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PROBLEMS FROM GROUP THEORY

In the problems below, G, H, K, and N generally denote groups. We
use p to stand for a positive prime integer. Aut((G) denotes the group of
automorphisms of G. Z(G) denotes the center of G. S,, denotes the group
of all permutations of a set with n elements—the so called symmetric group.
A, denotes the alternating group on n elements. H < G means that H is
a subgroup of G, while H <G means that H is a normal subgroup of G.
H ® K denotes the internal direct product of H and K. H x K denotes the
(external) direct product of H and K .

PROBLEM 0.
Show that any group which has only finitely many subgroups must be finite.

PROBLEM 1.

If H <G and the product of any two right cosets of H is again a right coset
of H,then H<G.

PROBLEM 2.

Show that the group @Q of rational numbers under addition is a directly
indecomposable group. Show that every finitely generated subgroup of Q is
cyclic.
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PROBLEM 3.
Suppose that G = H® K and N<G. Prove that if NNH ={e} = NNK,
then N < Z(G).

PROBLEM 4.
Let p be the smallest prime dividing the order of the finite group G. Prove
that any subgroup of index p in G is a normal subgroup.

PROBLEM 5.
Prove that every group which has a proper subgroup of finite index must have
a proper normal subgroup of finite index.

PROBLEM 6.
Prove that there is not finite group G so that G/Z(G) has exactly 143 elements.

PROBLEM 7.
Prove that there is no group G so that G/Z(G) = Z, where Z denotes the
group of integers under addition.

PROBLEM 8.
Let G be a non-Abelian group. Prove that G/Z(G) is not cyclic.

PROBLEM 9.
Let C* be the multiplicative group of nonzero complex numbers and let n be
a positive integer. How many subgroups of order n does C* have?
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PROBLEM 10.

Let G be the multiplicative group of complex numbers of modulus 1, let R be
the additive group of real numbers, and let Z be the additive group of integers.
Prove that G = R/Z.

PROBLEM 11.
Prove that G cannot have four distinct proper subgroups Hy, H1, H2 , and Hj
sothat Hy< Hi < Hy, <G, Hy=HsNHs,and HHH3=G.

PROBLEM 12.

Let G be a finitely generated group. Prove that every proper normal subgroup
of GG is included in a normal subgroup of G which is maximal among all proper
normal subgroups of G .

PROBLEM 13.

Let Gi and Go be Abelian groups and let o : G — G5 and (3 : Gy — Gy
be homomorphisms so that [a(g) = g, for all ¢ € G. Prove that
G2 = a(Gy) @ker 3.

PROBLEM 14.
Let G be a group which has exactly one element g of order n, where n is a
positive integer. Prove that n =2 and g € Z(G).
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PROBLEM 15.
If G is a finite group and [{a : a” = e}| < n for all positive integers n, then
G is cyclic.

PROBLEM 16.

Suppose |G| =2n, G has exactly n elements of order 2, and the remaining n
elements constitute a subgroup H . Prove that H is an Abelian group of odd
order.

PROBLEM 17.
Let H and K be subgroups of G, each of finite index. Prove that H N K is

also of finite index.

PROBLEM 18.
Let A and B be finite Abelian p-groups of the same order and with exponent
p*. Suppose that

Hae A:al =e}|=|{be B: 1’ =e}|
{acA:a” =e}|=|{be B:b" =¢}|.
Is it true that A~ B?

PROBLEM 19.
Classify, up to isomorphism, the Abelian groups of order 144 .
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PRrROBLEM 20.
Give an example of two finite Abelian p-groups A and B which are not
isomorphic but all of the following hold:

a. |4l =B,

b. The exponents of A and B are the same,

c. |{a€eA:aP=e}|=|{be€ B:b =e}|

PROBLEM 21.
Prove that if G, H ,and K are finite Abelian groups such that Gx H 2 Gx K ,
then H =2 K.

PROBLEM 22.
Prove that a finite Abelian group fails to be cyclic if and only if it has a subgroup
isomorphic to Z, x Z, , for some prime p.

PROBLEM 23.

Let G be a finite Abelian group and C* be the multiplicative group of nonzero
complex numbers, and let ¢ : G — C* be a nontrivial homomorphism. Prove
that Z o(r)=0.

zeG

PROBLEM 24.
Prove that if G and H are finite Abelian groups and G x G = H x H | then
G=H.
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PROBLEM 25.
Prove that if k£ is a natural number that divides the order of a finite Abelian
group G, then G has a subgroup of order k.

PROBLEM 26.
Let G be a finite Abelian group. Prove that if |G| is not divisible by k2 for
any integer k > 2, then G is cyclic.

PROBLEM 27.
Prove that every group of order 130 has a normal subgroup of order 5.

PROBLEM 28.
Suppose that G is a finite group of odd order and N <G with |N| =5. Prove
that NN is included in the center of G .

PROBLEM 29.
Prove that every group of order 35 is cyclic.

ProBLEM 30.

Let G be a group of order p", where p is prime and n > 0. Suppose that
{e} # H <G . Prove that Z(G)NH # {e}.

PROBLEM 31.
How many elements of order 7 are there in a simple group of order 1687
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PROBLEM 32.
Prove that every group of order 154 has a normal subgroup of order 7.

