos(θ) and y = r sin(θ).

(b) Which derivation do you prefer? Why?

20.[M] Let P = (x, y) depend on θ as shown in Fig-
ure 9.4.7.

(a) Sketch the curve that P sweeps out.

(b) Show that P = (2 cos(θ), sin(θ)).

(c) Set up a definite integral for the length of the
curve described in P . (Do not evaluate it.)

(d) Eliminate θ and show that P is on the ellipse

x2

4
+
y2

1
= 1.

Figure 9.4.7:
21.[M]

(a) At time t a particle has polar coordinates r =
g(t), θ = h(t). How fast is it moving?

(b) Use the formula in (a) to find the speed of a
particle which at time t is at the point (r, θ) =
(et, 5t).

22.[M]

(a) How far does a bug travel from time t = 1
to time t = 2 if at time t it is at the point
(x, y) = (cosπt, sinπt)?

(b) How fast is it moving at time t?

(c) Graph its path relative to an xy coordinate sys-
tem. Where is it at time t = 1? At t = 2?

(d) Eliminate t to find a relation between x and y.

23.[M] Find the arc length of the Archimedean spiral
r = aθ for θ in [0, 2π] if a is a positive constant.

24.[M] Consider the cardioid r = 1 + cos θ for θ in
[0, π]. We may consider r as a function of θ or as a
function of s, arc length along the curve, measured,
say, from (2, 0).

(a) Find the average of r with respect to θ in [0, π].

(b) Find the average of r with respect to s.
Hint: Express all quantities appearing in this
average in terms of θ.

(See also Exercises 13 and 14 in the Chapter 9 Sum-
mary.)

25.[M] Let r = f(θ) describe a curve in polar coor-
dinates. Assume that df/dθ is continuous. Let θ be a
function of time t. Let s(t) be the length of the curve
corresponding to the time interval [a, t].

(a) What definite integral is equal to s(t)?

(b) What is the speed ds/dt?
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26.[M] The function r = f(θ) describes, for θ in
[0, 2π], a curve in polar coordinates. Assume r′ is con-
tinuous and f(θ) > 0. Prove that the average of r
as a function of arc length is at least as large as the
quotient 2A/s, where A is the area swept out by the
radius and s is the arc length of the curve. For which
curve is the average equal to 2A/s?

27.[M] The equations x = cos t, y = 2 sin t, t in
[0, π/2] describe a quarter of an ellipse. Draw this arc.
Describe at least two different ways of estimating the
length of this arc. Compare the advantages and chal-
lenges each method presents. Use the method of your
choice to estimate the length of this arc.

28.[M] When a curve is given in rectangular coordi-
nates, its slope is dy

dx . To find the slope of the tangent
line to the curve given in polar coordinates involves a
bit more work.
Assume that r = f(θ). To begin use the relation

dy

dx
=
dy/dθ

dx/dθ
,

which is the Chain Rule in disguise (dydθ = dy
dx

dx
dθ ).

(a) Using the equations y = r sin(θ) and x =
r cos(θ), find dy

dθ and dx
dθ .

(b) Show that the slope is

r cos(θ) + dr
dθ sin(θ)

−r sin(θ) + dr
dθ cos(θ)

. (9.4.2)

29.[M] Use (9.4.2) to find the slope of the cardioid
r = 1 + sin(θ) at θ = π

3 .

30.[M] Show that if lim∆t→0
∆s
|PQ| = 1, then

lim∆t→0
∆s
∆t = lim∆t→0

|PQ|
∆t .

31.[C] Let y = f(x) for x in [0, 1] describe a curve that

starts at (0, 0), ends at (1, 1), and lies in the square
with vertices (0, 0),(1, 0),(1, 1), and (0, 1). Assume f
has a continuous derivative.

(a) What can be said about the arc length of the
curve? How small and how large can it be?

(b) Answer (a) if it is assumed also that f ′(x) ≥ 0
for x in [0, 1].

32.[C] Consider the length of the curve y = xm, where
m is a rational number. Show that the Fundamental
Theorem of Calculus is of aid in computing this length
only if m = 1 or if m is of the form 1+1/n for some in-
teger n. Hint: Chebyshev proved that

∫
xp(1 + x)q dx

is elementary for rational numbers p and q only when
at least one of p, q and p+ q is an integer.

33.[C] If one convex polygon P1 lies inside another
poligon P2 is the perimeter of P1 necessarily less than
the perimeter of P2? What if P1 is not convex?

34.[C] One leaf of the cardioid r = 1+sin(θ) is traced
as θ increases from −π

2 to π
2 . Find the highest point

on that leaf in polar coordinates.

Exercises 35 and 36 form a unit. 35.[C] Fig-
ure 9.4.8(a) shows the angle between the radius and
tangent line to the curve r = f(θ). Using the fact
that γ = α − θ and that tan(A− B) = tan(A)−tan(B)

1+tan(A) tan(B) ,

show that tan(γ) =
r

r′
. Note: See Exercise 36 for the

derivation of tan(γ).

36.[C] The formula tan(γ) = r/r′ in Exercise 35 is so
simple one would expect a simple geometric explana-
tion. Use the “triangle” in Figure 9.4.5 that we used to
obtain the formula for ds

dθ to show that tan(γ) should
be r/r′. Note: See Exercise 35.
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716 CHAPTER 9 POLAR COORDINATES AND PLANE CURVES

(a) (b)

Figure 9.4.8: (a) ARTIST: (a) extend the (red) tan-
gent line to the curve so it intersects the polar axis
and label the angle made by the tangent to the
curve with the polar axis as α
37.[C] Four dogs are chasing each other counterclock-
wise at the same speed. Initially they are at the four
vertices of a square of side a. As they chase each other,
each running directly toward the dog in front, they ap-
proach the center of the square in spiral paths. How
far does each dog travel?

(a) Find the equation of the spiral path each dog
follows and use calculus to answer this question.

(b) Answer the question without using calculus.

38.[C] We assumed that a chord AB of a smooth

curve is a good approximation of the arc
_
AB when B

is near to A. Show that the formula we obtained for
arc length is consistent with this assumption. That is,
if y = f(x), A = (a, f(a)), B = (x, f(x)), then∫ x

a

√
1 + f ′(t)2 dt√

(x− a)2 + (f(x)− f(a))2

approaches 1 as x approaches a. Assume that f ′(x)
is continuous. Hint: L’Hôpital’s Rule is tempting but

does not help. For simplicity, assume a = 0 = f(0).

39.[C] In some approaches to arc length and speed
on a curve the arc length is found first, then the speed.
We outline this method in this Exercise.
Let x = g(t), y = h(t) where g and h have continuous
derivatives. Let a = t0 < t1 < t2 < · · · < tn = b
be a partition of [a, b] into n equal sections of length
∆t = (b− a)/n. Let Pi = (g(ti), h(ti)), which we write
as (xi, yi). Then the polygon P0P1P2 · · ·Pn is inscribed
in the curve. We assume that as n→∞, the length of
this polygon,

∑n
i=1 |Pi−1Pi| approaches the length of

the curve from (g(a), h(a)) to (g(b), h(b)).

