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Strings of Symbols and Where They Might Come Up

Mathematicians are in the business of producing strings of
symbols. In some parts of mathematics, strings of symbols
themselves become the objects of mathematical attention.
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Patterns in Strings of Symbols

Most of the strings of symbols that arise in these displines
display within themselves instances of patterns and other
regularities.

It is the investigation of the occurrences of patterns in
strings of symbols that is the topic of these lectures.
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An alphabet is just a set of letters and a letter is just a
member of some alphabet.

Today, all alphabets are finite.

A word is just a finite string of letters. For an alphabet Σ we
use Σ∗ to denote the set of all words over the alphabet Σ.
One of these words is the empty word, which has length 0.

Σ+ denotes the set of all nonempty words over Σ.
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Two Interesting Sequences of Words

The Prouhet-Thue-Morse Sequence
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What is a Pattern?

A pattern is, in essence, a system of specifications that can
be embodied and scaled in an assortment of ways.

For example, in
abbabaabbaababba

We can see the following:
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A word W is an instance or an image of a word U, provided
W can be obtained from U by systematically substituting
nonempty words for the letters of U.

Thus baabbaab is the instance of xx obtained by
substituting the word baab for the letter x.

As another example
xyyxyxxy

is the image of
abba

via
a7→xy and b7→yx
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Avoiding Patterns

We say a word V is a subword of a word W when W=XVY
for some (possibly empty) words X and Y.
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Avoiding Patterns

We say a word V is a subword of a word W when W=XVY
for some (possibly empty) words X and Y.

The word W encounters the word U if and only if some
instance of U is a subword of W. We say W avoids U
otherwise—that is when no instance of U is a subword of
W.
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Avoidable and Unavoidable Wrods

The word U is avoidable on the alphabet Σ provided
infinitely many words in Σ+ avoid U.
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Avoidable and Unavoidable Wrods

The word U is avoidable on the alphabet Σ provided
infinitely many words in Σ+ avoid U. Of course, the only
thing that matters is the size of Σ. So if Σ has k elements
we also say that U is k-avoidable.

The word U is avoidable if and only if U is k-avoidable for
some natural number k.Words that fail to be avoidable are
said to be unavoidable.
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Are Any Words Avoidable? Are Any Words Unavoidable?

There better be some words of each kind!

Unavoidable Word Avoidable
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Are Any Words Avoidable? Are Any Words Unavoidable?

There better be some words of each kind!

Unavoidable Word Avoidable
a

ab
aa Axel Thue 1906

aba
aaa

abacaba

Indeed all the Zimin words, as well as any word
encountered by a Zimin word, can be easily seen to be

unavoidable.
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The Adjacency Graph of a Word

The adjacency graph of a word W is a bipartite graph
whose vertices are divided into two parts: a left copy of the
alphabet and a right copy of the alphabet. The edges are
determined by scanning the word. There is an edge joining
the left copy of the letter x to the right copy of the letter
y if and only if the word xy is a subword of the word W.

An example will serve to show how this works.
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The Adjacency Graph of abacaba

As we slide a window of length 2 along
abacabadabacaba we insert edges as shown.

abacabadabacaba

d
c
b

a

d
c
b

a
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Free Sets

For a word W on an alphabet Σ we say that F ⊆ Σ is free
for W when no connected component of the adjacency
graph of W contains both an element of the left copy of F

and the right copy of F .

Since the adjacency graph of abacabadabacaba is

d
c
b

a

d
c
b

a

we see that the free sets are just all the subsets of these
sets: {a} and {b,c,d}.
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Deletion of Letters from Words

Suppose W is a word and F is a set of letters. We can
delete the letters in F from W by just erasing them. This
leaves gaps, but by pushing the result together we get
another word.

Let’s delete {a} from
abacabadabacaba
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Deletion of Letters from Words

Suppose W is a word and F is a set of letters. We can
delete the letters in F from W by just erasing them. This
leaves gaps, but by pushing the result together we get
another word.

