Objective In this lab you will develop your understanding and manipulative abilities with antiderivatives.

Background An antiderivative of a function f is any function F which satisfies the condition

$$
F^{\prime}(x)=f(x)
$$

Recall that antiderivatives are not unique. If F is an antiderivative of f, then the general antiderivative of f is $F(x)+C$

The basic Maple command for antiderivatives is int. The syntax for $\int f(x) d x$ is int ($\mathrm{f}(\mathrm{x}), \mathrm{x})$; . Note, however, that Maple reports an antiderivative. If you need the general antiderivative it will be necessary for you to include an appropriate arbitrary constant.

The Antiderivative maplet is an interface to the visual relationship between a function and its antiderivatives. The Integration maplet is a calculator-like interface with buttons corresponding to each of the primary rules for evaluating integrals.

Discussion Enter, and execute, the following Maple commands in a Maple worksheet.
Example 1: The int Command

```
> restart; # clear Maple's memory
f := x -> x^2 - 3 + 8*sin(x); # define integrand
>F := int( f(x), x ); # an antiderivative
> diff( F, x ); # verify that F}\mp@subsup{F}{}{\prime}(x)=f(x
>G := int( f(x), x ) + C; # general antiderivative
> diff( G, x ); # verify that F'(x)=f(x)
```

Example 2: The Antiderivative Maplet

- launch the Antiderivative maplet
- in the Function box, enter $x^{\wedge} 2-3+8 * \sin (x)$
- in the $\mathbf{a}=$ and $\mathbf{b}=$ boxes, enter $-2 * \operatorname{Pi}$ and $2 * \mathrm{Pi}$, respectively
- press Plot
- in the Value box, enter [0, 0]; press Plot
- place a check in the Show class of antiderivatives checkbox; press Plot

Observe that the local extrema of each antiderivative (in blue or green) occur at the points where the function (in red) is zero.

Example 3: The Integration Maplet

- launch the Integration maplet
- in the Function box, enter $x^{\wedge} 2-3+8 * \sin (x)$
- in the Variable box, enter x
- to start the evaluation of this antiderivative, press Start
- to apply the Sum Rule (twice), press Sum (once)
- to evaluate the first integral using the Power Rule, press Power
- to evaluate the second integral using the Constant Multiple Rule, press Constant Multiple
- in the Function Rules area of the interface, press Select a Function, click on sin, press Apply

Notes

(1) To create a Maple function corresponding to an antiderivative, use the unapply command. For example,

```
> F := unapply( int( f(x), x ), x );
```

(2) The plots displayed in the Antiderivative maplet are created with the AntiderivativePlot command, from the Student[Calculus1] package. The basic syntax is
$>$ AntiderivativePlot($f(x), x=a . . b)$;
To obtain the antiderivative that passes through a specific point $\left(x_{0}, y_{0}\right)$, include the optional argument value $=\left[x_{0}, y_{0}\right]$. To see a family of antiderivatives, include the optional argument showclass=true.
(3) To perform a Generalized Power Rule with the function $g(x)$, enter $\mathrm{u}=\mathrm{g}(\mathrm{x})$ in the large box in the Integration Rules with Arguments region and press the Change button. Then, at the end of the problem, press Revert to return to the original independent variable.
(4) In the last step for the example with the Integration maplet, it is also possible to type the name of the function, e.g., sin, in the box instead of working through the Select a Function menu.
(5) The Understood Rules menu in the Integration maplet can be used to identify rules to be applied automatically whenever possible.
(6) The Student [Calculus1] package contains commands that correspond to many of the buttons on the Integration maplet. There is no reason to explain these here as there is no reason for you to use these commands.

Questions

(1) Use the Integration maplet to evaluate $\int \sin ^{2} x d x$. Use the All Steps button to obtain a full listing of the steps in the evaluation of this indefinite integral. Summarize this evaluation in your lab report.
Note: If you have trouble with the formatting of mathematical expressions, use Maple notation for integrals. For example, write $\int \sin ^{2} x d x$ as $\operatorname{int}\left(\sin (\mathrm{x})^{\wedge} 2, \mathrm{x}\right)$.
(2) Use the Integration maplet to evaluate each of the following indefinite integrals.

Note: It is not necessary to show all steps, just report the answer.
(a) $\int x \sqrt{x+1} d x$
(b) $\int x \sqrt{x^{2}+1} d x$
(c) $\int x^{2} \sin x^{3}+1 d x$
(d) $\int \sin ^{3}\left(\left(x^{2}+1\right)^{4}\right) \cos \left(\left(x^{2}+1\right)^{4}\right)\left(x^{2}+1\right)^{3} x d x$

Hint: For (d), do not use the All Steps button. Think! (See also, Note (3).)
(3) Let

$$
F(x)=(\sin x+\cos x)^{4} \quad \text { and } \quad G(x)=2 \sin (2 x)-4 \cos ^{4} x+4 \cos ^{2} x+5
$$

Show that F and G are antiderivatives of the same function. Explain why two functions that appear so different can be antiderivatives of the same function. Find the function f with $F^{\prime}(x)=f(x)$ and $G^{\prime}(x)=f(x)$.