(a) Show that the length of the polygon is∑n
i=1

√
(xi − xi−1)2 + (yi − yi−1)2.

(b) Show that the sum can be written as

n∑
i=1

√
(g′(t∗i ))2 + (h′(t∗∗i ))2 ·∆t (9.4.3)

for some t∗i and t∗∗i in [ti−1, ti].

(c) Why would you expect the limit of (9.4.3)
as n → ∞ to be

∫ b
a

√
(g′(t))2 + h′(t))2 dt?

Note: This result is typically proved in Ad-
vanced Calculus, even though t∗i and t∗∗i may be
different.

(d) From (c) deduce that the speed is√
(g′(t))2 + h′(t))2.
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9.5 The Area of a Surface of Revolution

Figure 9.5.1:

In this section we develop a formula for expressing the surface area of a
solid of revolution as a definite integral. In particular, we will show that the
surface area of a sphere is four times the area of a cross section through its
center. (See Figure 9.5.1.) This was one of the great discoveries of Archimedes
in the third century B.C.

Let y = f(x) have a continuous derivative for x in some interval. Assume
that f(x) ≥ 0 on this interval. When its graph is revolved about the x-axis it
sweeps out a surface, as shown in Figures 9.5.2. To develop a definite integral

(a) (b)

Figure 9.5.2:

for this surface area, we use an informal approach.

(a) (b) (c) (d) (e)

Figure 9.5.3:

Consider a very short section of the graph y = f(x). It is almost straight.
Let us approximate it by a short line segment of length ds, a very small
number. When this small line segment is revolved about the x-axis it sweeps
out a narrow band. (See Figures 9.5.3(a) and (b).)
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If we can estimate the area of this band, then we will have a local approx-
imation of the surface area. From the local approximation we can set up a
definite integral for the entire surface area.

Imagine cutting the band with scissors and laying it flat, as in Figures 9.5.3(c)
and (d). It seems reasonable that the area of the flat band in Figure 9.5.3(d)
is close to the area of a flat rectangle of length 2πy and width ds, as in Fig-
ure 9.5.3(e). (See Exercises 28 and 29.)

The gives us

local approximation of the surface area of one slice = 2πy ds.

which, in the usual way, leads to the formula

Surface area =

s1∫
s0

2πy ds. (9.5.1)

where [s0, s1] describes the appropriate interval on the “s-axis”. Since s is a
clumsy parameter, for computations we will use one of the forms for ds to
change (9.5.1) into more convenient integrals.Assume that y ≥ 0 and that

dy/dx is continuous. Say that the section of the graph y = f(x) that was revolved corresponds
to the interval [a, b] on the x-axis, as in Figure 9.5.4. Then

ds =

√
1 +

(
dy

dx

)2

dx

and the surface area integral
∫ s1
s0

2πy ds becomes

Figure 9.5.4:

Surface area =

b∫
a

2πy

√
1 +

(
dy

dx

)2

dx. (9.5.2)

EXAMPLE 1 Find the surface area of a sphere of radius a.
SOLUTION The circle of radius a has the equation x2 + y2 = a2. The top
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half has the equation y =
√
a2 − x2. The sphere of radius a is formed by

revolving this semi-circle about the x-axis. (See Figure 9.5.5.) We have

Figure 9.5.5:

surface area of sphere =

a∫
−a

2πy ds.

Because dy/dx = −x/
√
a2 − x2 we find that

ds =

√
1 +

(
dy

dx

)2

dx =

√
1 +

(
−x√
a2 − x2

)2

dx

=

√
1 +

x2

a2 − x2
dx =

√
a2

a2 − x2
dx =

a√
a2 − x2

dx.

Thus,

surface area of sphere =

a∫
−a

2πy ds =

a∫
−a

2π
√
a2 − x2

a√
a2 − x2

dx

=

a∫
−a

2πa dx = 2πax|a−a = 4πa2.

The surface area of a sphere is 4 times the area of its equatorial cross section.
�

If the graph is given parametrically, x = g(t), y = h(t), where g and h
have continuous derivatives and h(t) ≥ 0, then it is natural to express the
integral

∫ s1
s0

2πy ds as an integral over an interval on the t-axis. If t varies in
the interval [a, b], then

ds =
√

(dx)2 + (dy)2 =

√(
dx

dt

)2

+

(
dy

dt

)2

dt

which leads to

Surface area for
a parametric curve

=

b∫
a

2πy

√(
dx

dt

)2

+

(
dy

dt

)2

dt. (9.5.3)
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Formula 9.5.2 is just the special case of Formula 9.5.3 when the parameter is
x.

As the formulas are stated, they seem to refer only to surfaces obtained by
revolving a curve about the x-axis. In fact, they refer to revolution about any
line. The factor y in the integrand, 2πy ds, is the distance from the typical
point on the curve to the axis of revolution. Replace y by R (for radius) to
free ourselves from coordinate systems. (Use capital R to avoid confusion with
polar coordinates.) The simplest way to write the formula for surface area of
revolution is then

Surface area =

d∫
c

2πR ds,

Figure 9.5.6: The key to
this section.

where the interval [c, d] refers to the parameter s. However, in practice arc
length, s, is seldom a convenient parameter. Instead, x, y, t or θ is used and
the interval of integration describes the interval through which the parameter
varies.

To remember this formula, think of a narrow circular band of width ds
and radius R as having an area close to the area of the rectangle shown in
Figure 9.5.6.

EXAMPLE 2 Find the area of the surface obtained by revolving around
the y-axis the part of the parabola y = x2 that lies between x = 1 and x = 2.
(See Figure 9.5.7.)R is found by inspection of

a diagram.

SOLUTION The surface area is
∫ b
a

2πR ds. Since the curve is described as a
function of x, choose x as the parameter. By inspection of Figure 9.5.7, R = x.
Next, note that

Figure 9.5.7:

ds =

√
1 +

(
dy

dx

)2

dx =
√

1 + 4x2 dx.

The surface area is therefore

2∫
1

2πx
√

1 + 4x2 dx.

To evaluate the integral, use the substitution

u = 1 + 4x2 du = 8x dx.
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Hence x dx = du/8. The new limits of integration are u = 5 and u = 17. Thus

surface area =

17∫
5

2π
√
u
du

8
=
π

4

17∫
5

√
u du

=
π

4
· 2

3
u3/2

∣∣∣∣17

5

=
π

6
(173/2 − 53/2) ≈ 30.84649.

�

Figure 9.5.8:

EXAMPLE 3 Find the surface area when the curve r = cos(θ), θ in [0, π/2]
is revolved around (a) the x-axis and (b) the y-axis.
SOLUTION The curve is shown in Figure 9.5.8. Note that it is the semicircle
with radius 1/2 and center (1/2, 0). (a) We need to find both R and ds/dθ.
First, R = r sin(θ) = cos(θ) sin(θ). And, using the formula for ds

dθ
for a polar

curve from Section 9.4 we have

ds

dθ
=

√
r(θ)2 + r′(θ)2 =

√
(cos(θ))2 + (− sin(θ))2 = 1.