Let’s delete {a} from
abacabadabacaba

bcbdbcb
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Reducing Words by Deleting Free Sets

We say a word W reduces in one step to a word
U provided U can be obtained from W by deleting all
the letters in some set free for W.
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Reducing Words by Deleting Free Sets

We say a word W reduces in one step to a word
U provided U can be obtained from W by deleting all
the letters in some set free for W. So
abacabadabacaba reduces in one step to bcbdbcb.

We say a word W reduces to a word U if and only if
U can be obtained from W by a sequence of one-step
reductions.

Avoidable Words – p. 15/??



A Sample Reduction

Now

a is free for abacabadabacaba

b is free for bcbdbcb

c is free for cdc and finally

d is free for d.

So the following reduction is available.
abacabadabacaba
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A Sample Reduction

Now

a is free for abacabadabacaba

b is free for bcbdbcb

c is free for cdc and finally

d is free for d.

So the following reduction is available.
abacabadabacaba

bcbdbcb
cdc
d
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A Characterization of Unavoidability

Theorem (Bean, Ehrenfeucht, McNulty 1979; Zimin 1982). Let
W be a word. The following are equivalent:

W is unavoidable.
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A Characterization of Unavoidability

Theorem (Bean, Ehrenfeucht, McNulty 1979; Zimin 1982). Let
W be a word. The following are equivalent:

W is unavoidable.

W can be reduced to the empty word.

The Zimin word on α letters encounters W , where α is the
number of distinct letters in W.

This theorem arose in the late 1970’s in the work of Dwight
Bean, Andrzej Ehrenfeucht, and George McNulty and
independently in the work of I. A. Zimin. The last condition
is due solely to Zimin.
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Consequences of Unavoidability

If W is unavoidable, then some letter occurs exactly once
in W.
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FACT: Every word on an n letter alphabet which has length
at least 2n has a subword in which every letter that occurs
occurs at least twice.
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Consequences of Unavoidability

If W is unavoidable, then some letter occurs exactly once
in W.

FACT: Every word on an n letter alphabet which has length
at least 2n has a subword in which every letter that occurs
occurs at least twice.

Call a word long if it has length at least 2n where n is the
number of distinct letters occurring in the word. We see that
every long word is avoidable. The word xx is long even
though it looks short. We have at least part of Thue’s
findings: xx is avoidable.
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The Zimin word on n letters has length 2n − 1 and it is, as
we noted, unavoidable. Indeed, it is as long as an
unavoidable word on the n-letter alphabet can be.
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length.
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The Zimin word on n letters has length 2n − 1 and it is, as
we noted, unavoidable. Indeed, it is as long as an
unavoidable word on the n-letter alphabet can be.

So for word to be unavoidable it must be of rather modest
length.

On the n-letter alphabet there are only finitely many
unavoidable words. An industrious mathematician might try
to describe them all. Indeed, one might go on to discover
how many letters it takes to avoid the avoidable ones. After
some preliminary work by U. Schmidt and P. Roth,
J. Cassaigne managed to classify all words on 2 letters. As
far as I know, nobody knows a complete description for
words on 3 letters.
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Today’s Open Problem

What is the computational complexity of the set of
unavoidable words?
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A Short Side Trip: Squarefree Words

A word W is squarefree provided it avoids the pattern
xx. Axel Thue proved in 1906 that there are infinitely many
squarefree words on the 3 letter alphabet. Over the course
of the ensuing 70 years Thue’s work was rediscovered
again and again. Since the mid-1970’s many interesting
things have been found out about squarefreeness. A look at
these results can give some indication of what directions
the study of avoidable words more generally might take.
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How to Make Infinitely Many Squarefree Words

Theorem (Axel Thue, 1912). Let Σ and Γ be alphabets and let h be a
homomorphism from Σ+ into Γ+. If
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Theorem (Axel Thue, 1912). Let Σ and Γ be alphabets and let h be a
homomorphism from Σ+ into Γ+. If

h(W ) is squarefree whenever W is a squarefee word of length at
most 3, and

a = b whenever a, b ∈ Σ such that h(a) is a submword of h(b),
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How to Make Infinitely Many Squarefree Words

