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The Components of the Problem

1. The problem asks for a method or algorithm. We take this as
a request for a computer program.

2. The method (i.e. the computer program) has an input, in this
case a given equation.

3. The computer program is suppose to determine whether the
input has a certain property, in this case whether it is true in
some nontrivial lattice.

4. How hard must that be?



Inputs

Roughly speaking, anything which can be typed into a computer
keyboard using only finitely many keystrokes is a reasonable input.

We will use J to denote the set of all such inputs.

Of course, computer programs can be entered via computer
keyboards. We use M to denote the set of all programs.
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Inputs

However, in framing our problems, we will make more particular
specifications about the inputs.

In the case of our sample problem these inputs are to be equations
built up using

> the operation symbols A and V of lattice theory,

» a countably infinite list xg, x1, xo, ... of variables,

» a symbol = for equality, and

> punctuation ), (.
That is, our inputs are to be equations in the signature of lattices.

Following the usage in the computer science community, we render
this part of our sample problem as:

INSTANCE: An equation s =~ t in the signature of lattices.
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Properties

While the inputs associated with a problem like our sample problem
are severely restricted, the properties are given freer range. Suppose
that § is the set of all inputs. (In our example, § is the set of all
equations in the signature of lattices.) We allow the property
associated with one of our problems to be any subset P C 8.

The problems we consider have the form
INSTANCE: o € 8.

QUESTION: Is o € P?

So our problems are completely determined by specifying 8§ and one
of its subsets P. We will refer to (8, P) as a computational problem.



Our Sample Problem, Reprise

INSTANCE: An equation s = t in the signature of lattices.

QUESTION: Is s =~ t true in some nontrivial lattice?
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Complexity of Inputs

For the cases when § arises in this way (and many other cases)
there are three important features:

1. There is a computationally cheap way to scan a sequence of
keystrokes to determine if it belongs to §;

2. There is at least one obvious way to assign a natural number
to each member of 8§ that can be understood as its complexity.
We will use ||| to denote the obvious complexity of o.

3. For each n there are only finitely many inputs of complexity n.

Loosely speaking, ||| is intended to measure the compuational
resources it takes for the computer to absorb the input o before
actually doing anything interesting with it.
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It might be impossible. There might not be any algorithm which
does the job. In this case, we say that the problem is
algorithmically unsolvable or that P is undecidable.
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How Hard Must It Be?

If there is at least one computer program that does the job, then
such a program will provide a function which is an upper bound on
the amount of time and space the execution of this program
requires, given any input of complexity n. The art of the upper
bound requires to insightful creation of clever algorithms and the
detailed understanding of their operation.
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The art of the lower bound, of answering the question
“How hard must it be?"

is another thing.



How Hard Must It Be, Really?

Once there is one algorithm to solve the problem, there will
certainly many others. Some will be less demanding than others on
our computational resources. To answer the question in the title
above we must have a lower bound on the complexity of all these
algorithms.



How Hard Must It Be, Really?

To conclude, for example, that a problem cannot be done in
polynomial time apparently requires us to consider any algorithm M
which answers our problem and to show that for every polynomial
p(x) and for arbitrarily large n there is o € § with ||o|| = n so that
M requires more time than p(n) to determine whether o € P.
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A Lot Is Already Known

These kinds of questions belong to the mathematician's fascination
with algorithms since before the ancients found out how to bisect
angles with straightedge and compass.



A Lot Is Already Known

So quite a lot is known at this late date.



A Lot Is Already Known

We have all heard at least rumors of a hierarchy of complexity
classes LOGSPACE, P, NP, co-NP, EXPTIME, PSPACE,....

While much is known about this hierarchy, there are some great
challenges that remain outstanding.

Also the placing of many particular problems, chiefly of a
combinatorial nature, within this hierarchy has already been
achieved.
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A Lot Is Already Known

Happily, we can take advantage of this accumulated knowledge to
address problems concerning equations and finite algbras.

» There will be an interesting collection of talks on recent results
of this kind here at our conference.

» Also the Workshop on the Constraint Satisfaction Problem
immediately following our conference continues this theme.

» And in July there will be a conference in Szeged focussed
largely on these matters.



Exponential Time Complexity

Given a set 8 of inputs and a subset P C § we will say that the
associated problem (8, P) belongs to EXPTIME provided there is
a polynomial p(n) and a computer program M for solving the
problem such that for all o € § the program M determines whether
o € P after taking no more than 2P(l71) steps.