Then

Figure 9.5.9:

surface area =

π/2∫
0

2πR
ds

dθ
dθ =

π/2∫
0

2π cos(θ) sin(θ)(1) dθ

=

π/2∫
0

2π sin(θ) cos(θ) dθ = 2π
sin2(θ)

2

∣∣∣∣π/2
0

= π.

This is expected since this surface of revolution is a sphere of radius 1/2. See
Figure 9.5.9. Recall the easy way to find∫ π/2

0 cos2(θ) dθ (b) In this
case
R = r cos(θ) = cos2(θ).
Thus in Section 8.5.

Figure 9.5.10:

surface area =

π/2∫
0

2πR
ds

dθ
dθ =

π/2∫
0

2π cos2(θ)(1) dθ

= 2π

π/2∫
0

cos2(θ) dθ = 2π(
π

4
) =

π2

2
.

This surface is the top half of a doughnut whose hole has just vanished. See
Figure 9.5.10. �
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Summary

This section developed a definite integral for the area of a surface of revolution.
It rests on the local estimate of the area swept out by a short segment of length

Figure 9.5.11:

ds revolved around a line L at a distance R from the segment: 2πR ds. (See
Figure 9.5.11.) We gave an informal argument for this estimate; Exercises 28
and 29 develop it more formally.
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EXERCISES for Section 9.5 Key: R–routine,
M–moderate, C–challenging

In each of Exercises 1 to 4 set up a definite integral for
the area of the indicated surface using the suggested
parameter. Show the radius R on a diagram. Do not
evaluate the definite integrals.

1.[R] The graph of y =
x3, x on the interval [1, 2]
revolved about the x-axis
with parameter x.

2.[R] The graph of y =
x3, x on the interval [1, 2]
revolved about the line
y = −1 with parameter
x.

3.[R] The graph of y =
x3, x on the interval [1, 2]
revolved about the y-axis
with parameter y.
4.[R] The graph of y =
x3, x on the interval [1, 2]
revolved about the y-axis
with parameter x.

5.[R] Find the area of the surface obtained by rotat-
ing about the x-axis that part of the curve y = ex that
lies above [0, 1].

6.[R] Find the area of the surface formed by rotat-
ing one arch of the curve y = sin(x) about the x-axis.

7.[R] One arch of the cycloid given parametrically by
the formula x = θ − sin(θ), y = 1 − cos(θ) is revolved

around the x-axis. Find the area of the surface pro-
duced.

8.[R] The curve given parametrically by x = et cos(t),
y = et sin(t) (0 ≤ t ≤ π/2) is revolved around the x-
axis. Find the area of the surface produced.

In each of Exercises 9 to 16 find the area of the surface
formed by revolving the indicated curve about the indi-
cated axis. Leave the answer as a definite integral, but
indicate how it could be evaluated by the Fundamental
Theorem of Calculus.

9.[R] y = 2x3 for x in
[0, 1]; about the x-axis.
10.[R] y = 1/x for x in
[1, 2]; about the x-axis.
11.[R] y = x2 for x in
[1, 2]; about the x-axis.
12.[R] y = x4/3 for x in
[1, 8]; about the y-axis.
13.[R] y = x2/3 for x in
[1, 8]; about the line y = 1.

14.[R] y = x3/6+1/(2x)
for x in [1, 3]; about the
y-axis.

15.[R] y = x3/3+1/(4x)
for x in [1, 2]; about the
line y = −1.

16.[R] y =
√

1− x2 for x
in [−1, 1]; about the line
y = −1.

17.[M] Consider the smallest tin can that contains a
given sphere.1 (The height and diameter of the tin can
equal the diameter of the sphere.)

1 Archimedes, who obtained the solution about 2200 years ago, considered it his greatest accomplishment. Cicero
wrote, about two centuries after Archimedes’ death:

I shall call up from the dust [the ancient equivalent of a blackboard] and his measuring-rod an obscure,
insignificant person belonging to the same city [Syracuse], who lived many years after, Archimedes. When
I was quaestor I tracked out his grave, which was unknown to the Syracusans (as they totally denied its
existence), and found it enclosed all round and covered with brambles and thickets; for I remembered certain
doggerel lines inscribed, as I had heard, upon his tomb, which stated that a sphere along with a cylinder
had been set up on the top of his grave. Accordingly, after taking a good look around (for there are a great
quantity of graves at the Agrigentine Gate), I noticed a small column rising a little above the bushes, on
which there was the figure of a sphere and a cylinder. And so I at once said to the Syracusans (I had their
leading men with me) that I believed it was the very thing of which I was in search. Slaves were sent in with
sickles who cleared the ground of obstacles, and when a passage to the place was opened we approached
the pedestal fronting us; the epigram was traceable with about half the lines legible, as the latter portion
was worn away. [Cicero, Tusculan Disputations, vol. 23, translated by J. E. King, Loef Classical Library,
Harvard Univeristy, Cambridge, 1950.]

Archimedes was killed by a Roman soldier in 212 B.C. Cicero was quaestor in 75 B.C.
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724 CHAPTER 9 POLAR COORDINATES AND PLANE CURVES

(a) Compare the volume of the sphere with the vol-
ume of the tin can.

(b) Compare the surface area of the sphere with the
total surface area of the can.

Note: See also Exercise 37.

Figure 9.5.12:
18.[M]

(a) Compute the area of the portion of a sphere of
radius a that lies between two parallel planes at
distances c and c+h from the center of the sphere
(0 ≤ c ≤ c+ h ≤ a).

(b) The result in (a) depends only on h, not on c.
What does this mean geometrically? (See Fig-
ure 9.5.12.)

In Exercises 19 and 20 estimate the surface area ob-
tained by revolving the specified arc about the given
line. First, find a definite integral for the surface area.
Then, use either Simpson’s method with six sections
or a programmable calculator or computer to approx-
imate the value of the integral.

19.[M] y = x1/4, x in
[1, 3], about the x-axis.

20.[M] y = x1/5, x

in [1, 3], about the line
y = −1.

Exercises 21 to 24 are concerned with the area of a
surface obtained by revolving a curve given in polar
coordinates.

21.[M] Show that the
area of the surface ob-
tained by revolving the
curve r = f(θ), α ≤ θ ≤
β, around the polar axis is

β∫
α

2πr sin θ
√
r2 + (r′)2 dθ.

Hint: Use a local approx-
imation informally.

22.[M] Use Exercise 21
to find the surface area of
a sphere of radius a.

23.[M] Find the area of
the surface formed by re-
volving the portion of the
curve r = 1 + cos(θ) in
the first quadrant about
(a) the x-axis, (b) the y-
axis. Hint: The identity
1 + cos(θ) = 2 cos2(θ/2)
may help in (b).

