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Let K be any class of similar algebras. The variety V

generated by K can be described in two ways:
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Let K be any class of similar algebras. The variety V

generated by K can be described in two ways:

A 2 V iff every equation true in K is true in A;

V is the smallest class including K which is closed
under the formation of homomorphic images,
subalgebras, and arbitrary direct products.
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Let K be any class of similar algebras. The variety V

generated by K can be described in two ways:

A 2 V iff every equation true in K is true in A;

V is the smallest class including K which is closed
under the formation of homomorphic images,
subalgebras, and arbitrary direct products.

This equivalence is a classical result of Garrett Birkhoff.
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Subdirect Representations

A subdirect respresentation of an algebra A is a system

hhi j i 2 Ii of homomorphisms with domain A so that the
system of homomorphisms separates the elements of A.
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Subdirect Representations

A subdirect respresentation of an algebra A is a system

hhi j i 2 Ii of homomorphisms with domain A so that the
system of homomorphisms separates the elements of A.

The homomorphic images hi(A) are called the factors of
the representation.
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Subdirect Representations

A subdirect respresentation of an algebra A is a system

hhi j i 2 Ii of homomorphisms with domain A so that the
system of homomorphisms separates the elements of A.

The homomorphic images hi(A) are called the factors of
the representation.

A subdirect representation is trivial if one of its
homomorphisms is an isomorphism.
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An algebra is subdirectly irreducible provided all of its
subdirect representations are trivial.
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An algebra is subdirectly irreducible provided all of its
subdirect representations are trivial.

The subdirectly irreducible algebras are exactly those which
have a least nontrivial congruence (called the monolith ).
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An algebra is subdirectly irreducible provided all of its
subdirect representations are trivial.

The subdirectly irreducible algebras are exactly those which
have a least nontrivial congruence (called the monolith ).

The subdirectly irreducible algebras are exactly those which
have a critical pair , i.e. a pair (a; b) of distinct elements
such that any homomorphism which is not one-to-one must
assign to a and b the same value.
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The Congruence Lattice of a Subdirectly Irreducible Algebra
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According to a classical result of Garrett Birkhoff, every
algebra has a subdirect representation for which all the
factors are subdirectly irreducible.
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According to a classical result of Garrett Birkhoff, every
algebra has a subdirect representation for which all the
factors are subdirectly irreducible.

Consequently, every variety is determined by its class of
subdirectly irreducible members.
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According to a classical result of Garrett Birkhoff, every
algebra has a subdirect representation for which all the
factors are subdirectly irreducible.

Consequently, every variety is determined by its class of
subdirectly irreducible members.

For any class K of algebras we use Ksi to denote the class
of subdirectly irreducible algebras in K.
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Our Main Theorem
If V is the variety generated by a finite group, then Vsi is a
finitely axiomatizable elementary class.
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Two Classical Theorems

If V is the variety generated by a finite group, then V is a
finitely axiomatizable elementary class.
Oates and Powell (1965)
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Two Classical Theorems

If V is the variety generated by a finite group, then V is a
finitely axiomatizable elementary class.
Oates and Powell (1965)

If V is the variety generated by a finite lattice (even
expanded by finitely many additional basic operations), then

V is a finitely axiomatizable elementary class.
McKenzie (1970)
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According to a classical result of Bjarni Jónsson (1967),
there is a finite upper bound on the cardinalities of
members of Vsi, when V is generated by a finite lattice
(even expanded by finitely many operation symbols).

