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Abstract. The class of all subdirectly irreducible groups belonging to a variety generated by a finite group
can be axiomatized by a finite set of elementary sentences.

1. Introduction

A group is subdirectly irreducible provided it has a least nontrivial normal subgroup. Subdirectly
irreducible groups are also referred to as monolithic groups in the literature. Every simple group is sub-
directly irreducible, but there are many subdirectly irreducible groups that are not simple. A variety of
groups is a class of groups closed with respect to the formation of homomorphic images, subalgebras, and
arbitrary direct products. If G is a group, then the variety generated by G is the smallest variety to
which G belongs. We denote this variety by V(G). According to a classical theorem of Birkhoff [4] varieties
are exactly those classes which can be axiomatized by a set of equations. According to another classical
theorem of Birkhoff [5] two varieties are the same if they have the same subdirectly irreducible members.
For a class V of groups, we let Vsi denote the class of all subdirectly irreducible groups belonging to V.

The chief result of this paper is:
Main Theorem. The class of all subdirectly irreducible groups belonging to the variety generated by any
finite group is finitely axiomatizable.

This theorem provides an important property that finite groups share with a surprising assortment of
other finite algebras. For this reason we have framed our arguments in the language of general algebra, even
though our result lies entirely within group theory. We take an algebra A to be a nonempty set A equipped
with a system of operations, each taking some finite number of arguments. The notions of subalgebra,
homomorphism, and direct product have their natural meanings. A congruence on an algebra A is simply
the kernel of some homomorphism. Specifically,

{〈a, b〉 : a, b ∈ A and h(a) = h(b)}
is a congruence of A whenever h is a homomorphism with domain A. In groups, congruences can be replaced
by the conceptually simpler notion of normal subgroups. Set-inclusion imposes a lattice ordering on the set
of all congruences of an algebra. We use ConA to denote the lattice of congreunces of the algebra A. We
use φ ∧ ψ to denote the greatest lower bound or meet of the congruences φ and ψ (this is just φ ∩ ψ) and
φ ∨ ψ to denote the least upper bound or join of φ and ψ (which fails, usually, to be the union). Indeed,
any set of congruences of A has both a least upper bound and a greatest lower bound. An algebra A is
subdirectly irreducible provided A has a least nontrivial congruence, referred to as the monolith of A.
Usually, we reserve µ to stand for the monolith of a subdirectly irreducible algebra. Subdirectly irreducible
algebras are also characterized by the presence of a pair 〈a, b〉 of distinct elements which belongs to every
nontrivial congruence. Such a pair is called a critical pair. The two classical theorems of Birkhoff cited
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above apply to algebras, not just to groups. For an exposition of the general theory of algebras see [22], [8],
and [11]. We follow the notational conventions of [22] most closely. The standard reference for varieties of
groups is the excellent book of Hanna Neumann [23].

An algebra A is said to be finitely based if there is a finite set Σ of equations, each true in A, such that
every equation true in A is a logical consequence of Σ. Discovering which finite algebras are finitely based
has proven to be a very subtle problem. In groundbreaking work, in 1996 McKenzie [21] solved Tarski’s
Finite Basis Problem by proving that there is no algorithm for determining which finite algebras are finitely
based. Nevertheless, we know that many finite algebras are finitely based.

In 1965, Oates and Powell [24] proved
The Finite Basis Theorem of Oates and Powell

Every finite group is finitely based.
Soon afterward Kruse [14] and L’vov [15], working independently, proved that every finite ring is finitely
based. The proofs of the result for finite rings have large overlaps with the proofs of the Theorem of Oates
and Powell.

In 1970, McKenzie [18] proved that any finite lattice with finitely many additional operators is finitely
based. Shortly thereafter, Baker proved a far-reaching generalization of McKenzie’s result:

Baker’s Finite Basis Theorem

Let A be finite algebra with only finitely many fundamental operations. If V(A) is congru-
ence distributive, then A is finitey based.

Baker’s work appeared after a six year delay in [1]. It attracted so much attention that at least four alternate
proofs appeared in print prior to [1]. Congruence distributivity means

θ ∧ (φ ∨ ψ) = (θ ∧ φ) ∨ (θ ∧ ψ)

for all congruences θ, φ, and ψ belonging to any algebra in V(A). The technical condition of congruence
distributivity applies to lattices and, indeed, to most of the algebraic structures arising from mathematical
logic.

While most groups fail to belong to congruence distributive varieties, all groups do have modular congru-
ence lattices—a fact due, in principle, to Dedekind [9]. Modularity is the following weakening of distributivity.

θ ∧ φ = φ =⇒ θ ∧ (φ ∨ ψ) = (θ ∧ φ) ∨ (θ ∧ ψ)

However, the prospect of replacing distributivity by modularity in Baker’s Finite Basis Theorem (and so
arriving at a common generalization of Baker’s Theorem and the Oates-Powell Theorem) is frustrated by a
series of examples due to Polin [25], Bryant [6], and Isaev [12]. Still, significant progress was possible. It
turns out that the theory of the commutator, construed as an operation on pairs of congruences, extends
to any variety with modular congruence lattices. Hence, the notions of solvable, nilpotent, and Abelian,
familiar in the context of groups, extend to all congruence modular varieties of algebras. See the monograph
[10] for an exposition of this important theory. Work of Vaughan-Lee supplemented by work of Freese (cf.
[10]) yields:

The Finite Basis Theorem of Vaughan-Lee and Freese

Suppose A is a finite algebra with only finitely many fundamental operations. If V(A) is
congruence modular and A is nilpotent and the direct product of algebras of prime power
order, then A is finitely based.

This result extends a part of the Oates-Powell Theorem. In spirit, its proof can be traced to a theorem of
Lyndon [16] according to which any variety of nilpotent groups is finitely based. It is well-known that the
finite nilpotent groups are exactly those which are direct products of groups of prime power order. This
equivalence does not extend to the congruence modular case.

One of the key facts that is employed in all proofs of Baker’s Finite Basis Theorem is that there is a finite
bound on the cardinalities of the subdirectly irreducible algebras. In the presence of congruence distributivity,
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this is a consequence of Jónsson’s Lemma [13]. Here are two different generalizations of Baker’s Finite Basis
Theorem:

McKenzie’s Finite Basis Theorem

Suppose A is a finite algebra with only finitely many fundamental operations. If V(A) is
congruence modular and there is a finite upper bound of the cardinalities of the subdirectly
irreducible algebras in V(A), then A is finitely based.

This theorem can be found in [20].
McKenzie’s Finite Basis Theorem, like the Finite Basis Theorem of Vaughan-Lee and Freese, extends a

part of the Oates-Powell Finite Basis Theorem. These two extensions turn out to have little overlap, as
McKenzie observed.

Willard’s Finite Basis Theorem

Suppose A is a finite algebra with only finitely many fundamental operations. If V(A) is
congruence meet-semidistributive and there is a finite upper bound of the cardinalities of
the subdirectly irreducible algebras in V(A), then A is finitely based.

This theorem can be found in [26]. Congruence meet-semidistributivity is the following weakening of con-
gruence distributivity

θ ∧ φ = θ ∧ ψ =⇒ θ ∧ (φ ∨ ψ) = (θ ∧ φ) ∨ (θ ∧ ψ)

for all congruences θ, φ, and ψ belonging to any algebra in V(A). The technical condition of congruence
meet-semidistributivity holds, for example, in every semilattice with operators.

There is one further finite basis theorem that is germane to our investigations. To state it we need to
introduce several more concepts. Let A be any algebra and let c, d ∈ A. The smallest congruence to which
〈c, d〉 belongs is called the principal congruence generated by 〈c, d〉 and it is denoted by CgA(c, d). A
formula Φ(u, v, x, y) with four free variables is called a congruence formula provided for every algebra A

if A |= Φ(a, b, c, d), then 〈a, b〉 ∈ CgA(c, d) .

Thus, Φ(u, v, c, d) describes a part of CgA(c, d). Indeed, it turns out that CgA(c, d) is just the union of
all its parts that can be described by congruence formulas. When A |= Φ(a, b, c, d), the complexity of the
formula Φ(u, v, x, y) measures how distant 〈a, b〉 is from 〈c, d〉. It can happen that Φ(u, v, c, d) describes all
of CgA(c, d). In this event we say that Φ(u, v, c, d) defines the principal congruence CgA(c, d).

A class K of algebras has definable principal subcongruences if and only if there are congruence
formulas Φ(u, v, x, y) and Ψ(x, y, z, w) such that for every A ∈ K and every c, d ∈ A with c 6= d, there are
a, b ∈ A with a 6= b such that

(1) A |= Ψ(a, b, c, d), and
(2) Φ(u, v, a, b) defines CgA(a, b).