24.[M] The curve r =
sin(2θ), θ in [0, π/2], is re-
volved around the polar
axis. Set up an integral
for the surface area.

25.[M] The portion of the curve x2/3 + y2/3 = 1
situated in the first quadrant is revolved around the
x-axis. Find the area of the surface produced.

26.[M] Although the Fundamental Theorem of Cal-
culus is of no use in computing the perimeter of the
ellipse x2/a2 + y2/b2 = 1, it is useful in computing the
surface area of the “football” formed when the ellipse
is rotated about one of its axes.

(a) Assuming that a > b and that the ellipse is re-
volved around the x-axis, find that area.

(b) Does your answer give the correct formula for
the surface area of a sphere of radius a, 4πa2?
Hint: Let b approach a from the left.

27.[M] The (unbounded) region bounded by y = 1/x
and the x-axis and situated to the right of x = 1 is
revolved around the x-axis.

(a) Show that its volume is finite but its surface area
is infinite.
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(b) Does this mean that an infinite area can be
painted by pouring a finite amount of paint into
this solid?

Exercises 28 and 29 obtain the formula for the area of
the surface obtained by revolving a line segment about
a line that does not meet it. (This area was only esti-
mated in the text.)

(a) (b) (c) (d)

Figure 9.5.13:

28.[M] A right circular
cone has slant height L
and radius r, as shown
in Figure 9.5.13(a). If
this cone is cut along a
line through its vertex and
laid flat, it becomes a
sector of a circle of ra-
dius L, as shown in Fig-
ure 9.5.13(b). By compar-
ing Figure 9.5.13(b) to a
complete disk of radius L
find the area of the sector
and thus the area of the
cone in Figure 9.5.13(a).

29.[M] Consider a line
segment of length L in the
plane which does not meet
a certain line in the plane,
called the axis. (See
Figure 9.5.13(c).) When
the line segment is re-
volved around the axis, it
sweeps out a curved sur-
face. Show that the area
of this surface equals 2πrL
where r is the distance
from the midpoint of the
line segment to the axis.
The surface in Figure 9.5.3
is called a frustum of a
cone. Follow these steps:

(a) Complete the cone
by extending the
frustum as shown
in Figure 9.5.13(d).
Label the radii and
lengths as in that
figure. Show that
r1
r2

= L1
L2

, hence
r1L2 = r2L1.

(b) Show that the sur-
face area of the
frustum is πr1L1 −
πr2L2.

(c) Express L1 as L2 +
L and, using the
result of (a), show
that

πr1L1 − πr2L2 = πr2(L1 − L2) + πr1L = πr2L+ πr1L.

(d) Show that the sur-
face area of the frus-
tum is 2πrL, where
r = (r1 + r2)/2.
Note: This justi-
fies our approxima-
tion 2πR ds.

30.[C] The derivative (with respect to r) of the vol-
ume of a sphere is its surface area: d

dr

(
4πr3/3

)
= 4πr2.

Is this simply a coincidence?

31.[C] Define the moment of a curve around the
x-axis to be

∫ s2
s1
y ds, where s1 and s2 refer to the

range of the arc length s. The moment of the curve
around the y-axis is defined as

∫ s2
s1
x ds. The cen-

troid of the curve, (x, y), is defined by setting

x =

∫ s2
s1
x ds

length of curve
y =

∫ s2
s1
y ds

length of curve
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Find the centroid of the top half of the circle x2 +y2 =
a2.

32.[C] Show that the area of the surface obtained by
revolving about the x-axis a curve that lies above it
is equal to the length of the curve times the distance
that the centroid of the curve moves. Note: See Ex-
ercise 31.

33.[C] Let a be a positive number and R the region
bounded by y = xa, the x-axis, and the line x = 1.

(a) Show that the centroid of R is
(
a+1
4a+2 ,

(
a+1
a+2

)a)
.

(b) Show that the centroid of R lies in R for all large
values of a.

Note: It is true that the centroid lies in R for all
positive values of a, but this proof is more difficult.

34.[C] Use Exercise 32 to find the surface area of
the doughnut formed by revolving a circle of radius a
around a line a distance b from its center, b ≥ a.

35.[C] Use Exercise 32 to find the area of the curved
part of a cone of radius a and height h.

36.[C] For some continuous functions f(x) the defi-
nite integral

∫ b
a f(x) dx depends only on the width of

the interval [a, b]; namely, there is a function g(x) such
that

b∫
a

f(x) dx = g(b− a). (9.5.4)

(a) Show that every constant function f(x) satisfies
(9.5.4).

(b) Prove that if f(x) satisfies (9.5.4), then it must
be constant.

Note: See Exercise 18.

37.[C] The Mercator map discussed in the CIE of
this chapter preserves angles. A Lambert azimuthal
equal-area projection preserves areas, but not an-
gles. It is made by projecting a sphere on a cylinder
tangent at the equator by rays parallel to the equa-
torial plane and having one end on the diameter that
joins the north and south poles, as shown in Figure ??.
Explain why a Lambert map preserves areas.
Hint: See Exercise 17.
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9.6 Curvature

In this section we use calculus to obtain a measure of the “curviness” or “cur-
vature” at points on a curve. This concept will be generalized in Section 15.2
in the study of motion along a curved path in space.

Introduction

Imagine a bug crawling around a circle of radius one centimeter, as in Fig-
ure 9.6.1(a). As it walks a small distance, say 0.1 cm, it notices that its
direction, measured by angle θ, changes. Another bug, walks around a larger
circle, as in Figure 9.6.1(b). Whenever it goes 0.1 cm, its direction, measured
by angle φ, changes by much less. The first bug feels that his circle is curvier
than the circle of the second bug. We will provide a measure of “curviness”
or curvature. A straight line will have “zero curvature” everywhere. A circle
of radius a will turn out to have curvature 1/a everywhere. For other curves,
the curvature varies from point to point.

(a) (b)

Figure 9.6.1: The circle in (b) has twice the radius as the circle in (a). But,
the change in ∆φ in (b) is half that in (a).

Definition of Curvature

“Curvature” measures how rapidly the direction changes as we move a small
distance along a curve. We have a way of assigning a numerical value to
direction, namely, the angle of the tangent line. The rate of change of this
angle with respect to arc length will be our measure of curvature.

Calculus October 22, 2010



728 CHAPTER 9 POLAR COORDINATES AND PLANE CURVES

DEFINITION (Curvature) Assume that a curve is given para-
metrically, with the parameter of the typical point P being s, the
distance along the curve from a fixed P0 to P . Let φ be the angle
between the tangent line at P and the positive part of the x-axis.
The curvature κ at P is the absolute value of the derivative, dφ

ds
:

Figure 9.6.2: curvature = κ =

∣∣∣∣dφds
∣∣∣∣

κ is the Greek letter
“kappa”. whenever the derivative exists. (See Figure 9.6.2.)

Observe that a straight line has zero curvature everywhere, since φ is con-
stant.

The next theorem shows that curvature of a small circle is large and the
curvature of a large circle is small, in agreement with the bugs’ experience.

