Graphical Analysis in Polar Coordinates

Douglas B. Meade Department of Mathematics

Overview

One of the most challenging aspects to polar coordinates is being able to visualize the graph of a polar function, $r = f(\theta)$. An animation showing exactly how the curve is traced out as the angle moves through its domain is even more useful than a static graph of the function.

The simplest polar plots can be created with the plot command — with one additional argument. To create an animation in polar coordinates it is easier to work with a *parametric* form of the equation. (Parametric curves will be discussed in more detail in Calculus III.)

Preparation

• Know the basic conversions between rectangular and polar coordinates:

$$r = \sqrt{x^2 + y^2} \qquad x = r\cos(\theta)$$

$$\tan \theta = \frac{y}{x} \qquad y = r\sin(\theta)$$

- Remember that all angles need to be specified in radians.
- Be prepared to create some surprising plots that would be almost impossible to create in rectangular coordinates.

Maple Essentials

• The *PolarCurveID* and *Basic14Polar* maplets are available at USC from the URLs:

http://www.math.sc.edu/~meade/142L-S05/maplets/CalcUSC/PolarCurveID.maplet http://www.math.sc.edu/~meade/142L-S05/maplets/CalcUSC/Basic14Polar.maplet

• New Maple commands introduced in this lab include:

Command	Description
arctan(y, x)	two-argument version of the inverse tangent
	this is essentially equivalent to $arctan(y/x)$ except that the
	signs of x and y are used to extend the range from $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ to
	$(-\pi,\pi)$; this modification makes the two-argument arctan ideal
	for converting from rectangular to polar coordinates
plot(,	plot a function in polar coordinates
<pre>coords=polar);</pre>	the most common usage is:
	$> R := 2 * \cos(4 * t)$
	<pre>> plot(R, theta=02*Pi, coords=polar);</pre>
animatecurve	animated sketch of a curve
	e.g., the limaçon $r = 1 + 3\sin(\theta)$ could be animated as follows:
	> R := 1 + 3*sin(t);
	<pre>> animatecurve([R, t, t=02*Pi], coords=polar;</pre>
	Note: Execute with(plots): before using animatecurve.
unassign	remove assignments from a Maple name
	to prevent the name from evaluating to its value, it is necessary
	to enclose each name in single quotes, e.g.,
	> unassign('x', 'y', 'r');

Assignment

- Mastery Quiz 11 will be distributed during this lab. This quiz consists of two parts. The first part (worth two points) is a commitment to complete an end-of-course survey. The second part (worth 1 point) is a question that will be answered during this hour. Your TA has instructions for turning in the survey.
- Have a great summer! (But, do not forget all of your calculus, or all of the Maple, you have learned this year.)

Activities

- 1. Convert the following points to polar coordinates: (2,0), (3,3), (0,2), (-2,3), (-2,-5), (0,-3), $(1,-\sqrt{3})$. Note: Compare the angles obtained with $\arctan(y/x)$ and $\arctan(y/x)$.
- 2. Create plots of the unit circle, $x^2 + y^2 = 1$, in both rectangular and polar coordinates. Note: In which coordinate system is it easier to plot the unit circle?
- 3. Plot each of the following curves in polar coordinates.

(i)
$$r = 2 + \sin(\theta)$$
 (ii) $r = \cos(4\theta)$ (iii) $r = 3(1 - \cos(\theta))$
(iv) $r = \sin\left(\frac{\theta}{5}\right)$ (v) $r = \sin(\theta) + \cos\left(\frac{\theta}{3}\right)$ (vi) $r = 2 + \sin\left(\frac{5\theta}{3}\right)$

(vii)
$$r = \ln(\theta)$$
 (viii) $r = \frac{\theta}{2}$ (ix) $\theta = \frac{\pi}{3}$

(x)
$$r = 1 + (\cos(\theta))^3$$
 (xi) $r = (\cos(\theta))^2$ (xii) $r^2 = \cos(2\theta)$

Note: If a curve is periodic, determine the period.

- 4. Animate the sketching of each curve in Activity 2.
 Hint: A polar function r = f(θ) can be written in parametric form as r = f(t), θ = t.
 Note: Optional arguments to the animatecurve command include:
 - frames=num creates an animation with num frames; the default number of frames is 16.
 - numpoints=num instructs Maple to use num points in each frame of an animation; the default number of points is 50.
- 5. The polar function $r = e^{\cos(\theta)} 2\cos(4\theta) + \left(\sin\left(\frac{\theta}{4}\right)\right)^3$ is called the "butterfly curve".
 - (a) Find a parameter interval that traces this curve exactly once.
 - (b) Plot or animate the curve.
- 6. The area inside the polar curve $r = 5\cos(3\theta)$ can be found by following these steps:
 - (a) Plot the curve.
 - (b) Find an appropriate parameter interval that traces the curve exactly once.
 - Hint: An animation can help. Increase the number of frames in the animation as needed.
 - (c) Set up a definite integral (in polar coordinates) for the area of one leaf.
 - (d) Evaluate the definite integral and find the total area inside all three leaves.
 - (e) Check that this answer is consistent with your plot.
- 7. Let R be the region outside $r = 3\sqrt{3}\cos(\theta)$ and inside $r = 3\sin(\theta)$. The area of R can be found as follows:
 - (a) Divide the region into two pieces; R_1 whose area can be found by a simple formula and R_2 that is more complicated.
 - (b) Find the intersection between the two curves in the first quadrant.
 - (c) Find an appropriate parameter interval for region R_2 .
 - (d) Set up a definite integral (in polar coordinates) for the area of R_2 .
 - (e) Evaluate the definite integral and find the total area of R.
 - (f) Check that this answer is consistent with your plot.