Exponential Time Complexity

The problem associated with § and P is said to be EXPTIME
difficult provided there is a real number ¢ > 0 so that for any
computer program M which solves the problem and for arbitrarily
large values of n there is o € 8§ with ||o|| = n so that the
computation of M on input o runs for at least 2" steps.



Outline

Some General Methods
The Method of Reduction



Polynomial Time Turing Reduction of One Problem to
Another

Let (8,P) be a computational problem. The capacity of a
computer programming system can be enhanced by allowing it the
use of an oracle for (8, P): in the course of a computation the
oracle, at the cost of a single step, will provide the correct answer
to questions of the form “Is o € P?" Of course, the time and space
needed to construct any particular o is charged to the resources
used by the computation.



Polynomial Time Turing Reduction of One Problem to
Another

Let (8o, Po) and (81, P1) be two computational problems. We say
that (81, P1) is polynomially Turing reducible to (8o, Po)
provided there is a polynomial p(n) and a program M with an
oracle for (8g, Pp) so that M decides o € P; in no more than
p(||o]) steps, for all o € 8;.



Many-One Reductions of One Problem to Another

Let (8o, Po) and (81, P1) be two computational problems and let
®: 81 — 8p. We say that ¢ reduces (81, P1) to (So, Po) provided

o € Py if and only if (o) € Py

for all o € 8;.



Many-One Reductions of One Problem to Another

This reduction is polynomial time if the there is a polynomial p(n)
so that the computation of ®(o) concludes after no more than
p(||o]|) steps for all o. It is logspace if the computation of (o)
requires no more than roughly log(||c||) space in memory (the
space occupied by the input and the output held unavailable for
computation).
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Make a new program M* to resolve the problem (81, %P1). Here is
what M* does with input o € 81:

1. Construct ®(o).
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Many-One Reductions of One Problem to Another

Suppose that M is a computer program that resolves (8o, Po).
Make a new program M* to resolve the problem (81, %P1). Here is
what M* does with input o € 81:

1. Construct ®(o).

2. Launch M on ®(0) to determine whether ®(o) € Py

3. Return the result.



Ensuring that (81, P1) is easy enough

Suppose that f(n) is a function giving an upper bound to the
number of steps M takes on inputs of complexity n.
The number of steps M* takes on input ¢ is no more than

t + f(||®(o)]|), where t is the number of steps needed to construct
®(o) from o.

Consequently, if ® is cheap to compute and ® (o) is not very much
more complex than o, then M* will resolve (81,P1) in not so many
more steps than it takes M to resolve (8o, Po).



Ensuring that (8g, Po) is hard enough

On the other hand, suppose you have a lower bound g(n) on the
time complexity of (81, P1). Then for inputs o of arbitrarily large
complexity we know that M* must take at least g(||o||) steps. For
such o, we are forced to conclude that M takes at least g(||o||) — t
steps upon input ®(o), where t is again the number of steps
needed to compute ®(o) from o.

Consequently, if ¢ is cheap to compute and ® (o) is not very much
more complex than o, then (8p, Py) cannot be much easier to
resolve than (81, Py).
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Comparing Reductions

(81,P1) is logspace reducible to (8o, Po)

4
(81,P1) is polynomial time reducible to (8o, Pp)

\
(81,P1) is polynomially Turing reducible to (8o, Po)

Of these three reducibilities, the logspace many-one reduction is the
most desirable because it provides the tightest relationship between
the complexities of the two problems. These three are not the only
reducibilities.
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Hard Problems

Let C be a complexity class (like EXPTIME or NP). A problem
(8,P) is said to be C hard provided every problem in C is reducible

to (8,P). A problem is C complete if it is C hard and also belongs
to C.

Each notion of reducible gives rise to its associated notions of
hardness and completeness.

The C complete problems might be regarded as the most
demanding problems in C. One should take this with a grain of salt.
The density of difficult instances might be low for a complete
problem, while an incomplete problem might on the whole be more
troublesome. Rather it is more to the point to say that a computer
program for a complete problem can be adapted to solve any other
problem in C so that running the adapted program is only a bit
more costly than the original.
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1. Find in the literature a problem (8, %) with a known
complexity.
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A Way to Proceed

1. Find in the literature a problem (8, %) with a known
complexity.

2. Cleverly invent a map ® and prove that it gives the desired
reduction relation between (8, P) and the problem in which
you are interested, and

3. Prove @ is cheap enough to compute and does not make ®(o)
much more complex than o.
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Fast Growing Functions

Explosive Functions
Call a function f : RT™ — R™ explosive if f is strictly increasing

and
nango;IE,,;; =0 and
. flan+p)
S O

whenever g(n) is a polynomial, 0 < a < 1, and 0 < S.