Theorem (Axel Thue, 1912). Let Σ and Γ be alphabets and let h be a
homomorphism from Σ+ into Γ+. If

h(W ) is squarefree whenever W is a squarefee word of length at
most 3, and

a = b whenever a, b ∈ Σ such that h(a) is a submword of h(b),

then h(U) is squarefree whenever U ∈ Σ+ is squarefree.
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Some Squarefree Homomorphisms

a 7→ abcab

b 7→ acabcb

c 7→ acbcacb

Axel Thue, 1912
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Some Squarefree Homomorphisms

a 7→ abcbacbcabcba

b 7→ bcacbacabcacb

c 7→ cabacbabcabac

Jonathan Leech, 1957
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Some Squarefree Homomorphisms

a 7→ abcd

b 7→ abdc

c 7→ acbd

d 7→ acdb

e 7→ adbc

Bean, Ehrenfeucht, McNulty, 1979

Avoidable Words – p. 23/??



Some Squarefree Homomorphisms

a0 7→ dW0eW0

a1 7→ dW1eW1

a2 7→ dW2eW2

...
...

The words W0,W1,W2, . . . is just the infinite list of
squarefree words of {a, b, c}.

Bean, Ehrenfeucht, McNulty, 1979
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Some Squarefree Homomorphisms

There is even a squarefree homomorphism from words on 4
letters to words on 3 letters. But you don’t want to see it.
The images of each of the three letters are words of length
about 200.
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Theorem (Bean, Ehrenfeucht, McNulty 1979). Let Σ be the countably
infinite alphabet and let Γ be the three-letter alphabet. There is a
squarefree homomorphism from Σ+ into Γ+.
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Ordering Words

There are several interesting orders that can be imposed on
sets of words. One is the ordering by initial segment. We
say that the word W is an initial segment of the word U

provided U = WV for some, possibly empty, word U . Let us
write W ≤ U when W is an initial segment of U .
It is easy to see that ≤ is reflexive, transitive and
antisymmetric. That is ≤ is an order.
So for any alphabet Σ we see that 〈Σ∗,≤〉 is an ordered set.
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The Tree of Words

One way to display 〈Σ∗,≤〉 is as a (rooted, ordered)tree.
Suppose Σ = {a, b, c} We impose the ordinary linear
(alphabetical) ordering on Σ. Then we take the full ternary
tree and label the nodes with the letters following a left to
right pattern. The root we leave unlabelled.
The first few levels of this tree are displayed next.
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The Bottom of the Tree

a

a

a b c

b

a b c

c

a b c

)

b

a

a b c

b

a b c

c

a b c

c

a

a b c

b

a b c

c

a b c
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Walking Through the Tree

A walk starting at the root and passing up along the
branches produces a word, letter by letter, as you pass over
the branch points.

The tree has infinitely many levels. We could identify the
infinite branches through the tree with the points in the unit
interval (in this case expressed in ternary notation rather
than decimal notation). This bring topology into the picture.

We could also agree to only include those walks along the
branched which avoided some word W .
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The Bottom of the Squarefree Tree

a

b

a c

c

a b

b

a

b c

c

a b

c

a

b c

b

a c
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Finite Branches

Think of the last tree as a pruned version of the full ternary
tree. Right now it looks like the full binary tree. But draw in
a few more levels and you see that it is not.
For instance, the branch that reads abacaba cannot be
extended. It is a maximal squarefree word.

The number g(n) of nodes at level n is the number of
squarefree words of length n. The function g is the growth
function for words avoiding xx.

We could do the same for every word W in place of xx.
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Theorem (Bean, Ehrenfeucht, McNulty 1979). Let W be a
kth-powerfree word on the finite alphabet Σ. W is a subword of some
maximal kth-powerfree word on Σ.
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The Growth of Squarefree Words

Theorem (Brandenburg 1983; Brinkhuis 1983). On the three-letter
alphabet, the growth rate of squarefree words has an exponential lower
bound.

Avoidable Words – p. 32/??



In the Space of Infinite Words. . .

Theorem (Shelton and Soni 1980-83). The space of squarefree
ω-words on the three letter alphabet is perfect.
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Another Order

Let W / U mean that U ancounters W . This relation on
words in reflexive and transitive. It fails however to be
antisymmetric. But we can fix this.