Thus when K has definable principal subcongruences there will be two congruence formulas Ψ and Φ so that
any principal congruence in any algebra in K is not far (as measured by Ψ) above a principal congruence
defined by Φ. This notion, which is a weakening of the notion of definable principal congruences due to
Baldwin and Berman [3] (cf. [7,19]), was introduced by Baker and Wang in [2], where the following theorem
in proved.

The Finite Basis Theorem of Baker and Wang

Let V be a variety with only finitely many fundamental operations and suppose that V has
definable principal subcongruences. Under these assumptions, V is finitely based if and only
if Vsi is finitely axiomatizable.

Baker and Wang demonstrate that varieties generated by finite groups need not have definable principal
subcongruences. On the other hand, they also give a direct proof that congruence distributive varieties
generated by a finite algebra do have definable principal subcongruences. Thus, they provide the simplest
proof to date of Baker’s Finite Basis Theorem.
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The ambition behind our present line of research is to see all these finite basis theorems as individual
manifestations of some small collection of underlying principles. Roughly speaking, Baker’s Finite Basis
Theorem and its generalizations by McKenzie and Willard stated above are established by developing suffi-
cient information about certain 4-ary relations that are definable by means of elementary formulas and by
invoking the finite upper bound on the sizes of the subdirectly irreducible algebras in the variety. A striking
difference in the case of finite groups (and of finite rings) is that there need be no such finite bound. In-
deed, the variety generated by the quaternion group contains arbitrarily large infinite subdirectly irreducible
groups. We believe that the existence of a finite bound on the cardinalities of the subdirectly irreducible
algebras is too strong a condition. We propose to replace it by the weaker condition that this class can be
axiomatized by a finite set of elementary sentences. Our purpose here is to show that any variety generated
by a finite group indeed has this property.

2. A General Theorem

The proof of the theorem below is a variation on the arguments of Baker and Wang [2].

Theorem 0. If V is a variety and Vsi has definable principal subcongruences, then Vsi is finitely axiomatizable
relative to V. Consequently, if V is finitely based, then Vsi is finitely axiomatizable.

Proof. Let Σ be a set elementary sentences (finite if possible) which axiomatizes V and let Φ(u, v, x, y) and
Ψ(x, y, z, w) be the formulas that witnesses that Vsi has definable principal subcongruences. Let Θ be the
following set of sentences:

Σ ∪ {∃u, v [u 6= v ∧∧ ∀z, w (z 6= w =⇒ ∃x, y (Φ(u, v, x, y) ∧∧ Ψ(x, y, z, w)))]}
We contend that Θ axiomatizes Vsi.

First, suppose A ∈ Vsi. Let 〈e, f〉 be a critical pair for A—that is, e 6= f and 〈e, f〉 belongs to every
nontrivial congruence. Now let c, d ∈ A with c 6= d. Because Vsi has definable principal subcongruences,
there must be a, b ∈ A with a 6= b so that A |= Ψ(a, b, c, d) and Φ(x, y, a, b) defines CgA(a, b). Because a 6= b

and 〈e, f〉 is critical, we have 〈e, f〉 ∈ CgA(a, b). Hence, A |= Φ(e, f, a, b). So we have demonstrated that

A |= ∃u, v[u 6= v ∧∧ ∀z, w(z 6= w =⇒ ∃x, y(Φ(u, v, x, y) ∧∧ Ψ(x, y, z, w)))]

But also A |= Σ since Vsi ⊆ V. Therefore A |= Θ.
Now suppose A |= Θ. Then A ∈ V since Σ axiomatizes V. But the second part of Θ entails that A has a

critical pair, since Φ(u, v, x, y) and Ψ(x, y, z, w) are congruence formulas. Thus A is subdirectly irreducible.
This means A ∈ Vsi, as desired. ¤

According to the Theorem of Oates and Powell, every finite group generates a finitely based variety, so to
prove our Main Theorem, all we need is the following result.

Theorem 1. Let V be the variety generated by some finite group. Then Vsi has definable principal subcon-
gruences.

The proof of this theorem occupies the remainder of the paper.

3. Preliminaries Concerning Principal Congruences

Let p(x, y, z) = xy−1z. Then in any group the following equations hold

(?) p(x, x, y) ≈ y and p(x, y, y) ≈ x.

In 1954, A. I. Maltsev [17] proved that the varieties V for which there is a term p(x, y, z) such that the
equations (?) holds in V are precisely the congruence permutable varieties. Congruence permutability means
that if φ and ψ are congruences of A ∈ V, then φ ∨ ψ = φ ◦ ψ. Here φ ◦ ψ is the composition of φ and ψ as
binary relations.
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Let A be a group, let φ be a congruence on A, and a ∈ A. We denote the congruence class of a by a/φ.
That is

a/φ = {b | 〈a, b〉 ∈ φ}.
In particular, 1/φ denotes the normal subgroup of A associated with the congruence φ. This means

〈a, b〉 ∈ φ if and only if ab−1 ∈ 1/φ.

Much of our reasoning in this paper applies to algebras belonging to a congruence permutable variety, not
just to groups. In particular, this applies to Theorems 2 and 3.

Suppose that H is a group. By a unary polynomial of H we mean a function q(x) from H into H for
which there is a term r(x, y0, y1, . . . ), built up from the group operations and the variables x, y0, y1, . . . , and
elements c0, c1, · · · ∈ H so that q(a) = r(a, c0, c1, . . . ) for all a ∈ H. The complexity of the polynomial
q(x) is the number of occurrences of variables in r(x, y0, . . . ), where r(x, y0, . . . ) is chosen so this number is
as small as possible.

The two theorems in this section, which are certainly part of the folklore, will be used repeatedly.

Theorem 2. Let H be a group and a, b ∈ H. Then

CgH(a, b) = {〈q(a), q(b)〉 : for some unary polynomial q(x)}.
Proof. Let T = {〈q(a), q(b)〉 : for some unary polynomial q(x)}. Evidently, 〈a, b〉 ∈ T ⊆ CgH(a, b). So we
need only argue that T is a congruence.

Now it is well-known that the congruences of H are exactly those subgroups of H×H which are equivalence
relations. T is easily seen to be a subgroup of H×H, so it remains to prove that T is an equivalence relation.

For reflexivity, let c ∈ H. Then p(a, a, c) = c = p(b, b, c). So we obtain 〈c, c〉 ∈ T by taking q(x) =
p(x, x, c).

For symmetry, suppose 〈c, d〉 ∈ T . Pick a polynomial s(x) so that c = s(a) and d = s(b). Let q(x) =
p(s(a), s(x), s(b)). Then d = s(b) = q(a) and c = s(a) = q(b). Consequently, 〈d, c〉 ∈ T .

For transitivity, suppose 〈c, d〉, 〈d, e〉 ∈ T . Pick polynomials s(x) and t(x) so that c = s(a), d = s(b) = t(a)
and e = t(b). Take q(x) = p(s(x), t(a), t(x)). Then c = s(a) = p(s(a), t(a), t(a)) = q(a) and e = t(b) =
p(s(b), s(b), t(b)) = p(s(b), t(a), t(b)) = q(b). This means that 〈c, e〉 ∈ T . ¤

We call a condition of the form 〈a, b〉 ∈ CgH(c, d) a membership condition. When a = q(c) and
b = q(d), we say that the membership condition is witnessed by the polynomial q(x). The complexity
of a polynomial q(x) is the length of a shortest term t(x, y0, y1, . . . ) such that q(x) = t(x, c0, c1, . . . ) for
some c0, c1, · · · ∈ H. One of our chief concerns will be the discovery of upper bounds on the complexity of
polynomials that are needed to witness various membership conditions.

Theorem 2 asserts that for groups (and more generally, for algebras belonging to congruence permutable
vareities) congruence formulas can take a very simple form: disjunctions of formulas of the form

∃u0, u1, . . . , un−1[x ≈ t(z, u0, u1, . . . , un−1) ∧∧ y ≈ t(w, u0, u1, . . . , un−1)]

where the disjunction ranges over finitely many terms t.
Theorem 2 can be recast using properties more specific to groups. Evidentally, 〈a, b〉 ∈ CgH(c, d) if and

only if 〈ab−1, 1〉 ∈ CgH(cd−1, 1) for any group H and any a, b, c, d ∈ H. So we can restrict our attention to
membership conditions of the form 〈u, 1〉 ∈ CgH(v, 1). For membership conditions of this kind we only need
to consider certain kinds of unary polynomials. The set of conjugate product terms in x is the smallest
set C of terms such that

• 1 ∈ C, and
• If t ∈ C and y is a variable, then both (yxy−1)t and (yx−1y−1)t belong to C.
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A polynomial π(x) is called a conjugate product polynomial provided π(x) is obtained from some
conjugate product term t(x, y0, . . . , yk) by using elements of the group as values for all the variables other
than x.
Theorem 2′. Let H be a group and c ∈ H. Then for all a ∈ H we have

〈a, 1〉 ∈ CgH(c, 1) if and only if a = π(c) for some conjugate product polynomial π(x).