2" and 22" are examples of explosive functions.



Simulation and Diagonalization

An Explosive Lower Bound

Let 8 be a set of inputs with P C 8. Let f be an explosive function,
p(n) be a polynomial, and d be a nonnegative real. Let
V.- MxJ—S8. Ifforal MeMandall xeJ

then there is ¢ > 0 so that deciding P is at least f(cn) difficult.
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Simulation and Diagonalization

An Explosive Lower Bound
Let 8 be a set of inputs with P C 8. Let f be an explosive function,
p(n) be a polynomial, and d be a nonnegative real. Let
V:MxIJ— 8. Ifforall MeMandall xeJ
L WM, )| < d - (IM]] + [Ix]]);
2. W(M, x) can be computed from M and x in time bounded by
pUIMI -+ [1x1);
3. W(M,x) € P if and only if M on input x computes for more
than f(n) steps,
then there is ¢ > 0 so that deciding P is at least f(cn) difficult.



A Sketch

Let M be any program for deciding P. Devise a new program M*
which does the following on input x:
» If x is a program, then M* first constructs W(x, x) and then
launches M on W(x, x). If M determines that W(x, x) has P,
then M* halts. If M determines that W(x, x) does not have P

then M* goes into an infinite loop.
» If x is not a program, then M* goes into an infinite loop.



A Sketch

Let M be any program for deciding P. Devise a new program M*
which does the following on input x:
» If x is a program, then M* first constructs W(x, x) and then
launches M on W(x, x). If M determines that W(x, x) has P,
then M* halts. If M determines that W(x, x) does not have P

then M* goes into an infinite loop.
» If x is not a program, then M* goes into an infinite loop.

Suppose that x is a program. Then we have

M* halts on x < V(x,x) € P
< x does not halt on x within f(]|x||) steps.



More Sketch

In particular, M* halts on M* if and only if M* does not halt on
M* within f(||M*||) steps. Hence

V(M*, M*) has property P



Still More Sketch

How long does the computation of M* upon input M* take?
1. First W(M*, M*) is built. This takes no more than
p(2||M*([) = p(l|M*|| + [[M*]]) steps.
2. M determines that W(M*, M*) has property P. Let us say this
takes t steps.

3. Then M* halts.

p(2I[M*[|) + & > f([[M*]])



Our Sketch Ends

It does no harm to suppose that d > 1. We take

1
C =
2d +1

With this choice of ¢ and since f is explosive, after a bit a fiddling,
we find that

f(m) eventually dominates p(2m) + f(c(2dm)).

This gives
t > f(c(2d||M*[|) > f(c[[W(M", M*[]).

But t was the number of steps M took to decide that W(M*, M*)
has P.



Our Sketch Ends

It does no harm to suppose that d > 1. We take

1
C =
2d +1

With this choice of ¢ and since f is explosive, after a bit a fiddling,
we find that

f(m) eventually dominates p(2m) + f(c(2dm)).

This gives
t > f(c(2d||M*[|) > f(c[[W(M", M*[]).

But t was the number of steps M took to decide that W(M*, M*)
has P. So our sketch is finished, if not complete.



Problems about equations

Let us fix a particular signature—a collection of operation symbols
each with some fixed finite rank. We take § to be the set of all
equations of our signature. Among the interesting choices for

P C 8§ are the equational theories. These are just the sets of
equations which are closed with respect to logical consequence.



Outline

Problems About Finite Sets of Equations
Equational Theories



Deciding equational theories

Except in the most meager signatures, it has been known at least
since the work of Jan Kalicki in 1955 that there are uncountably
many equational theories of a fixed signature. As there are only
countably many computer programs, the greater part of these
equational theories must be undecidable.