Theorem. (Curvature of Circles) For a circle of radius a, the curvature
∣∣dφ
ds

∣∣
is constant and equals 1/a, the reciprocal of the radius.

Proof

It is necessary to express φ as a function of arc length s on a circle of radius

Figure 9.6.3:

a. Refer to Figure 9.6.3. Arc length s is measured counterclockwise from the
point P0 on the x-axis. Then φ = π

2
+ θ, as Figure 9.6.3 shows. By definition

of radian measure, s = aθ, so that θ = s/a. We can solve for φ, φ = π
2

+ s
a
.

Differentiating with respect to arc length yields:

dφ

ds
=

1

a
,

as claimed. •

Computing Curvature

When a curve is given in the form y = f(x), the curvature can be expressed

in terms of the first and second derivatives, dy
dx

and d2y
dx2 .

Theorem. (Curvature of y = f(x)) Let arc length s be measured along the
curve y = f(x) from a fixed point P0. Assume that x increases as s increases
and that y′ and y′′ are continuous. ThenThe curvature of y = f(x).
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curvature = κ =

∣∣∣ d2ydx2

∣∣∣(
1 +

(
dy
dx

)2
)3/2

.

Proof

The Chain Rule, dφ
dx

= dφ
ds

ds
dx

, implies

dφ

ds
=

dφ
dx
ds
dx

.

As was shown in Section 9.3,

ds

dx
=

(
1 +

(
dy

dx

)2
)1/2

.

All that remains is to express dφ
dx

in terms of dy
dx

and d2y
dx2 . Note that in Fig-

Figure 9.6.4:

ure 9.6.4,

dy

dx
= slope of tangent line to the curve = tan(φ). (9.6.1)

We find dφ
dx

by differentiating both sides of (9.6.1) with respect to x, that is,

both sides of the equation dy
dx

= tan(φ). Thus

d2y

dx2
=

d

dx
(tan(φ)) = sec2(φ) · dφ

dx
=
(
1 + tan2(φ)

) dφ
dx

=

(
1 +

(
dy

dx

)2
)
dφ

dx
.

Solving for dφ/dx, we get

dφ

dx
=

d2y
dx2

1 +
(
dy
dx

)2 .

Consequently,

dφ

ds
=

dφ
dx
ds
dx

=
d2y
dx2(

1 +
(
dy
dx

)2
)√

1 +
(
dy
dx

)2
=

d2y
dx2(

1 +
(
dy
dx

)2
)3/2

,

and the theorem is proved. •
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WARNING (Geometry of the Curvature) One might have ex-

pected the curvature to depend only on the second derivative, d2y
dx2 ,

since it records the rate at which the slope changes. This expecta-
tion is correct only when dy

dx
= 0, that is, at critical points in the

graph of y = f(x). (See also Exercise 28.)

EXAMPLE 1 Find the curvature at a point (x, y) on the curve y = x2.

SOLUTION In this case dy
dx

= 2x and d2y
dx2 = 2. The curvature at (x, y) is

Figure 9.6.5:

κ =

∣∣∣ d2ydx2

∣∣∣(
1 +

(
dy
dx

)2
)3/2

=
2

(1 + (2x)2)3/2
.

The maximum curvature occurs when x = 0. The curvatures at (x, x2) and
at (−x, x2) are equal. As |x| increases, the curve becomes straighter and the
curvature approaches 0. (See Figure 9.6.5.) �

Curvature of a Parameterized Curve
Theorem 9.6 applies also to
curves given parametrically. Theorem 9.6 tells how to find the curvature if y is given as a function of x.

But it holds as well when the curve is described parametrically, where x and
y are functions of some parameter such as t or θ. Just use the fact that

dy

dx
=

dy
dt
dx
dt

and
d2y

dx2
=

d
dt

(
dy
dx

)
dx
dt

. (9.6.2)

Both equations in (9.6.2) are special cases of

df

dx
=

df
dt
dx
dt

.

And this equation is just the Chain Rule in disguise,

df

dt
=
df

dx

dx

dt
.

In the first equation in (9.6.2), the function f is y; in the second equation, f
is dy

dx
. Example 2 illustrates the procedure.

EXAMPLE 2 The cycloid determined by a wheel of radius 1 has the para-
metric equations

x = θ − sin(θ) and y = 1− cos(θ),
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Figure 9.6.6:

as shown in Figure 9.6.6. Find the curvature at a typical point on this curve.
SOLUTION First find dy

dx
in terms of θ. We have

dx

dθ
= 1− cos(θ) and

dy

dθ
= sin(θ).

Thus
dy

dx
=

sin(θ)

1− cos(θ)
.

Similar direct calculations show that The parts of the cycloid
near the x-axis are nearly
vertical. See Exercise 29.

d2y

dx2
=

d

dx

(
dy

dx

)
=

d
dθ

(
dy
dx

)
dx
dθ

=

d
dθ

(
sin(θ)

1−cos(θ)

)
1− cos(θ)

=
−1

(1− cos(θ))2
.

Thus the curvature is

κ =

∣∣∣ d2ydx2

∣∣∣(
1 +

(
dy
dx

)2
)3/2

=

∣∣∣ −1
(1−cos(θ))2

∣∣∣(
2

1−cos(θ)

)3/2
=

1

23/2
√

1− cos(θ)
.

Since y = 1− cos(θ) and 23/2 =
√

8, the curvature equals 1/
√

8y. �

Radius of Curvature

As Theorem 9.6 shows, a circle with curvature κ has radius 1/κ. This suggests
the following definition. A large radius of curvature

implies a small curvature.

DEFINITION (Radius of Curvature) The radius of curvature
of a curve at a point is the reciprocal of the curvature:

radius of curvature =
1

curvature
=

1

κ
.
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As can be easily checked, the radius of curvature of a circle of radius a is,
fortunately, a.

The cycloid in Example 2 has radius of curvature at the point (x, y) equal
to
√

8y. The higher the point on the curve, the straighter the curve.The line through a point P
as a curve that looks most

like the curve near P is the
tangent line. The circle

through P that looks most
like the curve near P has

the same slope at P as the
curve and a radius equal to

the radius of curvature at
P . It is called the

osculating circle, from the
Latin “osculum = kiss.”

The tangent line is never
called the “osculating line”.

The Osculating Circle

At a given point P on a curve, the osculating circle at P is defined to be
that circle which (a) passes through P , (b) has the same slope at P as the
curve does, and (c) has the same curvature there.

For instance, consider the parabola y = x2 of Example 1. When x = 1,
the curvature is 2/53/2 and the radius of curvature is 53/2/2 ≈ 5.59017. The
osculating circle at (1, 1) is shown in Figure 9.6.7.

Observe that the osculating circle in Figure 9.6.7 crosses the parabola as
it passes through the point (1, 1). Although this may be surprising, a little
reflection will show why it is to be expected.