Regard to words as literally similar provided there is a
one-to-one map of the alphabet of one word onto the
alphabet of the other that carries the first word to the
second.
So cat and dog are literally similar while read and reed are
not.

Modulo literal similarity / is an ordering on words.
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The Ordered Set of Unavoidable Words

Let Σ be a finite alphabet. The set Γ of unavoidable words
is Σ∗ is finite. Up to literal similarity 〈Γ, /〉 is a finite ordered
set. It would be interesting to know something about its
structure.
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Today’s Open Problem

For each natural number n find out how many unavoidable
words there are on the n letter alphabet
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How Many Letters Does It Take?

Let W be any word. We use α(W) to denote the number
of distinct letters appearing in W.
If W is avoidable, then there is a smallest natural number
µ(W) such that there is an infinite word on µ letters which
avoids W.
We can extend this function µ to all words by putting
µ(W) = ∞ when W is unavoidable.
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How Many Letters Does It Take?

Let W be any word. We use α(W) to denote the number
of distinct letters appearing in W.
If W is avoidable, then there is a smallest natural number
µ(W) such that there is an infinite word on µ letters which
avoids W.
We can extend this function µ to all words by putting
µ(W) = ∞ when W is unavoidable.

PROBLEM: Is µ a recursive function? That is, is there are
computer program which computes µ?
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How Many Letters Does It Take?

Let W be any word. We use α(W) to denote the number
of distinct letters appearing in W.
If W is avoidable, then there is a smallest natural number
µ(W) such that there is an infinite word on µ letters which
avoids W.
We can extend this function µ to all words by putting
µ(W) = ∞ when W is unavoidable.

PROBLEM: Is µ a recursive function? That is, is there are
computer program which computes µ?

PROBLEM: What is the assymptotic behaviour of µ with
respect to α?
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The Word Ωm,z

The words mentioned in the title of this slide extend
infinitely to the right. The parameters m and z are natural
numbers with m ≥ 2 and z ≥ 1. The number of distinct
letters in Ωm,z is mdm1/ze. I am only going to show you Ω2,1.
It’s alphabet has size 4. It proves convenient to use
{0, 1, 2, 3} as the alphabet.
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The Word Ωm,z

Let ϕ be the endomorphism given by

0 7→ 01

1 7→ 21

2 7→ 03

3 7→ 23
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The Word Ωm,z

Let ϕ be the endomorphism given by

0 7→ 01

1 7→ 21

2 7→ 03

3 7→ 23

Start from 0 and iterate ϕ:

0

01

0121

01210321

0121032101230321

· · ·
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Dean’s Word: Ω2,1

0

01

0121

01210321

0121032101230321

· · ·
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Dean’s Word: Ω2,1

0

01

0121

01210321

0121032101230321

· · ·

Notice that at each stage the previous word occurs as an
initial segment. (This is a consequence of the fact that the
image of 0 begins with 0.) Continuing in this way we
construct the infinite word Ω2,1.

Avoidable Words – p. 39/??



Three Theorems

Theorem (Baker, McNulty, Taylor 1989). For integers r,m, z with
r, z > 0 and m > (r + 1)z, the word Ωm,z avoids all avoidable words
on r or fewer letters.
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Three Theorems

Theorem (Baker, McNulty, Taylor 1989). For integers r,m, z with
r, z > 0 and m > (r + 1)z, the word Ωm,z avoids all avoidable words
on r or fewer letters.

Call a word W locked provided it cannot be reduced to
any other word.

Theorem (Baker, McNulty, Taylor 1989). Dean’s word Ω2,1 avoids
every locked word.
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Three Theorems

Theorem (Baker, McNulty, Taylor 1989). For integers r,m, z with
r, z > 0 and m > (r + 1)z, the word Ωm,z avoids all avoidable words
on r or fewer letters.

Call a word W locked provided it cannot be reduced to
any other word.

Theorem (Baker, McNulty, Taylor 1989). Dean’s word Ω2,1 avoids
every locked word.