The observation that {π(c) | π(x) is a cojugate product polynomial} is the smallest normal subgroup of
H which contains c is the essence of the proof of this theorem.

Theorem 3. Let A be a group and θ be a congruence relation on A. Suppose a, b, c, d ∈ A. If 〈a/θ, b/θ〉 ∈
CgA/θ(c/θ, d/θ), then there is u ∈ a/θ such that 〈u, b〉 ∈ CgA(c, d).

Proof. Using Theorem 2 pick a term s(x, y0, y1, . . . ) and elements e0, e1, · · · ∈ A so that

a/θ = s(c, e0, e1, . . . )/θ, and

b/θ = s(d, e0, e1, . . . )/θ.

Let q(x) = p(s(x, e0, e1, . . . ), s(d, e0, e1, . . . ), b). Then

q(c) = p(s(c, e0, e1, . . . ), s(d, e0, e1, . . . ), b) θ p(a, b, b) = a and

q(d) = p(s(d, e0, e1, . . . ), s(d, e0, e1, . . . ), b) = b.

This means that we can take u = q(c). ¤

4. Chief Factors and Definability of Atoms of the Congruence Lattice

Let H be an algebra and let φ and ψ be congruences of H such that ψ ⊆ φ. Then ψ partitions each φ
congruence class. In general (even in the congruence modular case), different φ-classes can be partitioned by
ψ into different numbers of blocks, but if H is a group this partitioning always results in the same number
of blocks. In any case, we refer to the least upper bound of the cardinalities of the partitions of the φ-classes
by ψ as the size of φ/ψ. Following the practice in group theory, in case φ covers ψ—that is ψ ⊆ φ, ψ 6= φ
and there are no congruences properly between ψ and φ—we refer to φ/ψ as a chief factor. In groups,
this comes down to N/K where N is the normal subgroup associated with φ and K is the normal subgroup
associated with ψ.

Now suppose that H is in the variety generated by the finite group G. In the event that H is finite,
it has been noted by H. Neumann in [23] (Theorem 51.23) that |G| is an upper bound on the size of the
chief factors of H. More is true. Freese and McKenzie [10] adapted the notion of chief factor to arbitrary
congruence modular varieties. According to their Theorem 10.16, the restriction that H is finite can be
eliminated. Freese and McKenzie note that this result was already obtained by J. B. Nation and Walter
Taylor in the congruence permutable case—which includes groups.

Let H be an algebra. The identity relation on H, which we denote by 0H, is to smallest congruence on
H. Those congruences which cover 0H are referred to as atoms of the congruence lattice. Evidently, every
atom is a principal congruence. In case H is subdirectly irreducible, its monolith is an atom.

Theorem 4. Let V be the variety generated by some finite group. There is a congruence formula Φ(u, v, x, y)
such that for every H ∈ V and every c, d ∈ H such that CgH(c, d) is an atom, it follows that Φ(u, v, c, d)
defines CgH(c, d).

The key to the proof of this theorem is the following lemma, which we will also need later.

Lemma 0. Let H be a group and suppose a, b, c, d ∈ H so that 〈a, b〉 ∈ CgH(c, d). Then there is a polynomial
witnessing this membership condition such that 4|1/CgH(c, d)| + 1 is an upper bound on the complexity of
the polynomial, and hence on the number of coefficients needed in the polynomial.
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Proof. This membership condition is equivalent to ab−1 belonging to the normal subgroup of H generated by
cd−1. This subgroup is 1/CgH(c, d). Consequently, ab−1 = g0g1 · · · gn−1 where each gi is a conjugate either of
cd−1 or its inverse dc−1. We see that if n is chosen as small as possible, then g0, g0g1, g0g1g2, . . . , g0g1 · · · gn−1

will be n distinct elements of the normal subgroup. To obtain a polynomial q(x) witnessing the membership
condition replace every occurrence of c in g0g1 · · · gn−1b by x. Then a = q(c) and b = q(d). ¤

Proof of Theorem 4. Let r be a finite upper bound on the size of chief factors in algebras belonging to V. Up
to renaming variables there are only finitely many terms with no more than 4r + 1 occurrences of variables.
Let u, v, x, y, w, u0, . . . , u4r−1 be r + 5 distinct variables and let T be the set of all terms in the variables
w, u0, dots, u4r−1 which have no more than 4r + 1 occurrences of variables. Let Φ(u, v, x, y) be

∨∨
t∈T

∃u0, . . . , u4r−1[u ≈ t(x, u0, . . . , u4r−1) ∧∧ v ≈ t(z, u0, . . . , u4r−1)].

If CgH(c, d) is an atom, then CgH(c, d)/0H is a chief factor and (1/CgH(c, d))/0H has the same number
of elements as 1/CgH(c, d). According to Lemma 0, a membership condition 〈a, b〉 ∈ CgH(c, d) is always
witnessed by a polynomial of complexity no more than 4r +1. Hence Φ(a, b, c, d) must hold, since one of the
disjuncts of Φ(u, v, x, y) must be fulfilled. Thus, Φ(x, y, c, d) defines the atom CgH(c, d) as desired. ¤

In particular, the formula Φ(u, v, x, y) of Theorem 4 can be used to define the monoliths of each subdirectly
irreducible group in the variety. It remains to show that there is a congruence formula Ψ so that in every
subdirectly irreducible group in the variety, the monolith is not far below (as measured by Ψ) any other
nontrivial principal congruence.

5. Bounding Ladders of Congruences

Let H be any group. A system B = 〈B0, B1, . . . , Bm−1〉 of subsets of H is said to be a ladder provided
(1) 1 ∈ Bi and Bi has at least two elements, for each i < m,
(2) Bi ∩ Bj = {1} for all i, j < m with i 6= j,
(3) 〈z, 1〉 ∈ CgH(x, y) for all x ∈ Bi, y ∈ Bj and z ∈ Bk with 1 6= x 6= y and for all i, j, k < m with

j, k ≤ i.
The congruences of the form CgH(x, y) where x ∈ Bi and y ∈ Bj with j ≤ i < m and x 6= y are called the
principal conguences of the ladder. In view of the symmetry and transitivity of congruence relations, it
is a consequence of (3) that this congruence is independent of the choice of x ∈ Bi or of y ∈ Bj as long as
1 6= x 6= y. We denote CgH(x, 1) by ϕB

i , where x ∈ Bi and x 6= 1. To conserve notation, we use ϕi in place
of ϕB

i if B can be understood from the context. Evidently, ϕ0 ⊆ ϕ1 ⊆ · · · ⊆ ϕm−1 is chain of congruences.
By the length of the ladder B we mean the length of this chain of congruences. (Notice that it is possible
that ϕi = ϕj even when i 6= j, so the length of B might be less than m.) Now let i < m and let ψi be a
maximal congruence less than ϕi. The existence of ψi is ensured (by Zorn’s Lemma) since ϕi is principal.

Observe that ψi partitions 1/ϕi and that (1/ϕi)/ψi is a chief factor of H. Moreover, the elements of Bi

must belong to distinct blocks of this partition. Therefore, |Bi| is bounded above by the size of the chief
factor.

In this section we establish

Theorem 5. Let the variety V be generated by the finite group G, let H ∈ V, and let 〈B0, B1, . . . , Bm−1〉 be
a ladder of H. Then |B0 ∪ B1 ∪ · · · ∪ Bm−1| ≤ |G|. Thus |G| is an upper bound on the length of any ladder
of H. Moreover, |G| also bounds the length of any chain of completely join irreducible elements of ConH.

Lemma 1. Let H be a group and suppose that ϕ0 < ϕ1 < · · · < ϕm−1 is a chain of completely join
irreducible congruences on H. Then H has a ladder of length m whose principal congruences are precisely
the congruences ϕi for i < m.
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Proof. For each i < m let ψi be the unique congruence covered by ϕi. Since ϕi > ψi, pick bi so that
〈bi, 1〉 ∈ ϕi but 〈bi, 1〉 /∈ ψi. Let Bi = {1, bi}.

