Finite Axiomatizability for The Class of Subdirectly Irreducible Groups Generated by a Finite Group

George F. McNulty and JU WANG

University of South Carolina and Chinese Academy of Sciences

• $\mathbf{A} \in \mathcal{V}$ iff every equation true in \mathcal{K} is true in \mathbf{A} ;

- **•** $\mathbf{A} \in \mathcal{V}$ iff every equation true in \mathcal{K} is true in \mathbf{A} ;
- V is the smallest class including K which is closed under the formation of homomorphic images, subalgebras, and arbitrary direct products.

- **•** $\mathbf{A} \in \mathcal{V}$ iff every equation true in \mathcal{K} is true in \mathbf{A} ;
- V is the smallest class including K which is closed under the formation of homomorphic images, subalgebras, and arbitrary direct products.

This equivalence is a classical result of Garrett Birkhoff.

Subdirect Representations

A subdirect respresentation of an algebra A is a system $\langle h_i \mid i \in I \rangle$ of homomorphisms with domain A so that the system of homomorphisms separates the elements of A.

Subdirect Representations

A subdirect respresentation of an algebra A is a system $\langle h_i \mid i \in I \rangle$ of homomorphisms with domain A so that the system of homomorphisms separates the elements of A.

The homomorphic images $h_i(\mathbf{A})$ are called the **factors** of the representation.

Subdirect Representations

A subdirect respresentation of an algebra A is a system $\langle h_i \mid i \in I \rangle$ of homomorphisms with domain A so that the system of homomorphisms separates the elements of A.

The homomorphic images $h_i(\mathbf{A})$ are called the **factors** of the representation.

A subdirect representation is **trivial** if one of its homomorphisms is an isomorphism.

An algebra is **subdirectly irreducible** provided all of its subdirect representations are trivial.

An algebra is **subdirectly irreducible** provided all of its subdirect representations are trivial.

The subdirectly irreducible algebras are exactly those which have a least nontrivial congruence (called the **monolith**).

An algebra is **subdirectly irreducible** provided all of its subdirect representations are trivial.

The subdirectly irreducible algebras are exactly those which have a least nontrivial congruence (called the **monolith**).

The subdirectly irreducible algebras are exactly those which have a **critical pair**, i.e. a pair (a, b) of distinct elements such that any homomorphism which is not one-to-one must assign to a and b the same value.

The Congruence Lattice of a Subdirectly Irreducible Algebra

According to a classical result of Garrett Birkhoff, every algebra has a subdirect representation for which all the factors are subdirectly irreducible. According to a classical result of Garrett Birkhoff, every algebra has a subdirect representation for which all the factors are subdirectly irreducible.

Consequently, every variety is determined by its class of subdirectly irreducible members.

According to a classical result of Garrett Birkhoff, every algebra has a subdirect representation for which all the factors are subdirectly irreducible.

Consequently, every variety is determined by its class of subdirectly irreducible members.

For any class \mathcal{K} of algebras we use \mathcal{K}_{si} to denote the class of subdirectly irreducible algebras in \mathcal{K} .

Our Main Theorem

If \mathcal{V} is the variety generated by a finite group, then \mathcal{V}_{si} is a finitely axiomatizable elementary class.

Two Classical Theorems

If \mathcal{V} is the variety generated by a finite group, then \mathcal{V} is a finitely axiomatizable elementary class. Oates and Powell (1965)

Two Classical Theorems

If \mathcal{V} is the variety generated by a finite group, then \mathcal{V} is a finitely axiomatizable elementary class. Oates and Powell (1965)

If \mathcal{V} is the variety generated by a finite lattice (even expanded by finitely many additional basic operations), then \mathcal{V} is a finitely axiomatizable elementary class. McKenzie (1970) According to a classical result of Bjarni Jónsson (1967), there is a finite upper bound on the cardinalities of members of V_{si} , when V is generated by a finite lattice (even expanded by finitely many operation symbols).

On the other hand, if \mathcal{V} is generated by a finite group and contains a nilpotent group which is not Abelian, then \mathcal{V} contains arbitrarily large infinite subdirectly irreducible groups.

The Real Main Theorem

Let ${\cal V}$ be the variety generated by a finite group. Then there is an elementary sentence Φ such that

• $\mathcal{V}_{si} \models \Phi$, and

The Real Main Theorem

Let \mathcal{V} be the variety generated by a finite group. Then there is an elementary sentence Φ such that

- $\mathcal{V}_{si} \models \Phi$, and
- If Φ is true in a group B, then B is subdirectly irreducible.

