Differentiation and Tangent Lines

Douglas B. Meade
Department of Mathematics

Overview

This week's lab will provide practice finding locally linear approximations to functions. That is, finding tangent lines to curves.

Maple Essentials

- The Tangents tutor is started from the Maple 9.5 user interface under the Tools menu:

$$
\text { Tools } \rightarrow \text { Tutors } \rightarrow \text { Calculus - Single Variable } \rightarrow \text { Tangents... }
$$

- The TangentLine maplet is available from Texas A \& M University at the URL:
http://calclabs.math.tamu.edu/maple/maplets/TangentLine.maplet
- The Maple commands involved with finding and plotting the tangent line to the graph of a (differentiable) function are:

Command	Description
$:=$	assignment
diff	differentiate an expression
eval	evaluate at a point
plot	plot one or more expressions

Preparation

Review the derivation of the general formula for the equation of the tangent line to the graph of a function, f, at a point ($a, f(a)$) where f is differentiable (pp. 177-179 in Anton).

Activities

1. Your TA will demonstrate two approaches to this problem:

Find an equation for the line that is tangent to the curve $y=x^{3}-2 x+1$ at the point $(2,5)$ and graph the curve and this tangent line on the same axes.

- Launch the Tangents tutor.

Enter the function as $\mathrm{x}^{\wedge} 3-2 * \mathrm{x}+1$ and the base point as 2 . Press the Display button.

- Enter and execute (one-by-one) the following Maple commands:

```
>f := x^3 - 2*x + 1;
# assign function to f
>Df := diff( f, x ); # compute derivative, f}\mp@subsup{f}{}{\prime}(x
>m := eval(Df, x=2); # slope of curve at x=2 is f
> L:= m * (x-2) + eval( f, x=2); # tangent line is y=f'(2)(x-2)+f(2)
> plot( [ f, L ], x=-2..3 ); # plot of function and tangent line
```

2. Graph the curve $y=f(x)$ and the tangent line at $(a, f(a))$ for each of the following:
(a) $f(x)=\sqrt{x}, a=3$
(b) $f(x)=\frac{5}{x}+1, a=-2$
(c) $f(x)=x^{2}, a=1$
(d) $f(x)=2^{x}, a=1$ (To enter 2^{x}, type $2^{\wedge} \mathrm{x}$. Note that this is very different from x^{2}.)
(e) $f(x)=\sin (x), a=\frac{\pi}{4}$ (Recall that, in Maple, π is Pi.)

Assignment

There is nothing due this week. The TangentLine maplet provides additional practice finding tangent lines.