Suppose i < j < m. Then ϕi ≤ ψj < ϕj . This entails that 〈bi, 1〉 ∈ ψj , and so bi 6= bj . Consequently,
Bi ∩ Bj = {1}.

Observe that if 〈x, y〉 ∈ ϕi but 〈x, y〉 /∈ ψi, then ϕi = CgH(x, y), since every congruence properly smaller
than ϕi must be contained in ψi.

Now suppose that j ≤ i < m and that x ∈ Bi and y ∈ Bj with 1 6= x 6= y. Notice that x = bi. Evidently,
〈x, 1〉, 〈y, 1〉 ∈ ϕi and so 〈x, y〉 ∈ ϕi by transitivity and symmetry. But it is also clear that 〈x, y〉 /∈ ψi, since
if y = 1, then 〈x, y〉 /∈ ψi by construction, while if y 6= 1, then 〈y, 1〉 ∈ ψi which would force 〈x, 1〉 ∈ ψi by
transitivity, were 〈x, y〉 ∈ ψi. Therefore CgH(x, y) = ϕi. Now suppose further that z ∈ Bk with k ≤ i. Then
〈z, 1〉 ∈ ϕk ⊆ ϕi = CgH(x, y). This verifies property (3) in the definition of ladder. ¤
Lemma 2. Let G be a finite group. If F ∈ SPG, then |B0 ∪ B1 ∪ · · · ∪ Bm−1| ≤ |G| for any ladder
〈B0, B1, . . . , Bm−1〉 of F.

Proof. Let 〈B0, B1, . . . , Bm−1〉 be a ladder of F. Notice that property (3) of the definition of a ladder entails
that 〈z, 1〉 ∈ CgF(x, y) whenever z ∈ B0 and x, y ∈ B0 ∪ B1 ∪ · · · ∪ Bm−1 with x 6= y.

Pick z ∈ B0 with z 6= 1. Since F ∈ SPG, there must be a homomorphism η : F → G so that η(z) 6= η(1F).
This means that 〈z, 1〉 does not belong to the kernel of η. In consequence, 〈x, y〉 does not belong to the
kernel of η, whenever x 6= y and x, y ∈ B0∪B1∪· · ·∪Bm−1. That is, η is one-to-one on B0∪B1∪· · ·∪Bm−1.
Since η maps H into G, we conclude that |B0 ∪ B1 ∪ · · · ∪ Bm−1| ≤ |G|. ¤
Lemma 3. Let F be a finite group, θ ∈ ConF, and set H = F/θ. Let 〈B0, B1, . . . , Bm−1〉 be a ladder of H.
There is a ladder 〈B∗

0 , B∗
1 , . . . , B∗

m−1〉 of F such that |Bi| = |B∗
i | for each i < m, θ < ϕ∗

i , and ϕi = ϕj if and
only if ϕ∗

i = ϕ∗
j for all i, j < m. Here ϕi and ϕ∗

i denote the principal congruences associated with Bi and
B∗

i respectively, for i < m.

Proof. We use the following claim repeatedly.

Claim 0. Let i < m and b ∈ Bi be any element such that b 6= 1H = 1F/θ. Let v ∈ b. Let ϕ∗ denote
CgF(v, 1). Then 1/ϕ∗ ∩ c is nonempty for every c ∈ B0 ∪ B1 ∪ · · · ∪ Bi.

Proof. Because 〈B0, B1, . . . , Bm−1〉 is a ladder we know that 〈c, 1〉 ∈ CgH(1, v/θ). By Theorem 3 pick u ∈ c

such that 〈u, 1〉 ∈ CgF(1, v). But then u ∈ 1/ϕ∗, therefore u ∈ 1/ϕ∗ ∩ c as desired. ¤
We will devise a one-to-one map δ on B0 ∪ B1 ∪ · · · ∪ Bm−1 so that 〈B∗

0 , B∗
1 , . . . , B∗

m−1〉 is a ladder of
F, where B∗

i is the image of Bi with respect to δ, for every i < m. We begin with Bm−1. Let bm−1 be
any element of Bm−1 other than 1H. Using the finiteness of F pick um−1 ∈ bm−1 so that CgF(um−1, 1)
is minimal. Let ϕ∗

m−1 = CgF(um−1, 1). Now suppose that bm−1, bm−2, . . . , bi and um−1, um−2, . . . , ui have
been chosen and ϕ∗

m−1, ϕ
∗
m−2, . . . , ϕ

∗
i have been defined so that for all j with i ≤ j < m

(1) uj is chosen from 1/ϕ∗
j+1 ∩ bj so that CgF(uj , 1) is minimal,

(2) ϕ∗
j = CgF(uj , 1)

To get the next lowest stage of the construction, pick bi−1 ∈ Bi−1 with bi−1 6= 1H. Pick ui−1 ∈ 1/ϕ∗
i ∩ bi−1

so that CgF(ui−1, 1) is minimal.
Evidently, for i < j < m we have θ < ϕ∗

i ≤ ϕ∗
j .

Here is how to define δ on Bi: put δ(1H) = 1F, and for each c ∈ Bi with c 6= 1H let δ(c) be any element
of 1/ϕ∗

i ∩ c. The map δ is one-to-one since the members of each Bi are disjoint, being congruence classes.
Let B∗

i be the image under δ of Bi.
Observe that for each i < m we have |B∗

i | = |Bi|, so each B∗
i is a finite subset of F with at least two

elements. We also have 1F ∈ B∗
i . So conditions (1) and (2) of the definition of a ladder are secure at this

point.



FINITE AXIOMATIZABILITY OF SUBDIRECTLY IRREDUCIBLE GROUPS 9

Claim 1. Let j ≤ i < m and let x ∈ B∗
i and y ∈ B∗

j with 1 6= x 6= y. Then CgF(x, y) = CgF(ui, 1).

Proof. First, observe that CgF(x, y) ⊆ CgF(ui, 1) = ϕ∗
i since δ maps B0 ∪ · · · ∪Bi into the single congruence

class 1/ϕ∗
i .

Notice that x/θ ∈ Bi is the preimage of x under δ. Likewise, y/θ ∈ Bj is the preimage of y. Since
1 6= x 6= y we have that 1/θ 6= x/θ 6= y/θ. By property (3) of ladders we see that 〈1, ui/θ〉 ∈ CgH(x/θ, y/θ).
By Theorem 3 pick u ∈ ui/θ so that 〈1, u〉 ∈ CgF(x, y) ⊆ CgF(ui, 1). By the minimality in the choice of ui,
we conclude that CgF(u, 1) = CgF(ui, 1). Therefore CgF(x, y) = CgF(ui, 1) as desired. ¤

For property (3) let j, k ≤ i < m and pick x ∈ B∗
i , y ∈ B∗

j , and z ∈ B∗
k with 1 6= x 6= y. Now by Claim 1

we have both CgF(x, y) = ϕ∗
i and 〈z, 1〉 ∈ ϕ∗

k. Since we already know by construction that ϕ∗
k ⊆ ϕ∗

i , we
conclude 〈z, 1〉 ∈ CgF(x, y), as desired.

Claim 2. ϕi = ϕj if and only if ϕ∗
i = ϕ∗

j for all i < j < m.

Proof. Suppose first that ϕi = ϕj . This means CgH(ui/θ, 1/θ) = CgH(uj/θ, 1/θ). So by Theorem 3 there is
u ∈ F so that uj/θ = u/θ and 〈u, 1〉 ∈ CgF(ui, 1). So

CgF(u, 1) ⊆ CgF(ui, 1) ⊆ CgF(uj , 1).

By the minimality in the choice of uj , we conclude that CgF(ui, 1) = CgF(uj , 1). This means that ϕ∗
i = ϕ∗

j .
For the reverse inlcusion, suppose that ϕ∗

i = ϕ∗
j . So there is a conjufgate product polynomial of F which

witnesses 〈uj , 1〉 ∈ CgF(ui, 1). The image of this polynomial in H witnesses 〈uj/θ, 1/θ〉 ∈ CgH(ui/θ, 1/θ).
So ϕj ⊆ ϕi. Since we already have ϕi ⊆ ϕj , we conclude that ϕi = ϕj as desired. ¤

¤

Proof of Theorem 5. Let H belong to the variety V generated by the finite group G. Suppose that H has a
chain of length m of completely join irreducible congruences. By Lemma 1 pick a ladder 〈B0, B1, . . . , Bm−1〉
of length m for H. Each Bi is a finite set, so by condition (3) of the definition of ladders pick a finite subset
C of H such that there are polynomials witnessing (3) that have coefficients only from C. Let H be the
subalgebra of H generated by C ∪ B0 ∪ B1 ∪ · · · ∪ Bm−1. Then H is finite, since V is locally finite, and
〈B0, B1, . . . , Bm−1〉 is a ladder of H.