Theorem (I. Mel’nichuk 1988). µ < α + 6.
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Walter’s Word ∆

Let ∆ be the word abwbcxcaybazac. It is a bit easier to
understand ∆ like this:

ab w bc x ca y ba z ac
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Walter’s Word ∆

Let ∆ be the word abwbcxcaybazac. It is a bit easier to
understand ∆ like this:

ab w bc x ca y ba z ac

It is easy to see that ∆ is a locked word. This means that it
is avoided by Ω2,1 and so ∆ is 4-avoidable.
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Walter’s Word ∆

Let ∆ be the word abwbcxcaybazac. It is a bit easier to
understand ∆ like this:

ab w bc x ca y ba z ac

It is easy to see that ∆ is a locked word. This means that it
is avoided by Ω2,1 and so ∆ is 4-avoidable.

Walter’s word ∆ is not 3-avoidable.
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Walter’s Word ∆

Let ∆ be the word abwbcxcaybazac. It is a bit easier to
understand ∆ like this:

ab w bc x ca y ba z ac

It is easy to see that ∆ is a locked word. This means that it
is avoided by Ω2,1 and so ∆ is 4-avoidable.

Walter’s word ∆ is not 3-avoidable.
Theorem (Baker, McNulty, Taylor 1989).

The growth rate of words on 4 letter which avoid ∆ has a quadratic
lower bound and a polynomial upper bound.

On four letters the space of Z-words avoiding ∆ is perfect, and in
fact a Cantor space.
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The Words of Ronald Clark, 2001

∆ is 4-avoidable but not 3-avoidable. That is µ(∆) = 4. Let
rho be the following word:

ab u ba w ac x bc y cda z dcd
Ronald Clark, in his Ph.D. dissertation written at UCLA in
2001 under the direction of Kirby Baker, proved that rho is
5-avoidable but not 4 avoidable.
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Some Applications

Burnside’s conjecture was that every finitely generated
group of finite exponent is finite. This conjecture originated
in 1905 and was not resolved (in the negative) until the
work of Adjan and Novikov in 1968. The Adjan Novikov
construction is genuinely elaborate, but it relies on the
avoidability of xx and xxx.
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Some Applications

Burris and Nelson (1971), and Jarda Jezek (1976) used the
avoidability of xx to show that lattice of subvarieties of the
variety of semigroups must have intervals of very high
complexity. In fact Jezek produces an infinite set F of
squarefree words on the three letter alphabet so that
F − {W} avoids W for every W ∈ F .
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Some Applications

Mark Sapir (1987) used the full weight of avoidable words to
give an alogithm for determining which finite semigroups
have inherently nonfinitely based equational theories.
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Some Applications

With the help of the theory of avoidability, Margolis and
Sapir (1995) proved that no finite semigroup can be
inherently nonfinitely Q-based.
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Some Applications

A recent unpublished result of Ralph McKenzie is that given
any function f on the natural numbers there is a finite
semigroup S So that the free spectrum function of S

dominates f .
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Open Problems

PROBLEM 0: What is the computational complexity of the
set of avoidable words?
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Open Problems

PROBLEM 0: What is the computational complexity of the
set of avoidable words?
PROBLEM 1: How many unavoidable words are there on
the alphabet with n letters? Describe these finite ordered
sets.
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Open Problems

PROBLEM 0: What is the computational complexity of the
set of avoidable words?
PROBLEM 1: How many unavoidable words are there on
the alphabet with n letters? Describe these finite ordered
sets.
PROBLEM 2: Is µ a recursive function?
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Open Problems

PROBLEM 0: What is the computational complexity of the
set of avoidable words?
PROBLEM 1: How many unavoidable words are there on
the alphabet with n letters? Describe these finite ordered
sets.
PROBLEM 2: Is µ a recursive function?
PROBLEM 3: Does µ achieve arbitrarily large values? Does
it even get past 5?
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Open Problems

PROBLEM 0: What is the computational complexity of the
set of avoidable words?
PROBLEM 1: How many unavoidable words are there on
the alphabet with n letters? Describe these finite ordered
sets.
PROBLEM 2: Is µ a recursive function?
PROBLEM 3: Does µ achieve arbitrarily large values? Does
it even get past 5?
PROBLEM 4: Let W be an avoidable word with
µ(W) = m. Can every W-free word on m letters be
extended to a maximal W-free word on m letters?
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