The Real Main Theorem

Let \mathcal{V} be the variety generated by a finite group. Then there is an elementary sentence Φ such that

- $\mathcal{V}_{si} \models \Phi$, and
- If Φ is true in a group B, then B is subdirectly irreducible.

The Proof of Our Main Theorem

According to the Theorem of Oates and Powell, there is an elementary sentence Σ which axiomatizes \mathcal{V} . Let Φ be the sentence guaranteed by the Real Main Theorem. Evidently, $\Sigma \wedge \Phi$ axiomatizes \mathcal{V}_{si} .

The Proof of Our Main Theorem

According to the Theorem of Oates and Powell, there is an elementary sentence Σ which axiomatizes \mathcal{V} . Let Φ be the sentence guaranteed by the Real Main Theorem. Evidently, $\Sigma \wedge \Phi$ axiomatizes \mathcal{V}_{si} .

Let H be a group and let $a, b \in H$. We use $Cg^{H}(a, b)$ to denote the smallest congruence of H which identifies a and b.

By a **unary polynomial of H** we mean a function $t^{\mathbf{H}}(x, a_0, a_1, ...)$ where $t(x, y_0, y_1, ...)$ is a term and $a_0, a_1, \dots \in H$. The **complexity** of this polynomial is the length of the shortest term $t(x, y_0, y_1, ...)$ that can be used to represent it.

When $(c, d) \in Cg^{\mathbf{H}}(a, b)$ because c = q(a) and d = q(b) we say that the polynomial q(x) witnesses this membership constraint.

Theorem 1. Let \mathbf{H} be a group and $a, b \in H$. Then

 $Cg^{\mathbf{H}}(a,b) = \{(q(a),q(b)) : \text{ for some unary polynomial } q(x)\}.$

Ladders in Groups

Let **H** be any group. A system $B = \langle B_0, B_1, \dots, B_{m-1} \rangle$ of finite subsets of *H* is said to be a **ladder** provided

- 1. $1 \in B_i$ and B_i has at least two elements, for each i < m,
- **2.** $B_i \cap B_j = \{1\}$ for all i, j < m with $i \neq j$,
- **3.** $(z,1) \in Cg^{\mathbf{H}}(x,y)$ for all $x \in B_i, y \in B_j$ and $z \in B_k$ with $1 \neq x \neq y$ and for all i, j, k < m with $j, k \leq i$.

These congruences are independent of the choice of $x \in B_i$ or of $y \in B_j$ as long as $1 \neq x \neq y$.

These congruences are independent of the choice of $x \in B_i$ or of $y \in B_j$ as long as $1 \neq x \neq y$.

We denote $Cg^{\mathbf{H}}(x,1)$ by φ_i , where $x \in B_i$ and $x \neq 1$.

These congruences are independent of the choice of $x \in B_i$ or of $y \in B_j$ as long as $1 \neq x \neq y$.

We denote $Cg^{\mathbf{H}}(x,1)$ by φ_i , where $x \in B_i$ and $x \neq 1$.

Evidently, $\varphi_0 \subseteq \varphi_1 \subseteq \cdots \subseteq \varphi_{m-1}$ is chain of congruences. By the **length** of the ladder *B* we mean the length of this chain of congruences.

Theorem 2. If the variety \mathcal{V} is generated by the finite group \mathbf{G} and $\mathbf{H} \in \mathcal{V}$, then |G| is an upper bound on the length of any ladder of \mathbf{H} . Moreover, |G| also bounds the length of any chain of completely join irreducible elements of $\operatorname{Con} \mathbf{H}$. Let H be any group and $a \in H$. The **ladder height** of a is the least upper bound on the lengths of ladders all of whose principal congruences are included in $Cg^{H}(a, 1)$.

We will denote the ladder height of a in **H** by $\rho^{\mathbf{H}}(a)$.

Notice that the ladder height of 1 is 0.

Theorem 3. Let G be a finite group and let \mathcal{V} be the variety generated by G. There is a finite bound n such that for any $\mathbf{A} \in \mathcal{V}$ and any $a \in A$ with $\rho^{\mathbf{A}}(a) > 1$, there is $b \in A$ with $b \neq 1$ and $\rho^{\mathbf{A}}(b) < \rho^{\mathbf{A}}(a)$ such that there is a polynomial of complexity no more than n which witnesses $(b, 1) \in \mathrm{Cg}^{\mathbf{A}}(a, 1)$. **Theorem 4.** Let \mathbf{H} be a group and suppose $a, b, c, d \in H$ so that $(c, d) \in \operatorname{Cg}^{\mathbf{H}}(a, b)$. Then there is a polynomial of complexity no more than $4|1/\operatorname{Cg}^{\mathbf{H}}(a, b)| + 1$ that witnesses this membership constraint.