Think of driving along the parabola y = x2. If you start at (1, 1) and drive
up along the parabola, the curvature diminishes. It is smaller than that of
the circle of curvature at (1, 1). Hence you would be turning your steering
wheel to the left and would be traveling outside the osculating circle at (1, 1).

Figure 9.6.7:

On the other hand, if you start at (1, 1) and move toward the origin (to the
left) on the parabola, the curvature increases and is greater than that of the
osculating circle at (1, 1), so you would be driving inside the osculating circle
at (1, 1). This informal argument shows why the osculating circle crosses the
curve in general. In the case of y = x2, the only osculating circle that does
not cross the curve at its point of tangency is the one that is tangent at (0, 0),
where the curvature is a maximum.

Summary

We defined the curvature κ of a curve as the absolute value of the rate at which
the angle between the tangent line and the x-axis changes as a function of arc
length; curvature equals

∣∣dφ
ds

∣∣. If the curve is the graph of y = f(x), then

κ =

∣∣∣ d2ydx2

∣∣∣(
1 +

(
dy
dx

)2
)3/2

.

If the curve is given in terms of a parameter t then compute dy
dx

and d2y
dx2 with

the aid of the relationEquation (9.6.3) is our old
friend, the Chain Rule; just

clear the denominator.
d( )

dx
=

d( )
dt
dx
dt

, (9.6.3)
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the empty parentheses enclosing first y, then dy
dx

.
Radius of curvature is the reciprocal of curvature.
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EXERCISES for Section 9.6 Key: R–routine,
M–moderate, C–challenging

In each of Exercises 1 to 6 find the curvature and radius
of curvature of the specified curve at the given point.

1.[R] y = x2 at (1, 1)
2.[R] y = cos(x) at (0, 1)

3.[R] y = e−x at (1, 1/e)

4.[R] y = ln(x) at (e, 1)

5.[R] y = tan(x) at (π4 , 1)

6.[R] y = sec(2x) at
(π6 , 2)

In Exercises 7 to 10 find the curvature of the given
curves for the given value of the parameter.

7.[R]
{
x = 2 cos(3t)
y = 2 sin(3t)

at t = 0

8.[R]
{
x = 1 + t2

y = t3 + t4

at t = 2

9.[R]
{
x = e−t cos(t)
y = e−t sin(t)

at t = π
6

10.[R]
{
x = cos3(θ)
y = sin3(θ)

at θ = π
3

11.[R]

(a) Compute the curvature and radius of curvature
for the curve y = (ex + e−x)/2.

(b) Show that the radius of curvature at (x, y) is y2.

12.[R] Find the radius of curvature along the curve
y =
√
a2 − x2, where a is a constant. (Since the curve

is part of a circle of radius a, the answer should be a.)

13.[R] For what value of x is the radius of curvature
of y = ex smallest?
Hint: How does one find the minimum of a function?

14.[R] For what value of x is the radius of curvature
of y = x2 smallest?

15.[M]

(a) Show that at a point where a curve has its tan-
gent parallel to the x-axis its curvature is sim-
ply the absolute value of the second derivative
d2y/dx2.

(b) Show that the curvature is never larger than the
absolute value of d2y/dx2.

16.[M] An engineer lays out a railroad track as in-
dicated in Figure 9.6.8(a). BC is part of a circle; AB
and CD are straight and tangent to the circle. After
the first train runs over the track, the engineer is fired
because the curvature is not a continuous function.
Why should the curvature be continuous?

(a) (b)

Figure 9.6.8:
17.[M] Railroad curves are banked to reduce wear on
the rails and flanges. The greater the radius of cur-
vature, the less the curve must be banked. The best
bank angle A satisfies the equation tan(A) = v2/(32R),
where v is speed in feet per second and R is radius of
curvature in feet. A train travels in the elliptical track

x2

10002
+

y2

5002
= 1

at 60 miles per hour. Find the best angle A at the
points (1000, 0) and (0, 500). Note: x and y are mea-
sured in feet; 60 mph=88 fps.

18.[M] The flexure formula in the theory of beams
asserts that the bending moment M required to bend
a beam is proportional to the desired curvature,
M = c/R, where c is a constant depending on the
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beam and R is the radius of curvature. A beam is
bent to form the parabola y = x2. What is the ratio
between the moments required at (a) at (0, 0) and (b)
at (2, 4)? (See Figure 9.6.8(b).)

Exercises 19 to 21 are related.

19.[M] Find the radius
of curvature at a typical
point on the curve whose
parametric equations are

x = a cos θ, y = b sin θ.

20.[M]

(a) Show, by eliminat-
ing θ, that the curve
in Exercise 19 is the
ellipse

x2

a2
+
y2

b2
= 1.

(b) What is the radius
of curvature of this
ellipse at (a, 0)? at
(0, b)?

21.[M] An ellipse has a
major diameter of length
6 and a minor diameter of
length 4. Draw the circles
that most closely approx-
imate this ellipse at the
four points that lie at the
extremities of its diame-
ters. (See Exercises 19
and 20.)

In each of Exercises 22 to 24 a curve is given in polar
coordinates. To find its curvature write it in rectangu-
lar coordinates with parameter θ, using the equations
x = r cos(θ) and y = r sin(θ).

22.[M] Find the curva-
ture of r = a cos(θ).
23.[M] Show that at the
point (r, θ) the cardioid
r = 1 + cos(θ) has curva-

ture 3
√

2/(4
√
r).

24.[M] Find the curva-
ture of r = cos(2θ).

25.[M] If, on a curve, dy/dx = y3, express the curva-
ture in terms of y.

26.[M] As is shown in physics, the larger the ra-
dius of curvature of a turn, the faster a given car can
travel around that turn. The required radius of cur-
vature is proportional to the square of the maximum

speed. Or, conversely, the maximum speed around a
turn is proportional to the square root of the radius
of curvature. If a car moving on the path y = x3 (x
and y measured in miles) can go 30 miles per hour at
(1, 1) without sliding off, how fast can it go at (2, 8)?

27.[M] Find the local extrema of the curvature of

(a) y = x+ ex

(b) y = ex

(c) y = sin(x)

(d) y = x3

28.[M] Sam says, “I don’t like the definition of curva-
ture. It should be the rate at which the slope changes
as a function of x. That is d

dx

(
dy
dx

)
, which is the sec-

ond derivative, d
2y
dx2 .” Give an example of a curve which

would have constant curvature according to Sam’s def-
inition, but whose changing curvature is obvious to the
naked eye.

29.[M] In Example 2 some of the steps were omitted
in finding that the cycloid given by x = θ− sin(θ), y =
1 − cos(θ) has curvature κ = 1/(23/2

√
1− cos(θ)) =

1/
√

8y. In this exercise you are asked to show all steps
in this calculation.

(a) Verify that
dy

dx
=

sin(θ)
1− cos(θ)

.

(b) Show that
d

dθ

(
dy

dx

)
=

−1
1− cos(θ)

(c) Verify that
d2y

dx2
=

−1
(1− cos(θ))2

.

(d) Show that 1 +
(
dy

dx

)2

=
2

1− cos(θ)
.