On the other hand, if V is generated by a finite group and
contains a nilpotent group which is not Abelian, then V

contains arbitrarily large infinite subdirectly irreducible
groups.
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The Real Main Theorem

Let V be the variety generated by a finite group. Then there
is an elementary sentence � such that

Vsi j= �, and
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The Real Main Theorem

Let V be the variety generated by a finite group. Then there
is an elementary sentence � such that

Vsi j= �, and

If � is true in a group B, then B is subdirectly
irreducible.
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If � is true in a group B, then B is subdirectly
irreducible.
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The Proof of Our Main Theorem

According to the Theorem of Oates and Powell, there is an
elementary sentence � which axiomatizes V. Let � be the
sentence guaranteed by the Real Main Theorem. Evidently,

� ^^ � axiomatizes Vsi.
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The Proof of Our Main Theorem

According to the Theorem of Oates and Powell, there is an
elementary sentence � which axiomatizes V. Let � be the
sentence guaranteed by the Real Main Theorem. Evidently,

� ^^ � axiomatizes Vsi. �
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Let H be a group and let a; b 2 H. We use CgH(a; b) to
denote the smallest congruence of H which identifies a and

b.

By a unary polynomial of H we mean a function

tH(x; a0; a1; : : : ) where t(x; y0; y1; : : : ) is a term and

a0; a1; � � � 2 H. The complexity of this polynomial is the
length of the shortest term t(x; y0; y1; : : : ) that can be used
to represent it.

When (c; d) 2 CgH(a; b) because c = q(a) and d = q(b) we
say that the polynomial q(x) witnesses this membership
constraint.
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Theorem 1. LetH be a group and a; b 2 H . Then

CgH(a; b) = f(q(a); q(b)) : for some unary polynomial q(x)g:
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Ladders in Groups

Let H be any group. A system B = hB0; B1; : : : ; Bm�1i of
finite subsets of H is said to be a ladder provided

1. 1 2 Bi and Bi has at least two elements, for each i < m,

2. Bi \Bj = f1g for all i; j < m with i 6= j,

3. (z; 1) 2 CgH(x; y) for all x 2 Bi; y 2 Bj and z 2 Bk with

1 6= x 6= y and for all i; j; k < m with j; k � i.
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The congruences of the form CgH(x; y) where x 2 Bi and

y 2 Bj with j � i < m and x 6= y are called the principal
conguences of the ladder.
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The congruences of the form CgH(x; y) where x 2 Bi and

y 2 Bj with j � i < m and x 6= y are called the principal
conguences of the ladder.

These congruences are independent of the choice of x 2 Bi

or of y 2 Bj as long as 1 6= x 6= y.
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The congruences of the form CgH(x; y) where x 2 Bi and

y 2 Bj with j � i < m and x 6= y are called the principal
conguences of the ladder.

These congruences are independent of the choice of x 2 Bi

or of y 2 Bj as long as 1 6= x 6= y.

We denote CgH(x; 1) by 'i, where x 2 Bi and x 6= 1.
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The congruences of the form CgH(x; y) where x 2 Bi and

y 2 Bj with j � i < m and x 6= y are called the principal
conguences of the ladder.

These congruences are independent of the choice of x 2 Bi

or of y 2 Bj as long as 1 6= x 6= y.

We denote CgH(x; 1) by 'i, where x 2 Bi and x 6= 1.

Evidently, '0 � '1 � � � � � 'm�1 is chain of congruences. By
the length of the ladder B we mean the length of this chain
of congruences.
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Theorem 2. If the variety V is generated by the finite groupG and

H 2 V , then jGj is an upper bound on the length of any ladder ofH.
Moreover, jGj also bounds the length of any chain of completely join
irreducible elements of ConH.
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Let H be any group and a 2 H. The ladder height of a is
the least upper bound on the lengths of ladders all of whose
principal congruences are included in CgH(a; 1).

We will denote the ladder height of a in H by �H(a).

Notice that the ladder height of 1 is 0.
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Theorem 3. LetG be a finite group and let V be the variety generated
byG. There is a finite bound n such that for anyA 2 V and any a 2 A

with �A(a) > 1, there is b 2 A with b 6= 1 and �A(b) < �A(a) such
that there is a polynomial of complexity no more than n which witnesses

(b; 1) 2 CgA(a; 1).
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Theorem 4. LetH be a group and suppose a; b; c; d 2 H so that

(c; d) 2 CgH(a; b). Then there is a polynomial of complexity no more

than 4j1=CgH(a; b)j+ 1 that witnesses this membership constraint.
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