By the HSP Theorem, pick a natural number n, a subalgebra F of Gn, and a congruence θ ∈ ConF so
that H ∼= F/θ. Indeed, we make the harmless assumption that H = F/θ.

Now by Lemma 3, 〈B∗
0 , B∗

1 , . . . , B∗
m−1〉 is a ladder of F ∈ SPG with the same length as 〈B0, B1, . . . , Bm−1〉.

Indeed, |B∗
0 ∪· · ·∪B∗

m−1| = |B0∪· · ·∪Bm−1| in view of stipulation (2) in the definition of ladder. According
to Lemma 2, |G| is an upper bound on this cardinality. It follows that |G| is an upper bound on the length of
any ladder of H as well as an upper bound on the length of any chain of completely join irreducible members
of ConH. This completes the proof of Theorem 5. ¤

6. Reducing the Ladder Height

Let H be any group and a ∈ H. The ladder height of a is the least upper bound on the lengths of
ladders all of whose principal congruences are included in CgH(a, 1). We will say that such ladders are
below a. We will denote the ladder height of a in H by ρH(a). Notice that the ladder height of 1 is 0.

Lemma 4. Let A be a subdirectly irreducible group and let a ∈ A with ρA(a) = n. If 〈B0, B1, . . . , Bn−1〉 is
a ladder of length n below a, then ϕ0, the principal congruence associated with B0, is the monolith of A.

Proof. Suppose that ϕ0 is not the monolith. Pick b ∈ A so that 〈b, 1〉 is a critical pair. Then b /∈ Bi for any
i < m. Let M = {b, 1}. It is straightforward to check that 〈M,B0, B1, . . . , Bn−1〉 is a ladder below a. But
this ladder has length n + 1, contradicting the ladder height of a. ¤
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Corollary 6. Let A be a subdirectly irreducible group and let b ∈ A. If b has ladder height 1, then 〈b, 1〉 is
a critical pair.

Proof. Let 〈M〉 be a ladder below b. The principal congruence associated with M is the monolith µ. In the
case that b ∈ M , we have CgA(b, 1) = µ. In the case that b /∈ M it follows easily that 〈M, {b, 1}〉 is also a
ladder below b. Since b has ladder height 1, we also have CgA(b, 1) = µ. Therefore, 〈b, 1〉 is critical. ¤

In this section our chief task is to prove the following theorem.

Theorem 7. Let G be a finite group and let V be the variety generated by G. There is a finite bound n such
that for any A ∈ V and any a ∈ A with ρA(a) > 1, there is b ∈ A with b 6= 1 and ρA(b) < ρA(a) such that
there is a conjugate product polynomial of complexity no more than n which witnesses 〈b, 1〉 ∈ CgA(a, 1).

To prove this theorem, we need a version of it for the subdirectly irreducible members of V.

Theorem 8. Let V be a locally finite variety of groups with finite exponent e such that the cardinalities
of the chief factors in V have a finite upper bound r. Then there is a finite upper bound n such that for
every subdirectly irreducible group F ∈ V and every a ∈ F with ρF(a) = 2, there is b 6= 1 with 〈b, 1〉 in the
monolith of F and there is a conjugate product polynomial of complexity no more than n which witnesses
that 〈b, 1〉 ∈ CgF(a, 1).

First we argue that it is enough to restrict our attention to the finite subdirectly irreducible algebras in
V.

Lemma 5. Let V be a locally finite variety of groups such that the cardinalities of the chief factors in V have
a finite upper bound r. Suppose n′ is a finite upper bound such that for every finite subdirectly irreducible
group H ∈ V, every a ∈ H with a 6= 1 and ρH(a) < 2r, and there is b 6= 1 with 〈b, 1〉 in the monolith
of H such that there is a conjugate product polynomial of complexity no more than n′ which witnesses that
〈b, 1〉 ∈ CgH(a, 1). Then there is a finite upper bound n such that for every subdirectly irreducible group
F ∈ V, every a ∈ F with a 6= 1 and ρF(a) = 2, and every b ∈ F with b 6= 1 and 〈b, 1〉 in the monolith of F,
there is a conjugate product polynomial of complexity no more than n which witnesses that 〈b, 1〉 ∈ CgF(a, 1).

Proof. Let F be a subdirectly irreducible algebra in V and let a ∈ F with a 6= 1 have ladder height ρF(a) = 2.
Let µ be the monolith of F. Let 〈M,N〉 be a ladder that witnesses ρF(a). Clearly µ ≤ ϕ where ϕ is the
principal congruence associated with M . Were µ < ϕ then 〈1/µ,M,N〉 would also be a ladder that would
force ρF(a) to be too big. Therefore, µ = ϕ and it is harmless to suppose that M = 1/µ. Moreover, we
know that |M |, |N | ≤ r. Further we suppose that N has been chosen so that |M ∪N | is as large as possible.
Plainly, |M ∪ N | < 2r.

By a membership condition for M ∪N ∪ {a} holding over F we mean a condition of the form 〈x, y〉 ∈
CgF(u, v) where x, y, u, v ∈ M ∪ N ∪ {a}. There can be at most 16r4 membership conditions.

Pick p ∈ M and q ∈ N with p 6= 1 6= q.
For each membership condition for M ∪N ∪ {a} holding over F, select a polynomial to witness it. Let C

be the set of coefficients occurring in these polynomials. C is finite. Let F′ be the subalgebra of F generated
by C ∪M ∪N ∪ {a}. Notice that F′ is finite since V is locally finite. Now 〈M,N〉 is a ladder below a for F′

because all the relevant membership conditions have been witnessed over F′.
Let λ be a maximal congruence of F′ subject to the stipulations that 〈p, 1〉 ∈ λ and that λ separates q

and 1. Since 〈p, 1〉 ∈ CgF′
(q, 1), we see that F′/λ is a finite subdirectly irreducible algebra, that λ collapses

M , and that λ separates every pair of distinct elements of N . Moreover, for d, e ∈ N with d 6= e, we know
that 〈d/λ, e/λ〉 is a critical pair of F′/λ.

Claim 3. 〈a/λ, 1/λ〉 is a critical pair of F′/λ.
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Proof. Suppose not. Let ν denote the monolith of F′/λ and let α denote CgF′/λ(a/λ, 1/λ). Then ν < α.
There must be a join irreducible congruence β with ν < β ≤ α. By Lemma 1 there is a ladder 〈N ′, D′〉
of length 2 whose principal congruences are, respectively ν and β, and |N | ≤ |N ′|. By Lemma 3 there is a
ladder 〈N∗, D∗〉 of length 2 below a in F′ with |N ′| = |N∗|. Moreover, M ∩N∗ = {1} since λ collapses M . It
follows that 〈M,N∗, D∗〉 is a ladder for F below a. But this is impossible, since |M∪N | < |M∪N∗∪D∗|. ¤

This means that a/λ and b/λ for each b ∈ N all belong to the normal subgroup of F′/λ determined by the
monolith ν. This normal subgroup has cardinality bounded above by r. So by Lemma 0, all the congruence
membership conditions for N/λ∪{a/λ} which hold over F′/λ can be witnessed by polynomials of complexity
bounded by 4r + 1. Let E ⊆ F ′/λ be the set of coefficients from these polynomials. Then |E| is bounded by
4r + 1. Let E′ ⊆ F ′ be a set consisting of one element from each member of E. Let F′′ be the subgroup of
F′ generated E′ ∪ M ∪ N ∪ {a}. The size of this group is bounded only in terms of V.

Now pick a ∈ a/λ such that 〈a, 1〉 ∈ CgF′′
(a, 1) with CgF′′

(a, 1) minimal subject to these restrictions.
In view of Theorem 3 pick q ∈ q/λ such that 〈q, 1〉 ∈ CgF′′

(a, 1) with CgF′′
(q, 1) minimal subject to these

restrictions.
Again using Theorem 3, for each d ∈ N − {q, 1} pick d ∈ d/λ such that 〈d, 1〉 ∈ CgF′′

(q, 1). Set 1 = 1.
Let N denote {d | d ∈ N}.
Claim 4. Let d, e ∈ N with d 6= e. Then CgF′′

(d, e) = CgF′′
(q, 1).

