Maple Competency Quiz I (Version A)

Objective To assess your ability to perform some of the fundamentalals of Maple, as introduced in the labs for the first half of this course.

Directions - Prepare a Word document, or Maple worksheet, containing the answers to the following questions.

- Be sure to clearly label your work, and delete all extraneous work that is not relevant to your final answers.

Questions Let $f(x)=x^{2} \sin (x) \cos (x)+x^{\sin x}$ and $h(x)=\frac{x^{3}+x^{2}-x+2}{x^{2}+5 x+6}$.
(1) Define the function f as a mapping.

Hint: See the Introduction to Maple and Scaling the Graph of a Function Labs.
(2) Define the derivative of f, f^{\prime}, as a mapping.

Hint: See the Graphical Understanding of Limits
(3) What is the numerical value of $f(x)$ when $x=3.11$

Hint: See the Introduction to Maple Lab.
(4) Find the smallest positive number x that satisfies $f(x)=4$. (Give your answer as a floatingpoint number.)
Hint: See the Introduction to Maple Lab.
(5) Plot $y=f(x)$ and $y=f^{\prime}(x)$ on the domain $[0,10]$ with range $[-20,20]$.

Hint: Be sure your plot distinguishes the appearance of the two curves.
(6) Define $m_{1}=x^{4}-\frac{1}{x}$ and $m_{2}=x^{3}-17 x+2$ as Maple expressions. Define the equation EQ to be $m_{1}=m_{2}$. Solve EQ for x.
Hint: See the Tangent Lines and Differentiation Rules Lab.
(7) Define the function h as a mapping.
(a) Factor the numerator of $h(x)$, the denominator of $h(x)$, and the rational function $h(x)$.
(b) Identify all removable singularities in h.

Hint: See the Introduction to Maple Lab; remember the numer and denom commands.