PROBLEM 33.
Prove that every group of order 30 has a subgroup of order 15.

PROBLEM 34.

Let H be a proper subgroup of a finite p-group G. Prove that G has a
subgroup N such that H< N and H # N .

PROBLEM 35.
Describe, up to isomorphism, all the groups of order 325.

PROBLEM 36.
Describe, up to isomorphism, all the groups of order 1225.

PROBLEM 37.
Prove that every finite nontrivial p-group has a nontrivial center.

PRrROBLEM 38.

Let G be a finite group and let H <G so that |H|= p* for some prime p and
some positive integer k. Prove that H is contained in every p-Sylow subgroup
of G.

PROBLEM 39.
Prove there is no simple group of cardinality 200 .
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PRrROBLEM 40.
Describe, up to isomorphism, all the groups of order 7%-13.

PROBLEM 41.

Let G be a finite group, let p be a prime number, and let K be a p-subgroup
of G'. Prove that the number of p-Sylow subgroups of G that contain K is
congruent to 1 modulo p.

PROBLEM 42.
Prove that there is no simple group of order 56 .

PROBLEM 43.
The H <G, where G is a finite group. Let K be a Sylow subgroup of H .
Prove G = Ng(K)H .

PROBLEM 44.
Prove that there is no simple group of order 30.

PROBLEM 45.
Describe, up to isomorphism, all the groups of order 175.

PROBLEM 46.
Describe, up to isomorphism, all the groups of order 99.

PROBLEM 47.
Describe, up to isomorphism, all the groups of order 24 .
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PROBLEM 48.

Prove that if H is a p-subgroup of a finite group G and P is a p-Sylow
subgroup of G, then there is « € G so that H < Pz~ '. In particular, any
two p-Sylow subgroups are conjugate.

PROBLEM 49.
Prove that there is no simple group of order 56.

PROBLEM 50.
Let G be a group of order 45. Prove that every subgroup of G of index 3 is
normal.

PROBLEM 51.
Prove that every group of order 25 has a nontrivial automorphism.

PROBLEM 52.

Let G be a group, and denote by Inn G the group of inner automorphisms of G
and by Aut G the group of all automorphisms of G . Prove that Inn Ga Aut G
and that InnG = G/Z(G).

PROBLEM 53.
Prove that every finite group with at least 3 elements has at least 2
automorphisms.
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PROBLEM 54.
Prove that Aut (S,) = S, , for ever natural number n. (Here S, denotes the
group of permutations of a set with n elements.)

PROBLEM 55.
Let H < G. Prove that Ng(H)/Cg(H) is embeddable into Aut (H) .

PROBLEM 56. )
Let G be a group of order n. Define ¢ : G — G by p(a) = a™ 73"+ for all
a € G . Prove that ¢ is an automorphism of G .

PROBLEM 57.
Let p be a prime number. Prove that if ¢ and b are elements of the symmetric

group S, , where a has order p and b is a transposition, then {a,b} generates
Sp .

PROBLEM 58.
Prove that a permutation on a finite set cannot be both even and odd.

PROBLEM 59.
Let F' be the group freely generated by a countably infinite set.
a. Prove that F' has a maximal normal subgroup of index 3!/2.
b. Prove that F' has a maximal normal subgroup of index n!/2. for every
n>>5.
c. Prove that F' has no maximal normal subgroup of index 4!/2.
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PRrROBLEM 60.
Suppose H <G and G/H = F, where F is a free group. Prove that G has a
subgroup isomorphic to F'.

PROBLEM 61.
Is the group of positive rationals under multiplication a free Abelian group?

PROBLEM 62.
Is the gorup of rationals under addition a free Abelian group?

PROBLEM 63.
Let G be the group freely generated by {a,b} subject to the relations
b =e,a'® =e, and ba = a"'b.

a. Describe the commutator subgroup of G.

b. Find all the Sylow subgroups of G .

c. Find the center of G.

PROBLEM 64.

Let Gi(n,F) be the multiplicative group of all nonsingular n x n matrices
over a field F'. Let Sl(n,F) consist of those n x n matrices over F with
determinant 1. Show that Si(n,F) is a normal subgroup of Gi(n,F).
Compute [Gl(n,F): Sl(n,F)], when F is finite.
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PROBLEM 65.
Let O, = {A € GI(n,R) : A!A =1} and SO, = {A € O, :det A=1}. Prove
SO, <0, < Gl(n,R) and compute [O,, : SO,].

PROBLEM 66.
Prove that Gl(n, F)/Sl(n,F) = F* for any field F where F* denotes the
multiplicative group of nonzero elements of F'.

PROBLEM 67.
Briefly describe examples in each case:
a. A group G with subgroups H and K such that H<K<G but H 4 G.
b. A noncyclic Abelian groups that is directly indecomposable.
c. A non-Abelian group G with a normal subgroup H and a subgroup
K such that G/H = K ,but G2 H x K .

PROBLEM 68.
Prove that every finite p-group is solvable.

PROBLEM 69.
Provide an example of a finite group G abd an integer k so that k divides the
order of G, but G has no subgroup of order k.
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