Proof. By construction we know that 〈d, 1〉, 〈1, e〉 ∈ CgF′′
(q, 1). By transitivity we get 〈d, e〉 ∈ CgF′′

(q, 1).
This yields CgF′′

(d, e) ⊆ CgF′′
(q, 1). But

〈q/λ, 1/λ〉 ∈ CgF′′/λ(d/λ, e/λ).

Consequently, there is w ∈ F ′′ so that w ∈ q/λ and 〈w, 1〉 ∈ CgF′′
(d, e) ⊆ CgF′′

(q, 1) ⊆ CgF′′
(a, 1). By the

minimality in the choice of q, we conclude that CgF′′
(w, 1) = CgF′′

(d, e) = CgF′′
(q, 1).

¤

By construction, 〈q, 1〉 ∈ CgF′′
(a, 1) ⊆ CgF′′

(a, 1). In view of Claim 4, this means that 〈N〉 is a ladder
below a in F′′. Because |F ′′| is bounded only in terms of V, the complexity of the polynomials witnessing
the membership conditions for N ∪ {a} are also bounded only in terms of V. Observe that M ∩ N = {1}
since λ collapses M . This means that 〈M,N〉 is a ladder below a in F. We also have |M ∪ N | = |M ∪ N |
is the maximum size among ladders below a. Moreover, the membership conditions for N ∪ {a} relevant to
the notion of ladder still have the same polynomials as witnesses over F.

Now we repeat this process, focussing on M in place of N .
For each membership condition for M ∪N ∪{a} in F chose a polynomial of least complexity as a witness.

In particular, all the witnesses of N ∪ {a} have complexity bounded in terms only of V. Let K be the set of
coefficients occurring in these polynomials. Let G′ be the subgroup of F generated by K ∪M ∪N ∪{a}. Let
θ be a maximal congruence of G′ separating p and 1. Then G′/θ is a finite subdirectly irreducible group, θ
separates any pair of distinct elements from M ∪ N ∪ {a}, and for any c, d ∈ M with c 6= d, we know that
〈c/θ, d/θ〉 is critical.

The following hold

(1) 〈c/θ, 1/θ〉 ∈ CgG′/θ(d/θ, e/θ) for all c, d, e ∈ M with d 6= e.
(2) 〈c/θ, 1/θ〉 ∈ CgG′/θ(q/θ, d/θ) for all c, d ∈ M .

According to Lemma 0, the membership conditions that fall under (1) above can be witnessed by poly-
nomials whose complexity is bounded 4r + 1, since c/θ, d/θ, and e/θ all belong to the normal subgroup
associated with the monolith of G′/θ, and this is of cardinality bounded by r.

For the membership conditions that fall under (2) above, we contend that ρG′/θ(qd−1/θ) < 2r. Otherwise,
there would be a ladder of length 2r below 〈q/θ, d/θ〉. Using Lemma 3 we could obtain a ladder of length 2r
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below 〈q, d〉 in G′. The size of this ladder would be at least 2r+1. Notice that this system is also a ladder in
F and it is below a. This is impossible, and our contension holds. But this entails, by our main hypothesis,
that the membership conditions in (2) above can be witnessed by polynomials of complexity bounded only
in terms of V.

Let J ⊆ G′/θ be the set of coefficients from these least complex polynomials witnessing the membership
conditions (1) and (2). Then |J | is bounded only in terms of V. Let J ′ consist of one element from each
member of J together with the elements needed to witness that 〈N〉 is a ladder below a in G′. Observe that
|J ′| is bounded in terms of V. Let G′′ be the subgroup of G′ generated by J ′ ∪ M ∪ N ∪ {a}. The size of
this group is bounded only in terms of V. We abuse notation by using θ to denote θ ∩ (G′′ ×G′′). Then the
following hold:
(1’) 〈c/θ, 1/θ〉 ∈ CgG′′/θ(d/θ, e/θ) for all c, d, e ∈ M with d 6= e.
(2’) 〈c/θ, 1/θ〉 ∈ CgG′′/θ(q/θ, d/θ) for all c, d ∈ M .

Now pick â ∈ a/θ such that 〈â, 1〉 ∈ CgG′′
(a, 1) and CgG′′

(â, 1) is minimal subject to these restrictions.
In view of Theorem 3, we can make the following choices.
Pick q̂ ∈ q/θ such that 〈q̂, 1〉 ∈ CgG′′

(q, 1) and CgG′′
(q̂, 1) is minimal subject to these restrictions.

Pick p̂ ∈ p/θ such that 〈p̂, 1〉 ∈ CgG′′
(q̂, 1) and CgG′′

(p̂, 1) is minimal subject to these restrictions.
For each d ∈ N − {q, 1} pick d̂ ∈ d/θ such that 〈d̂, 1〉 ∈ CgG′′

(q̂, 1). Set 1̂ = 1.
For each c ∈ M − {p, 1} pick ĉ ∈ c/θ such that 〈ĉ, 1〉 ∈ CgG′′

(p̂, 1).
Finally, let M̂ = {ĉ | c ∈ M} and N̂ = {d̂ | d ∈ N}. The next claims establish that 〈M̂, N̂〉 is a ladder

below a in G′′.

Claim 5. Let b, c ∈ M with b 6= c. Then CgG′′
(b̂, ĉ) = CgG′′

(p̂, 1). Let d, e ∈ N with d 6= e. Then
CgG′′

(d̂, ê) = CgG′′
(q̂, 1).

Proof. By construction 〈b̂, 1〉, 〈1, ĉ〉 ∈ CgG′′
(p̂, 1). By transitivity,〈b̂, ĉ〉 ∈ CgG′′

(p̂, 1) and consequently
CgG′′

(b̂, ĉ) ⊆ CgG′′
(p̂, 1). But

〈p/θ, 1/θ〉 ∈ CgG′′/θ(b/θ, c/θ).

Therefore,by Theorem 3, there is u ∈ G′′ so that u ∈ p/θ and 〈u, 1〉 ∈ CgG′′
(b̂, ĉ) ⊆ CgG′′

(p̂, 1) ⊆ CgG′′
(q̂, 1).

By the minimality in the choice of p̂, we conclude CgG′′
(u, 1) = CgG′′

(b̂, ĉ) = CgG′′
(p̂, 1).

A similar argument prevails to establish the other part of the claim.
¤

Claim 6. Let b ∈ M . Then CgG′′
(q̂, b̂) = CgG′′

(q̂, 1).

Proof. By construction 〈1, b̂〉 ∈ CgG′′
(q̂, 1). It is evident that 〈q̂, 1〉 ∈ CgG′′

(q̂, 1). So by transitivity,
〈q̂, b̂〉 ∈ CgG′′

(q̂, 1). But
〈q/θ, 1/θ〉 ∈ CgG′′/θ(q/θ, b/θ).

Therefore,again using Theorem 3, there is u ∈ G′′ so that u ∈ q/θ and 〈u, 1〉 ∈ CgG′′
(q̂, b̂) ⊆ CgG′′

(q̂, 1) ⊆
CgG′′

(â, 1). By the minimality in the choice of q̂, we conclude CgG′′
(q, 1) = CgG′′

(q̂, b̂) = CgG′′
(q̂, 1).

¤
Since 〈p̂, 1〉 is below 〈q̂, 1〉 which is below 〈â, 1〉 which is below 〈a, 1〉, it follows from the last two claims

that 〈M̂, N̂〉 is a ladder below a in G′′. Since |G′′| is bounded in terms only of V, it follows that all the
membership conditions relevant to establishing that this is a ladder below a can be witnessed by polynomials
of complexity bounded in terms of V only. Of course, 〈M̂, N̂〉 is a ladder below a in F and |M̂∪N̂ | = |M∪N |.
But then it follows that M̂ must be 1/µ, where µ is the monolith of F. That is M̂ = M . But this means
that 〈b, 1〉 ∈ CgF(a, 1) can be witnessed by a polynomial of complexity bound in terms of V only, not matter
how b is chosen from M .
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¤
Lemma 6. Let V be a locally finite variety of groups such that the cardinalities of the chief factors in V
have a finite upper bound r.
(1) Suppose that n′′ is a finite upper bound such that for every subdirectly irreducible group H ∈ V, every

a ∈ H with ρH(a) = 2, there is b 6= 1 with 〈b, 1〉 in the monolith of H such that there is a polynomial of
complexity no more than n′′ which witnesses that 〈b, 1〉 ∈ CgH(a, 1). Then there is a finite upper bound n
such that for every A ∈ V and every a ∈ A with ρA(a) > 1, there is b ∈ A with b 6= 1 and ρA(b) < ρA(a)
such that there is a polynomial of complexity no more than n which witnesses that 〈b, 1〉 ∈ CgH(a, 1).