Deciding equational theories

But there are only countably many equational theories which a
finitely axiomatizable (alias finitely based), so such cardinality
arguments are silent about any finitely axiomatizable theory, as

they are about any specific theory.
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1. There is a finitely axiomatizable undecidable equational theory
of semigroups with several distinguished constants. [Post and
Markov, 1947]
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1. There is a finitely axiomatizable undecidable equational theory
of semigroups with two distinguished constants. [Marshall
Hall, 1949]

2. The equational theory of relation algebras is undecidable.
[Tarski, 1948]

3. There is a finitely axiomatizable undecidable equational theory
of groups with several additional distinguished constants.
[Novikov and Boone, circa 1955]

4. There are finitely axiomatizable undecidable equational
theories with just two one-place operation symbols or just one
operation symbol (which is two-place). [Mal'cev, 1966]
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More finitely axiomatizable undecidable equational theories

5. There is a finitely axiomatizable undecidable equational theory
of semigroups. [Murskii, 1968]

6. There is a finitely axiomatizable undecidable equational theory
of Lie algebras with several additional distinguished constants.
[Bo'kut, 1972]

7. There is a finitely axiomatizable undecidable equational theory
of division rings (with the stipulation 07! ~ 0) and with
several additional distinguished constants. [Macintyre, 1973]

8. The equational theory of modular lattices is undecidable.
[Freese, 1980]

9. There is a finitely axiomatizable undecidable equational theory
of groups. [Yu. Kleiman, 1982]
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Decidable equational theories

1.

The equational theory of any finite algebra is decidable and
belongs to co-NP.

The equational theory of groups is decidable in polynomial
time. [M. Dehn, 1912]

The equational theory of lattices is decidable in polynomial
time. [T. Skolem, 1920]

. The equational theory of each of the rings Z,Q,R, and C is

decidable.

. The equational theory of Boolean algebras is decidable and, in

fact, co-NP complete. [Cook, 1971]

The equational theory of any finite nontrivial lattice is
decidable and, in fact, co-NP complete. [Bloniarz, Hunt, and
Rosenkranz, 1987]

In particular, the equational theory of distributive lattices is
co-NP complete. [Tschantz]
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An observation of Ralph Freese

The equational theory of all lattices in decidable in polynomial
time.

The equational theory of distributive lattices is decidable, but
probably intractible—it is co-NP complete.

The equational theory of modular lattices is undecidable.



One last example

The equational theory of (R, +,-, —, 1,sin,| |} is undecidable.
This was proven in 1993 by Yuri Matiyasevich using the negative
solution to Hilbert's 10t" Problem and some ideas originating with
Daniel Richardson in 1968.
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Equational theories, overall

It seems that undecidable equational theories arise largely by design
(usually with considerable effort). They seem pathological—most
unlikely to be encountered in the course of mathematical practice.

Among the theories listed above, the equational theories of relation
algebras and of modular lattices are striking exceptions to this
pathology, as is the equational theory of (R, +,-,—, 1,sin, | |).

Thus, the situation for equational theories with respect to
decidability differs sharpley from the situation for elementary
theories—and even universal Horn theories.
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Properties of finite sets of equations

Now let us take 8 to be the collection of all finite sets of equations
for some fixed signature.
We might want to know of a finite set ¥ of equations
» whether Y is true in some nontrivial finite algebra, or
» whether X is a set of axioms for group theory, or
» whether the variety ¥ axiomatizes is congruence modular or
>

All of these problems turn out to be undecidable. In contrast to the
situation for equational theories, the properties ordinarily
encountered in mathematical practice and which are undecidable
turn out to be plentiful.
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Some undecidable properties of finite sets of equations

1.

Whether ¥ has a nontrivial model. [Perkins, 1966, McNulty,
Murskii circa 1970]

2. Whether X has a nontrivial finite model. [McKenzie, 1975]

3. Whether ¥ axiomatizes a minimal variety. [Perkins, 1966,

McNulty, Murskii circa 1970]

Whether X axiomatizes a decidable equational theory.
[Perkins, 1966, McNulty, Murskii circa 1970]

Whether ¥ axiomatizes the theory of a finite algebra. [Perkins,
1966, McNulty, Murskii circa 1970]

Whether ¥ axiomatizes a variety with the amalgamation
property. [Pigozzi, 1974]

. Whether ¥ axiomatizes a variety which is congruence

modular,. ... [McNulty,1972]

Whether ¥ axiomatizes a variety which has near-unanimity
terms. [McNulty, 1972]



Base undecidable equational theories

An equational theory T is called base undecidable provided there
is no agorithm for determining of a finite set ¥ of equations whether
Y axiomatizes T. For convenience, we say a term t is nontrivial
when some operation symbol of rank at least 2 occurs in t or when
at least two different operation symbols of rank 1 occur in t.
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nontrivial term t such that t = x € T, then T is base undecidable.

