Objective The purpose of this initial lab is to help you become familiar with the CSM computer network and the Maple software package.

Background

Discussion

Enter, and execute, the following Maple commands in a Maple worksheet, Note that anything that appears after a \# is a comment; it is not necessary to enter this in your worksheet.

Example 1: Arithmetic with Maple

```
> restart; # clear Maple's memory
> 1/2 + 1/50; # note that Maple's answer is exact
> 1/(2 + 1/50);
>2 + (3/4 * 5/6);
# parentheses and grouping are impo
# note that the * is required for mult
```

Example 2: Assignments and Discontinuities

```
> x := Pi/2;
> sin( x );
> tan( x );
> tan( x/2 );
> y := cos( x/2 ):
> y;
> y^2;
```

Example 3: Floating-Point Approximations

```
> Pi;
> evalf( Pi );
> evalf[20]( Pi );
```


Example 4: Algebraic Manipulations

```
> x;
> unassign( 'x', 'y' );
> x;
> F := a*x^2 + b*x + c;
> solve( F=0, {x} );
> G := x^10 - 1;
> factor( G );
> solve( G=0, {x} );
> fsolve( G=0, {x} );
> fsolve( G=0, {x}, complex );
```

Example 5: Simple Plots

```
F F := (u-1)*(u-4)*u;
> plot( F );
>plot( F, u=-3..6 );
> plot( F, u=-3..6, y=-20..20 );
```

Example 6: Symbolic Trigonometry

```
> one := sin(x)^2 + cos(x)^2;
> simplify( one );
\# names can have more than one cha \# Maple knows trigonometric identiti
```

\# remember that x has an assigned v :
\# remove assigned values from x and
\# now x can be used as a variable
\# define a general quadratic
\# Maple knows the quadratic formula
\# a 10th degree polynomial
\# ask Maple to factor the polynomial
\# there are 10 solutions, 8 are comple
\# only real-valued solutions are retur
\# all 10 solutions as floating-point nu
\# cubic w/roots $u=0, u=1$, and $u=$
\# ERROR - no domain given
\# plot of $y=F(u)$ on $[-3,6]$
\# same plot with window $[-3,6] \times[-20$
\# remember that x has an assigned v \# remove assigned values from x and \# now x can be used as a variable \# define a general quadratic
\# Maple knows the quadratic formula \# a 10th degree polynomial \# ask Maple to factor the polynomial \# there are 10 solutions, 8 are comple \# only real-valued solutions are retur \# all 10 solutions as floating-point nu
\# cubic w/roots $u=0, u=1$, and $u=$ \# ERROR - no domain given \# plot of $y=F(u)$ on $[-3,6]$
\# same plot with window $[-3,6] \times[-20$

Notes

(1) Working with 20 digits does not mean that all 20 digits are correct. To get the correct 20-digit approximation to π, ask Maple to work with a few additional digits.
(2) A complete Maple worksheet with more details about the topics addressed by the above discussion is available on the WWW at
http://www.math.sc.edu/~meade/141L-F03/misc/week1.mws.

Questions

(1) Let $f(x)=x^{4}-32 x^{3}+187 x^{2}+160 x-960$. Find all values of x where $f(x)=0$. (Give exact values.)
(2) Use a suitable graph of $f(x)$ from Question 1 to approximate the point(s), (x, y), where f attains its largest and smallest values on the interval $-5 \leq x \leq 5$.
(3) Find the decimal digit in the $25^{t h}$ digit to the right of the decimal point in π.
(4) Find the smallest integer, n, such that n ! has exactly 10 trailing zeros, i.e., n ! is divisible by 10^{10} and not divisible by 10^{11}.
(5) Does n ! ever have exactly 11 trailing zeros? (Justify your answer using complete English sentences. Be brief, but complete.)