(2) Suppose that n′′ is a finite upper bound such that for every finite subdirectly irreducible group H ∈ V,
every a ∈ H with ρH(a) = 2, there is b 6= 1 with 〈b, 1〉 in the monolith of H such that there is a
polynomial of complexity no more than n′′ which witnesses that 〈b, 1〉 ∈ CgH(a, 1). Then there is a finite
upper bound n such that for every finite A ∈ V and every a ∈ A with ρA(a) > 1, there is b ∈ A with
b 6= 1 and ρA(b) < ρA(a) such that there is a polynomial of complexity no more than n which witnesses
that 〈b, 1〉 ∈ CgH(a, 1).

Proof. We provide a proof for (1). Then (2) follows by noting the appropriate finiteness conditions can be
inserted into the proof for (1). Suppose that a ∈ A with ρA(a) = m > 1. Select a ladder 〈B0, B1, . . . , Bm−1〉
of length m below a so that |B0 ∪B1 ∪ · · · ∪Bm−1| has the largest possible value. (Notice this cardinality is
bounded above by mr.) Let ϕ0 < ϕ1 < · · · < ϕm−1 be the chain of associated principal congruences.

Let θ ∈ ConA be maximal subject to the restrictions that ϕm−3 ⊆ θ < ϕm−2. Then A/θ is subdirectly
irreducible, since ϕm−2 is principal.

Claim 7. a/θ has ladder height 2 in A/θ.

Proof. Certainly, 〈Bm−2/θ,Bm−1/θ〉 is a ladder of length 2 below a/θ in A/θ. So for the sake of contradiction,
suppose that there is a ladder of length 3 below a/θ. Let 0 < ψ0 < ψ1 < ψ2 be the associated principal
congruences. By Lemma 3 there is a ladder 〈C0, C1, C2〉 below a in A with associated principal congruences
θ < ψ′

0 < ψ′
1 < ψ′

2. Moreover, since ϕm−3 ⊆ θ, we conclude that 〈B0, B1, . . . , Bm−3, C0, C1, C2〉 is ladder of
length m + 1 beneath a, contrary to our assumption about the ladder height of a. ¤

Let 〈M,N〉 be a ladder of length 2 below a/θ. By Lemma 3, let 〈M∗, N∗〉 be a corresponding ladder
below a for A. Then we know that

• 〈B0, B1, . . . , Bm−3,M
∗, N∗〉 is a ladder of length m below a for A.

• M = M∗/θ with |M | = |M∗| and N = N∗/θ with |N | = |N∗|.
It follows, in particular, that every member of M∗ has ladder height in A strictly less than the ladder height
of a.

Notice that M is collapsed by the monolith of A/θ. So there is an upper bound, depending only on V,
on complexity of the polynomials needed to witness all the membership conditions of the form 〈b/θ, c/θ〉 ∈
CgA/θ(d/θ, e/θ) and 〈b/θ, 1/θ〉 ∈ CgA/θ(a/θ, 1/θ) for b, c, d, e ∈ M∗ with d 6= e. Let D be the set of all
coefficients occurring in these polynomials. Let A′′ be the subgroup of A generated by D ∪ M∗ ∪ {a}.
Letting θ stand for its restriction to A′′, we see that 〈b/θ, 1/θ〉 ∈ CgA′′/θ(a/θ, 1/θ), for each b ∈ M∗. Fix
b ∈ M∗ with b 6= 1. Using Theorem 3, pick b so that 〈b, b〉 ∈ θ with b 6= 1 and 〈b, 1〉 ∈ CgA′′

(a, 1). Since the
cardinality of A′′ is bounded in terms of V alone, we see that there is an upper bound n on the complexity
of the polynomial needed to witness 〈b, 1〉 ∈ CgA(a, 1).

The proof will be complete once we establish that ρA(b) < m = ρA(a). But let ϕ∗ be the principal
congruence of A associated with M∗. We know that θ < ϕ∗ and that ϕ∗ = CgA(b, 1). This entails that
〈b, b〉, 〈b, 1〉 ∈ CgA(b, 1). By transitivity, 〈b, 1〉 ∈ CgA(b, 1). This means that ρA(b) ≤ ρA(b) < m. ¤

Only one piece of the argument for the proofs of Theorem 7 and Theorem 8 remains. It is addressed in
the next lemma.
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Lemma 7. Let V be a locally finite variety of groups of finite exponent e such that the cardinalities of the
chief factors in V have a finite upper bound r. Then there is a finite upper bound n such that for every finite
subdirectly irreducible group F ∈ V and every a ∈ F with ρF(a) = 2, there is b ∈ F with b 6= 1 such that
〈b, 1〉 is a critical pair for F and 〈b, 1〉 ∈ CgF(a, 1) can be witnessed by a polynomial of complexity no more
than n.

Proof. Let α = CgF(a, 1) and let µ be the monolith of F. Let ν be any join irreducible congruence so that
µ < ν ≤ α. Because ρF(a) = 2, in view of Lemma 1, we find that ν covers µ. Let ν0, ν1, . . . , νm−1 be distinct
covers of µ such that α = ν0 ∨ ν1 ∨ . . . ∨ νm−1 and m is as small as possible. In this way, α is decomposed
into a join irredundant system of join irreducible congruences. In particular, no νi is below the join of the
other νj ’s. Because νi covers µ, this means, for example, that

ν0 ∩ (ν1 ∨ ν2 ∨ . . . ∨ νm−1) ≤ µ,

and similarly for each i in place of 0.
Let i < m. Now (1/νi)/µ is a chief factor, therefore |(1/νi)/µ| ≤ r. Hence |1/νi| ≤ r|1/µ| ≤ r2. It follows

from Lemma 0 that r2 + 2 is an upper bound on the complexity of polynomials needed to witness 〈b, 1〉 ∈ νi

for all b ∈ F such that 〈b, 1〉 is critical. Consequently, all we need is a number n′ depending only on V such
that there is i < m and 〈b, 1〉 ∈ νi with b 6= 1 so that 〈b, 1〉 ∈ CgF(a, 1) can be witnessed by a polynomial of
complexity no more than n′.

From here the proof of our Lemma breaks into two easy cases and one case that requires more work.

Case: 1/α is not Abelian.
In this case, our first contention is that there is i < m and 〈d, 1〉 ∈ νi so that ad 6= da. Suppose

otherwise. Let c ∈ 1/α. Then c = c0c1 . . . cm−1 where 〈ci, 1〉 ∈ νi for each i < m. Consequently, ac =
ac0c1 . . . cm−1 = c0ac1 . . . cm−1 = c0c1 . . . cm−1a = ca. This means that a commutes with every element of
1/α. Now let t ∈ A and c ∈ 1/α. Since 1/α is a normal subgroup of F, pick d ∈ 1/α so that c = tdt−1.
Then tat−1c = tat−1tdt−1 = tadt−1 = tdat−1 = tdt−1tat−1 = ctat−1. Consequently, every conjugate of a
commutes with every element of 1/α. The same applies to all conjugates of a−1. But 1/α is just the set of
products of conjugates like these. In this way we find that 1/α is Abelian, contrary to the stipulation in this
case.

So pick i < m and 〈d, 1〉 ∈ νi so that ad 6= da. Let b = dad−1a−1. Observe that b 6= 1 while 〈b, 1〉 ∈ νi

since 〈d, 1〉 ∈ νi. The polynomial q(x) = dxd−1x−1 witnesses 〈b, 1〉 ∈ CgF(a, 1). In this case, we can let
n′ = 4.

Case: 1/α is Abelian and the order of a is not prime.
Let p be a prime number and s > 1 so that ps is the order of a. Let a′ = as. So a′ has order

p. Let α′ = CgF(a′, 1) ⊆ CgF(a, 1). So ρF(a′) is either 1 or 2. The polynomial q(x) = xs witnesses
〈a′, 1〉 ∈ CgF(a, 1). The complexity of this polynomial is bounded by the exponent e. If ρF(a′) = 1 we have
that 〈a′, 1〉 ∈ µ. So we can take b = a′ and n′ = 2. On the other hand, if ρF(a′) = 2, the case at hand
reduces to the case we consider next.

Case: 1/α is Abelian and the order of a is prime.
Let the prime number p be the order of a.
Recalling that α = ν0 ∨ ν1 ∨ . . . ∨ νm−1, let a = a0a1 . . . am−1 where 〈ai, 1〉 ∈ νi for all i < m.