This theorem was found around 1970 independently by McNulty
and Murski.



Base undecidable equational theories

The Base Undecidability Theorem

If T is a finitely axiomatizable equational theory and there is a
nontrivial term t such that t = x € T, then T is base undecidable.

This theorem was found around 1970 independently by McNulty
and Murski.

According to this theorem, the great bulk of finitely based
equational theories arising in mathematical practice are base
undecidable. But this does not apply to the equational theory of
semigroups—to give one important exception.



Compatibility with topological spaces

Let T be a topological space—for example, the real line with its
usual topology. An algebra T with universe T is called a
topological algebra if all the basic operations of T are continuous.
A set Y of equations is compatible with T provided there is a
topological algebra T so that ¥ is true in T.



Compatibility with topological spaces

Taylor's Compatibility Theorem

Fix a signature adequate for the theory of rings with unit expanded
by two additional 1-place operation symbols. There is no algorithm
for deciding whether an equation of this signature is compatible
with the real line.

Wialter Taylor proved this in 2006 in a slightly weaker form.
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that for each of the spheres S” there is an algorithm for
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with S”, as long as n # 1,3, 7.
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Compatibility with topological spaces

On the other hand, for any finite signature, Walter Taylor observed
that for each of the spheres S” there is an algorithm for
determining of finite sets X of equations, whether ¥ is compatible
with S”, as long as n # 1,3,7.The complexities of these
compatibility problems for S” have not been worked out. Also,
there is some reason to think that the compatibility problem for S!
might also turn out to be decidable. The situation for S* and S’
and for other common topological spaces seems to be wide open.
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Compatibility with equational theories

Let T be some equational theory. We say that a set X of equations
is compatible with 7 when ¥ U T has a nontivial model. For
example, take T to be the equational theory of lattices. Then X is
compatible with T when X holds in some nontrivial lattice. We say
that T is compatibility decidable provided there is an algorithm
which upon input of any finite set ¥ of equations will determine
whether X is compatible with T.

It was observed in the 1960's that each of the following equational
theories is compatibility decidable.

1. The equational theory of Boolean algebras.

2. The equational theory of lattices.

3. The equational theory of groups.

4. The equational theory of rings.

In the first two cases, the compatibility problem is known to be
co-NP complete. The last two cases deserve some attention.
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Our Sample Problem

Is there a method which will determine of any given equation
whether it is true in some nontrivial lattice?

Just check whether the equation is true in the 2-element lattice.

How hard must that be?

This problem is co-NP complete.

Yes, but can it be done in polynomial time? Send the answer to the
Clay Foundation.
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ensure that an appropriate complexity function in available, we will
insist that each finite algebra have only finitely many fundamental
operations. This will allow us to enter each finite algebra via a
computer keyboard.



The set up

Now we consider problems where the input is a finite algebra. To
ensure that an appropriate complexity function in available, we will
insist that each finite algebra have only finitely many fundamental
operations. This will allow us to enter each finite algebra via a
computer keyboard.

Infinite algebras or even finite algebras with infinitely many
fundamental operations are not directly amendable as inputs. While
we will not pursue this avenue, the assortment of such infinite
algebras that still admit finite descriptions of one kind or another is
rich and mathematically significant. Instead of framing
computational problems about these algebras, one instead frames
them about the finite descriptions. That is, the inputs are the
descriptions rather than the algebras.
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The Finite Algebra Membership Problem

Let V be a variety (other kinds of classes are interesting too) of
some fixed finite signature p. Then the Finite Algebra Membership
Problem for V is

INSTANCE: A finite algebra B of signature p.

QUESTION: IsB € V?

In the event that 'V is finitely axiomatizable, it is not hard to see
that this problem can be solved in polynomial time.
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Let us consider the case when 'V is generated by a finite algebra A.

The first advance was the observation made by Jan Kalicki in 1952
that there is an algorithm which, upon input of finite algebras A
and B, will determine whether B belongs to the variety generated
by A. Kalicki's algorithm is a brute force affair.
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Let us consider the case when 'V is generated by a finite algebra A.