(e) Compute the curvature, κ, in terms of θ.

(f) Express the curvature found in (e) in terms of x
and y.
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(g) At which points on the cycloid is the curvature
largest?

(h) At which points on the cycloid is the curvature
smallest?

30.[M] Assume that g and h are functions with con-
tinuous second derivatives. In addition, assume as we
move along the parameterized curve x = g(t), y = h(t),
the arc length s from a point P0 increases as t increases.
Show that

κ =
|ẋÿ − ẏẍ|

(ẋ2 + ẏ2)3/2
.

Note: Newton’s dot notation for derivatives shortens
the formula: ẋ = dx

dt , ẍ = d2x
dt2

, ẏ = dy
dt , and ÿ = d2y

dt2
.

31.[M] Use the result of Exercise 30 to find the curva-
ture of the cycloid of Example 2. Note: x = θ−sin(θ),
y = 1− cos(θ)

32.[C] (Contributed by G.D. Chakerian) If a planar
curve has a constant radius of curvature must it be
part of a circle? That the answer is “yes” is important
in experiments conducted with a cyclotron: Physical
assumptions imply that the path of an electron enter-
ing a uniform magnetic field at right angles to the field
has constant curvature. Show that it follows that the
path is part of a circle.

(a) Show that ds
dφ = R, the radius of curvature.

(b) Show that dx
dφ = R cos(φ).

(c) Show that dy
dφ = R sin(φ).

(d) With the aid of (b) and (c), find an equation for
the curvature involving x and y.

Hint: For (b) and (c) draw the little triangle whose
hypotenuse is like a short piece of arc length ds on the
curve and whose legs are parallel to the axes. For (d),
think about antiderivatives. Note: Physicists show
why the radius of curvature is constant, leaving it to
the mathematicians to show that therefore the path is
a circle.

33.[C] At the top of the cycloid in Example 2 the
radius of curvature is twice the diameter of the rolling
circle. What would you have guessed the radius of
curvature to be at this point? Why is it not simply the
diameter of the wheel, since the wheel at each moment
is rotating about its point of contact with the ground?

34.[C] A smooth convex curve has length L.

(a) Show that the average of its curvature, as a func-
tion of arc length, is 2π/L.

(b) Check that the formula in (a) is correct for a
circle of radius a.

October 22, 2010 Calculus



§ 9.S CHAPTER SUMMARY 737

9.S Chapter Summary

This chapter deals mostly with curves described in polar coordinates and
curves given parametrically. The following table is a list of reminders for
most of the ideas in the chapter.

Concept Memory Aid Comment

Area =
∫ β
α

r2

2
dθ The narrow sector resembles a trian-

gle of base r dθ and height r, so dA =
1
2
(r dθ)(r) = 1

2
r2 dθ.

Arc length =∫ b
a

√(
dx
dt

)2
+
(
dy
dt

)2
dt

Arc length =∫ b
a

√
1 +

(
dy
dx

)2
dx

A short part of the curve is almost
straight, suggesting (ds)2 = (dx)2 +
(dy)2.

Arc length =
∫ β
α

√
r2 + (r′)2 dθ

=
∫ β
α

√
r2 +

(
dr
dθ

)2
dθ

Speed =

√(
dx
dt

)2
+
(
dy
dt

)2

=
√(

r dθ
dt

)2
+
(
dr
dt

)2

The shaded area with two curved sides
looks like a right triangle, suggesting
(ds)2 = (rdθ)2 + (dr)2.

Area of surface of revolution

=
∫ b
a

2πR ds

Curvature = κ =
∣∣dφ
ds

∣∣ Using the chain rule to write
∣∣dφ
ds

∣∣ as∣∣∣ (dφ/dx
(ds/dx)

∣∣∣ one gets the formula κ =
|y′′|

(1+(y′)2)3/2

If a curve is given parametrically, its curvature can be found by replacing
dy
dx

by dy/dt
dx/dt

, and, similarly, d2y
dx2 =

d
dx

( dydx)
by

d
dy (

dy
dx)

dx/dt
.

Section 15.2 defines curvature of a curve in space, using vectors. It is
consistent with the definition given here for curves that happen to lie in a
plane.
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EXERCISES for 9.S Key: R–routine, M–moderate, C–challenging

1.[R] When driving along a curvy road, which is
more important in avoiding car sickness, dφ/ds or
dφ/dt, where t is time.

2.[R] Some definite integrals can be evaluated by in-
terpretting them as the area of an appropriate region.
Consider

∫ π/2
0 cos2(θ) dθ.

(a) Evaluate
∫ π/2

0 cos2(θ) dθ by identifying it as the
area of an appropriate region.

(b) Evaluate
∫ π/2

0 cos2(θ) dθ with the use of a double
angle formula.

(c) Repeat (a) and (b) for
∫ π

0 sin2(θ) dθ.

(d) Repeat (a) and (b) for
∫ 2π
π sin2(θ) dθ.

3.[R] The solution to Example 3 (Section 9.2) requires
the evaluation of the definite integrals

∫ π/2
0 cos2(θ) dθ

and
∫ π

0 (1 + cos(θ))2 dθ. Evaluate these definite inte-
grals making use of the ideas in Exercise 2 as much as
possible.

4.[M] A physics midterm includes the following infor-
mation: For r =

√
x2 + y2 and y constant,

(a)
∫
dx

r
= ln(x+r), (b)

∫
x dx

r
= r, (c)

∫
dx

r3
=

x

y2r
.

Show by differentiating that these equations are cor-
rect.

5.[M] (Contributed by Jeff Lichtman.) Let f and g
be two continuous functions such that f(x) ≥ g(x) ≥ 0
for x in [0, 1]. Let R be the region under y = f(x) and
above [0, 1]; let R∗ be the region under y = g(x) and
above [0, 1].

(a) Do you think the center of mass of R is at least
as high as the center of mass of R∗? (Give your
opinion, without any supporting calculations.)

(b) Let g(x) = x. Define f(x) to be 1
3 for 0 ≤ x ≤ 1

3
and let f(x) be x if 1

3 ≤ x ≤ 1. (Note that f
is continuous.) Find ȳ for R and also for R∗.
(Which is larger?)

(c) Let a be a constant, 0 ≤ a ≤ 1. Let f(x) = a for
0 ≤ x ≤ a, and let f(x) = x for a ≤ x ≤ 1. Find
ȳ for R.

(d) Show that the number a for which ȳ defined
in (c) is a minimum is a root of the equation
x3 + 3x− 1 = 0.

(e) Show that the equation in (d) has only one real
root q.

(f) Find q to four decimal places.

(g) Show that ȳ = q

Exercises 6 and 7 require an integral version of the
Cauchy-Schwarz inequality (see Exercise 29):

2π∫
0

f(θ)g(θ) dθ ≤

 2π∫
0

f(θ)2 dθ

1/2 2π∫
0

g(θ)2 dθ

1/2

.

