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A problem

Is there an algorithm that determines for a finite algebra A whether
the finite algebra membership problem for the variety generated by
A is solvable in polynomial time?



Algebras arise

Algebraic systems that came to prominence in the 19th century,
such as groups, rings, vector spaces, modules, Boolean algebras,
and lattices gave rise in the 20th century to the general theory of
algebras and of varieties of algebras and of their associated
equational theories.

This more general perspective admits a much broader assortment of
algebraic systems and the development of this general perspective
would seem to require the examination of algebraic systems whose
mathematical provenance differs from those listed above.

Algebras associated with graphs, hypergraphs, tournaments, Turing
machines, and other combinatorial structures have all emerged in
the last several decades, leading to concepts and results useful from
the more general perspective.



Algebras arise

Algebraic systems that came to prominence in the 19th century,
such as groups, rings, vector spaces, modules, Boolean algebras,
and lattices gave rise in the 20th century to the general theory of
algebras and of varieties of algebras and of their associated
equational theories.

This more general perspective admits a much broader assortment of
algebraic systems and the development of this general perspective
would seem to require the examination of algebraic systems whose
mathematical provenance differs from those listed above.

Algebras associated with graphs, hypergraphs, tournaments, Turing
machines, and other combinatorial structures have all emerged in
the last several decades, leading to concepts and results useful from
the more general perspective.



Algebras arise

Algebraic systems that came to prominence in the 19th century,
such as groups, rings, vector spaces, modules, Boolean algebras,
and lattices gave rise in the 20th century to the general theory of
algebras and of varieties of algebras and of their associated
equational theories.

This more general perspective admits a much broader assortment of
algebraic systems and the development of this general perspective
would seem to require the examination of algebraic systems whose
mathematical provenance differs from those listed above.

Algebras associated with graphs, hypergraphs, tournaments, Turing
machines, and other combinatorial structures have all emerged in
the last several decades, leading to concepts and results useful from
the more general perspective.



Finite Automata

Here we will consider algebras associated with finite automata.

A finite automaton is a system 〈Σ, Q, δ, q0, F 〉 where
I Σ is a nonempty finite set, referred to as the alphabet,
I Q is a nonempty finite set, referred to as the set of states,
I the sets Σ and Q are disjoint,
I δ is a function from a subset of Q × Σ to Q and it is called

the transition function,
I q0, referred to as the initial state, belongs to Q, and
I F ⊆ Q is referred to as the collection of final states.
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Automatic algebras

The function δ is a partial operation on Σ ∪ Q. By adding a new
element 0 as a default value we can extend δ to a total binary
operation on Σ ∪ Q ∪ {0}.

Given an automaton M = 〈Σ, Q, δ, q0, F 〉 associated automatic
algebra A(M) = 〈Σ ∪ Q ∪ {0}, ·〉 is the algebra that satisfies the
following stipulations: 0 /∈ Σ ∪ Q and

r · a =

{
δ(r , a) if δ is defined at (r , a)
0 otherwise.
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Displaying automata and their algebras

Finite automata (and their algebras) can be displayed via diagrams.
These diagrams are certain directed graphs with labelled edges.
The states of the automaton are the vertices of the graph. An edge
directed from q to r with label a is in the diagram provided
δ(q, a) = q · a = r .



Displaying automata and their algebras

Here is a display three automata L, R, and M0 associated with
automatic algebras to be found in the literature. The diagram V
would depict an autmaton except that one of the “states” would
also be a “letter”.

rrr� -WWW

L
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r q s

R
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Displaying automata and their algebras

Automatic algebras were introduced in Zoltán Székely’s 1998
dissertation, where they were called edge algebras. Székely
investigated several inherently nonfinitely based variants of L above.

One reason to investigate automatic algebras is to develop methods
for distinguishing which finite algebras are finitely based, which are
inherently nonfinitely based, and which are nonfinitely based but fail
to be inherently nonfinitely based. It may also be fruitful to develop
an understanding of which automatic algebras are dualizable.
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Languages accepted by automata

An automaton M accepts a word w on the alphabet Σ provided
there is a directed path from the initial state to some final state so
that w is can be read off the edges as they are traversed in going
from the initial state to the final state. Let L be a set of words on
Σ. We say that M accepts the language L provided
L = {w | M accepts w}.



Three finite basis theorems

Theorem
Let A be an automatic algebra. If the language accepted by the
automaton M is finite whenever A = A(M), then A is finitely
based.



Three finite basis theorems

We say a letter b is a bridge letter for the language L provided
I b occurs no more than once in every word belonging to L, and
I b occurs as the rightmost letter in arbitrarily long words in L.

Theorem
Let M be an automaton that accepts an infinite language with a
bridge letter. Let P be a nontrivial algebra in which x · y ≈ y holds.
The algebra A(M) × P is not finitely based.

This theorem extends a 1996 result of V. L. Murskii. Note that P
can be taken to be a two-element algebra.
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Three finite basis theorems

Theorem
If M is a finite automaton with just one final state that accepts the
language a∗bc∗, then A(M) is inherently nonfinitely based.

In the automaton R take q to be the initial state and let r be the
sole final state. Clearly a∗bc∗ is the language accepted by R . So
we get another proof that A(R) is inherently nonfinitely based.

Which languages can replace a∗bc∗ in the theorem above?
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Bilinear algebras made from automata

Let M be a finite automata and K be a field. Form a nonassociative
bilinear algebra K(M) by regarding the default element 0 as the
zero vector and the set Σ ∪ Q as a basis for a vector space over K.

The elements of K(M) then become the linear combinations of the
basis vectors and the product on K(M) is the natural extension of
the automatic algebra product in A(M).

It is notable that Isaev’s 1989 example of an inherently nonfinitely
based finite algebra that generates a congruence modular variety is
exactly K(R).

What is it about the automaton R that causes both A(R) and
K(R) to be inherently nonfinitely based?
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