The first advance was the observation made by Jan Kalicki in 1952
that there is an algorithm which, upon input of finite algebras A
and B, will determine whether B belongs to the variety generated
by A. Kalicki's algorithm is a brute force affair.

Bergman and Stutzki, in 2000, gave a detailed analysis of a
polished version of Kalicki's brute force algorithm, finding that it
can be carried out in 2EXPTIME.
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1. A finite algebra with an NP-complete Finite Algebra
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The Finite Algebra Membership Problem

Consider the Finite Algebra Membership Problem where V is
generated by a finite algebra. Here are the recent findings:

1. A finite algebra with an NP-complete Finite Algebra
Membership Problem. [Z. Székely, 1998]

2. A finite semigroup with an NP-hard Finite Algebra
Membership Problem. [Jackson and McKenzie, 2006]

3. A finite algbra with a 2EXPTIME-complete Finite Algebra
Membership Problem. [Kozik, 2007]
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Tarski's Finite Basis Problem

An algebra or a variety is finitely based if its equational theory is
finitely axiomatizable. Tarski's Finite Basis Problem is

INSTANCE: A finite algebra A.
QUESTION: Is A finitely based?

Tarski raised the question of whether there is an alogrithm to solve
this problem in the early 1960's.



Tarski's Finite Basis Problem

Finite algebras belonging to many familiar varieties are now known

to be finitely based. This applies to groups, rings, lattices, Boolean
algebras, Lie algebras, and many others. So restricted to classes like
these, there is an easy algorithm for solving Tarski's Finite Basis

Problem.



Tarski's Finite Basis Problem

Observe that Tarski's Finite Basis Problem places no restriction on
the signature of the input algebras. In 1984, Ralph McKenzie
proved that restricting the signature to just one operation symbol,
that one being 2-place, results a problem equivalent to the original
in the sense that there is an algorithm solving one if and only if
there is an algorithm solving the other.



Tarski's Finite Basis Problem

A finite algebra is inherently nonfinitely based if it belongs to no
locally finite finitely based variety.

In 1987 Mark Sapir discovered an algorithm to solve the following
INSTANCE: A finite semigroup A.

QUESTION: Is A inherently nonfinitely based?



Tarski's Finite Basis Problem

Finally, in 1996 Ralph McKenzie published a resolution of Tarski's
Finite Basis Problem: It is undecidable.
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A variety V has a finite residual bound provided there is a natural
number k such that every subdirectly irreducible algebra in 'V has
cardinality less than k.



Residual bounds

A variety V has a finite residual bound provided there is a natural

number k such that every subdirectly irreducible algebra in 'V has

cardinality less than k.

McKenzie also showed that the following problem is undecidable:
INSTANCE: A finite algebra A.

QUESTION: Does the variety generated by A have a
finite residual bound?
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Minimal varieties

A variety V is minimal if V has exactly one proper subvariety.
INSTANCE: A finite algebra A.

QUESTION: Is the variety generated by A minimal?

In 1956, Dana Scott gave an algorithm for deciding this question.

Scott's algorithm is a brute force algorithm which invokes Kalicki

algorithm mentioned above. The computational complexity of this
problem is open.



Congruence distributivity and its relatives

Properties of a variety like congruence permutability, congruence
distributivity, congruence modularity, ..., have been shown to be
Mal'cev properties. In many cases, the proof that they are Mal'cev
properties provides an additional equivalent condition.



Congruence distributivity and its relatives

Properties of a variety like congruence permutability, congruence
distributivity, congruence modularity, ..., have been shown to be
Mal'cev properties. In many cases, the proof that they are Mal'cev
properties provides an additional equivalent condition.

A variety V is congruence distributive if and only if the algebra in V
which is V-freely generated by 3 elements has distributive
congruences.



Congruence distributivity and its relatives

This means that the problem below is decidable (in those cases)
INSTANCE: A finite algebra A.

QUESTION: Is the variety generated by A congruence
distributive (or permutable, modular,. .. )?



Congruence distributivity and its relatives

This means that the problem below is decidable (in those cases)
INSTANCE: A finite algebra A.

QUESTION: Is the variety generated by A congruence
distributive (or permutable, modular,. .. )?

The computational complexity of this kind of problem will be
addressed in the talk of Ralph Freese slated for Wednesday
afternoon at 2:00 p.m.