6.[C] Let P be a point inside a region in the plane
bounded by a smooth convex curve. (“Smooth” means
it has a continuously defined tangent line.) Place the
pole of a polar coordinate system at P . Let d(θ) be the
length of the chord of angle θ through P . Show that∫ 2π

0 d(θ)2 dθ ≤ 8A, where A is the area of the region.

7.[C] Show that if
∫ 2π

0 d(θ)2 dθ = 8A then P is the
midpoint of each chord through P .

8.[C] Let r = f(θ) describe a convex curve surround-
ing the origin.

(a) Show that
∫ 2π

0 r dθ ≤ arc length of the boundary.
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(b) Show that if equality holds in (a), the curve is a
circle.

9.[C] Let r(θ), 0 ≤ θ ≤ 2π, describe a closed convex
curve of length L.

(a) Show that the average value of r(θ), as a function
of θ, is at most L/(2π).

(b) Show that the if average is L/(2π), then the
curve is a circle.

10.[C]

Sam: I’ve discovered an easy formula for the length of
a closed curve that encloses the origin.

Jane: Well?

Sam: First of all,
∫ 2π

0

√
r2 + (r′)2 dθ is obviously

greater than or equal to
∫ 2π

0 r dθ.

Jane: I’ll give you this much, because (r′)2 is never
negative.

Sam: Now, if a and b are not negative,
√
a+ b ≤√

a+
√
b.

Jane: Why?

Sam: Just square both sides. So
√
r2 + (r′)2 ≤

√
r2 +√

(r′)2 = r + r′.

Jane: Looks all right.

Sam: Thus
2π∫
0

√
r2 + (r′)2 dθ ≤

2π∫
0

(r+r′) dθ =

2π∫
0

r dθ+

2π∫
0

r′ dθ.

But
∫ 2π

0 r′ dθ equals r(2π)−r(0), which is 0. So,
putting all this together, I get

2π∫
0

r dθ ≤
2π∫
0

√
r2 + (r′)2 dθ ≤

2π∫
0

r dθ.

So the arc length is simply
∫ 2π

0 r dθ.

Jane: That couldn’t be right. If it were, it would be
an Exercise.

Sam: They like to keep a few things secret to surprise
us on a mid-term.

Who is right, Sam or Jane? Explain.

Skill Drill: Derivatives

In Exercises 11 and 12 a, b, c, m, and p are constants.
In each case verify that the derivative of the first func-
tion is the second function.
11.[R] 1√

c
arcsin

(
cx−b√
b2+ac

)
;
√

c
a+2bx−cx2 .

12.[R] 1
c

√
a+ 2bx+ cx2− b√

c
ln
(
b+ cx+

√
c
√
a+ 2bx+ cx2

)
;

x
a+bx+cx2 (assume c is positive).

In Exercises 13 and 14, L is the length of a smooth
curve C and P is a point within the region A bounded
by C.
13.[M]

(a) Show that the average distance from P to points
on the curve, averaged with respect to arc length
is greater than or equal to 2A/L.

(b) Give an example when equalify holds.

14.[M]

(a) Show that the average distance from P to points
on the curve, averaged with respect to the polar
angle is greater than or equal to L/(2π).

(b) Give an example when equalify holds.

(See also Exercise 24 in Section 9.4.)
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Calculus is Everywhere # 11

The Mercator Map
A web search for “map

projection” leads to detailed
information about this and
other projections. The US

Geological Society has some
particularly good resources.

One way to make a map of a sphere is to wrap a paper cylinder around
the sphere and project points on the sphere onto the cylinder by rays from the
center of the sphere. This central cylindrical projection is illustrated in
Figure C.11.1(a).

(a) (b)

Figure C.11.1:

Points at latitude L project onto points at height tan(L) from the equatorial
plane.

A meridean is a great circle passing through the north and south poles.
It corresponds to a fixed longitude. A short segment on a meridian at latitude
L of length dL projects onto the cylinder in a segment of length approximately
d(tan(L)) = sec(L)2 dL. This tells us that the map magnifies short vertical
segments at latitude L by the factor sec2(L).

Points on the sphere at latitude L form a circle of radius cos(L). The image
of this circle on the cylinder is a circle of radius 1. That means the projection
magnifies horizontal distances at latitude L by the factor sec(L).

Consider the effect on a small “almost rectangular” patch bordered by two
meridians and two latitude lines. The patch is shaded in Figure C.11.1(b). The
vertical edges are magnified by sec2(L), but the horizontal edges by only sec(L).
The image on the cylinder will not resemble the patch, for it is stretched more
vertically than horizontally.

The path a ship sailing from P to Q makes a certain angle with the latitude
line through P . The map just described distorts that angle.

The ship’s caption would prefer a map without such a distortion, one that
preserves direction. That way, to chart a voyage from point A to point B on
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the sphere of the Earth at a fixed compass heading, he would simply draw a
straight line from A to B on the map to determine the compass setting.

Gerhardus Mercator, in 1569, designed a map that does not distort small
patches hence preserves direction. He figured that since the horizontal magni-
fication factor is sec(L), the vertical magnification should also be sec(L), not
sec2(L).

This condition can be stated in the language of calculus. Let y be the height
on the map that represents latitude L0. Then ∆y should be approximately
sec(L)∆L. Taking the limit of ∆y/∆L and ∆L approaches 0, we see that
dy/dL = sec(L). Thus

y =

L0∫
0

sec(L) dL. (C.11.1)

Mercator, working a century before the invention of calculus, did not have
the concept of the integral or the Fundamental Theorem of Calculus. Instead,
he had to break the interval [0, L0] into several short sections of length ∆L,
compute (sec(L))∆L for each one, and sum these numbers to estimate y in
(C.11.1).

We, coming after Newton and Leibniz, can write

y =

L0∫
0

sec(L) dL = ln |sec(L) + tan(L)| |L0

0 = ln(sec(L0)+tan(L0)) for 0 ≤ L0 ≤ π/2.

In 1645, Henry Bond conjectured that, on the basis of numerical evidence,∫ α
0

sec(θ) dθ = ln(tan(α/2+π/4)) but offered no proof. In 1666, Nicolaus Mer-
cator (no relation to Gerhardus) offered the royalties on one of his inventions
to the mathematician who could prove Bond’s conjecture was right. Within
two years James Gregory provided the missing proof.

Figure 11 shows a Mercator map. Such a map, though it preserves angles,
greatly distorts areas: Greenland looks bigger than South America even though
it is only one eighth its size. The first map we described distorts areas even
more than does a Mercator map.

EXERCISES

1.[R] Draw a clear diagram showing why segments
at latitude L are magnified vertically by the factor
sec(L).

2.[R] Explain why a short arc of length dL in Fig-
ure C.11.1(a) projects onto a short interval of length

approximately sec2(L) dL.

3.[R] On a Mercator map, what is the ratio between
the distance between the lines representing latitudes
60◦ and 50◦ to the distance between the lines repre-
senting latitudes 40◦ amd 30◦?
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4.[M] What magnifying effect does a Mercator map
have on areas?
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