Near unanimity terms

A variety V has a near unanimity term provided there is a term
t(xo0, X1, --,Xn—1) in which at least three distinct variable occur
such that

ty, X, X, ooy X) R (X, Y, X, X) R
(XX, Y,y X) R R (X X XL, Y) RX

holds in V. Lattice, for example, have a 3-place near unanimity
term.

Miklés Maréti will speak to us Friday morning about the following
problem:

INSTANCE: A finite algebra A.

QUESTION: Does the variety generated by A have a near
unanimity term?



Affine completeness

An algebra A is called affine complete if each finitary operation
on A which is compatible with all the congruences of A is a
polynomial of A. A variety is affine complete if each algebra
belonging to the variety is affine complete.

In 2002, Kaarli and Pixley gave an algorithm to solve the following
problem.
INSTANCE: A finite algebra A.

QUESTION: Is the variety generated by A affine
complete?



Affine completeness

An algebra A is called affine complete if each finitary operation
on A which is compatible with all the congruences of A is a
polynomial of A. A variety is affine complete if each algebra
belonging to the variety is affine complete.

In 2002, Kaarli and Pixley gave an algorithm to solve the following
problem.

INSTANCE: A finite algebra A.

QUESTION: Is the variety generated by A affine
complete?

The computational complexity of this problem is unknown.



Primality and quasiprimality

Let A be an algebra. The clone of term-functions of A is denoted
by CloA. The algebra A is primal provided Clo A is the set of all
finitary operations on the set A. Primal algebras must be finite.
The 2-element Boolean algebra is primal.

The ternary discriminator operation on the set A is the function
d: A3 — A so that
a ifa#b

d(a,b,c):{c ifa=5b

A is said to be quasiprimal provided A is finite and the ternary
discriminator belongs to Clo A.



Primality and quasiprimality

The problems
INSTANCE: A finite algebra A.

QUESTION: Is A primal (or quasiprimal)?

It follows from the 1964 work of Alfred Foster and Alden Pixley,
and of Pixley in 1971 that both of these problems have algoritmic
solutions. However, little seems to be known about their
computational complexity.



Dualizability

Some finite algebras A, like the 2-element Boolean algebra, provide
a natural duality between the quasivariety generated by A and a
corresponding class of (structured) topological spaces. Time does
not permit me to give here a full definition of what it means for A
to be dualizable. However, anyone who googles the name of Brian
Davey will find out rapidly what is what.

Consider the problem
INSTANCE: A finite algebra A.

QUESTION: Is A dualizable?



Dualizability

Like the finite basis property and the existence of a finite residual
bound, dualizability appears to be a strong finiteness property of (in
this case) the quasivariety generated by the algebra. Roughly
speaking, for most of the properties of a finite algebra A which turn
out to be decidable, the algorithms seem to depend on examining
the direct powers A" up to some finite n (which might depend on
A). Dualizability appears to require the examination of all the finite
direct powers of A. While there is some prospect that this problem
will turn out to be undecidable,
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Like the finite basis property and the existence of a finite residual
bound, dualizability appears to be a strong finiteness property of (in
this case) the quasivariety generated by the algebra. Roughly
speaking, for most of the properties of a finite algebra A which turn
out to be decidable, the algorithms seem to depend on examining
the direct powers A" up to some finite n (which might depend on
A). Dualizability appears to require the examination of all the finite
direct powers of A. While there is some prospect that this problem
will turn out to be undecidable, no one knows!
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Problem 1. Is it decidable of a finite set of equations whether it is
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Problem 2. What is the complexity of deciding of a finite set of
equations whether it is compatible with S" for
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equations whether it is true in some nontrivial group
(or ring)?

Problem 4. What is the complexity of deciding whether a finite
algebra generates a minimal variety?

Problem 5. What is the complexity of deciding whether a finite
algebra has a near unanimity term?

Problem 6. What is the complexity of deciding whether a finite
algebra generates an affine complete variety?

Problem 7. What is the complexity of deciding whether a finite
algebra is primal? Quasiprimal?

Problem 8. Is it decidable whether a finite algebra is dualizable?



	Outline
	Tutorial
	Setting The Stage
	Some General Methods
	The Method of Reduction
	The Method of Simulation and Diagonalization

	Problems About Finite Sets of Equations
	Equational Theories
	Properties of Finite Sets of Equations

	Problems About Finite Algebras
	The Finite Algebra Membership Problem
	Tarski's Finite Basis Problem
	More properties of finite algebras

	What to do?