Claim 8. Let η and ν be two distinct members of {ν0, ν1, . . . , νm−1} and let a′, a′′ be the members of
{a0, a1, . . . , am−1} so that 〈a′, 1〉 ∈ η and 〈a′′, 1〉 ∈ ν. Under these assumptions CgF(a′a′′, 1) = η ∨ ν.

Proof. Observe that η must be generated by 〈a′, 1〉 since otherwise the congruence generated by 〈a′, 1〉 must
be included in µ and hence η can be omitted from the join representation of α. Similarly, 〈a′′, 1〉 generates
ν.
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Since 〈a′′, 1〉 ∈ α there is a conjugate product polynomial π(x) over F so that

a′′ = π(a)

= π(a0a1 . . . ak−1ak . . . am−1)

= π(a0)π(a1) . . . π(a′) . . . π(a′′) . . . π(am−1)

This entails that 〈a′′, π(a′′)〉 ∈ ν ∩ ν̂ ⊆ µ, where ν̂ is the join of all the νi’s except ν. Similarly, 〈π(aj), 1〉 ∈ µ

for all aj 6= a′′. Consequently, π(a′a′′) = a′′d for some d with 〈d, 1〉 ∈ µ. It follows that CgF(π(a′a′′), 1) = ν.
So ν ⊆ CgF(a′a′′, 1).

Likewise, we find that η ⊆ CgF(a′a′′, 1).
Althogether, we have

η ∨ ν ⊆ CgF(a′a′′, 1).
But the reverse inclusion is evident, so the proof is complete. ¤
Claim 9. Let η and ν be two distinct members of {ν0, ν1, . . . , νm−1} and suppose that 〈b, 1〉 generates η while
〈c, 1〉 generates ν. Then CgF(bc, 1) = η ∨ ν.

Proof. Plainly, 〈bc, 1〉 ∈ η ∨ ν, so CgF〈bc, 1〉 ⊆ η ∨ ν. For the sake of contradiction, suppose that the reverse
inclusion fails. So either 〈b, 1〉 /∈ CgF(bc, 1) or 〈c, 1〉 /∈ CgF(bc, 1). But it is clear that each of these two
alternatives implies the other. So we have both η * CgF(bc, 1) and ν * CgF(bc, 1).

Now suppose 〈g, 1〉, 〈h, 1〉 ∈ CgF(bc, 1) ⊆ η ∨ ν. Further suppose 〈g0, 1〉, 〈h0, 1〉 ∈ η and 〈g1, 1〉, 〈h1, 1〉 ∈ ν
so that g = g0g1 while h = h0h1. (Such factorizations are always possible.) We contend that 〈g0, h0〉 ∈ µ if
and only if 〈g1, h1〉 ∈ µ. Otherwise, for instance, 〈g0, h0〉 /∈ µ but 〈g1, h1〉 ∈ µ. In this situation, 〈g0h

−1
0 , 1〉

generates η. Using commutativity, we have gh−1 = (g0h
−1
0 )(g1h

−1
1 ). So it follows that 〈g, h〉 generates η,

which is impossible. In particular, if 〈g, h〉 /∈ µ, then 〈g0, h0〉 /∈ µ and 〈g1, h1〉 /∈ µ.
The following unique factorization property holds:

If 〈g0g1, h0h1〉 ∈ µ where 〈g0, h0〉 ∈ η and 〈g1, h1〉 ∈ ν, then 〈g0, h0〉 ∈ µ and 〈g1, h1〉 ∈ µ.
Indeed, it follows from the hypothesis of this assertion that 〈g0, h0〉 ∈ ν and 〈g1, h1〉 ∈ η. But were 〈g0, h0〉 /∈
µ, then 〈g0, h0〉 would generate η. This would imply that µ < η ≤ ν, and so that η = ν.

The observations above allow us to define the maps Ψ0 from (1/CgF(bc, 1))/µ to (1/η)/µ and Ψ1 from
(1/CgF(bc, 1))/µ to (1/ν)/µ as follows. Suppose 〈g, 1〉 ∈ CgF(bc, 1). Factor g = g0g1 where 〈g0, 1〉 ∈ η and
〈g1, 1〉 ∈ ν. Let Ψ0(g/µ) = g0/µ and let Ψ1(g/µ) = g1/µ.

We contend that each of these maps is one-to-one. For suppose 〈g, 1〉, 〈h, 1〉 ∈ CgF(bc, 1) with 〈g, h〉 /∈ µ.
Then we can find 〈g0, 1〉, 〈h0, 1〉 ∈ η and 〈g1, 1〉, 〈h1, 1〉 ∈ ν so that g = g0g1, h = h0h1; moreover Ψ0(g/µ) =
g0/µ and Ψ0(h/µ) = h0/µ while Ψ1(g/µ) = g1/µ and Ψ1(h/µ) = h1/µ. But we also have 〈g0, h0〉 /∈ µ and
〈g1, h1〉 /∈ µ. Therefore Ψ0(g/µ) 6= Ψ0(h/µ) and Ψ1(g/µ) 6= Ψ1(h/µ).

We also have that Ψ0 maps onto (1/η)/µ. Indeed, suppose 〈g0, 1〉 ∈ η. Then there is a conjugate product
polynomial π(x) so that g0 = π(b). Let g1 = π(c). Then 〈g1, 1〉 ∈ ν. Using commutativity, we see that
g0g1 = π(bc). Therefore 〈g0g1, 1〉 ∈ CgF(bc, 1) and, evidently, Ψ0(g0g1/µ) = g0/µ. Likewise Ψ1 maps onto
(1/ν)/µ.

Now every element of 1/α has the form π(a) for some conjugate product polynomial π(x). Since the order
of a is the prime p, it follows that every element, other than 1, of 1/α must have order p. The same must
also apply to every element of 1/η and 1/ν. By the Fundamental Theorem for Finite Abelian Groups, we
see that 1/η must be isomorphic to a finite direct power, say the kth, of the cyclic group of order p. Of
course, 1/ν must also be isomorphic to the same direct power, since (1/η)/µ and (1/ν)/µ have the same
finite cardinality. Pick 〈g1, 1〉, 〈g2, 1〉, . . . , 〈gk−1, 1〉 ∈ η so that b, g1, . . . , gk−1 generate, each individually, the
internal direct factors. By using Ψ1 ◦ Ψ−1

0 obtain from each gj an element hj so that 〈gjhj , 1〉 ∈ CgF(bc, 1)
and Ψ0(gjhj/µ) = gj/µ while Ψ1(gjhj/µ) = hj/µ. We can further arrange the choices of the hj ’s so that
c, h1, . . . , hk−1 generate, each individually, internal direct factors giving a decomposition of 1/ν.
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Let a′, a′′ ∈ {a0, a1, . . . , am−1} so that 〈a′, 1〉 ∈ η and 〈a′′, 1〉 ∈ ν. So there are natural numbers
s, t1, t2, . . . , tk−1 < p such that a′ = bsgt1

1 gt2
2 . . . g

tk−1
k−1 . Also, there are natural numbers u, v1, v2, . . . , vk−1 < p

such that a′′ = cugv1
1 gv2

2 . . . g
vk−1
k−1 . By Claim 8 there must be a conjugate product polynomial π(x) so that

π(a′a′′) = a′′. From this we deduce 〈π(a′), 1〉 ∈ µ. It follows that 〈π(b)sπ(g1)t1 . . . π(gk−1)tk−1 , 1〉 ∈ µ. From
the internal direct representation and the fact that nontrivial elements are of prime order p, it follows that
〈π(b), 1〉 ∈ µ and 〈π(gj), 1〉 ∈ µ for all j. This entails, in turn, that 〈π(c), 1〉 ∈ µ and that 〈π(hj), 1〉 ∈ µ
for all j. Assembling the factors we discover that 〈π(a′′), 1〉 ∈ µ, as well. So 〈a′′, 1〉 = 〈π(a′a′′), 1〉 =
〈π(a′)π(a′′), 1〉 ∈ µ. But this is impossible, and the claim is established. ¤

Claim 10. Let η0, η1, . . . , ηk−1 be any k distinct members of {ν0, ν1, . . . , νm−1} and suppose that 〈bj , 1〉
generates ηj for each j < k. Then CgF(b0b1 . . . bk−1, 1) = η0 ∨ η1 ∨ . . . ∨ ηk−1.

Proof. We prove this by induction on k. The initial step of the induction is part of the hypotheses of this
claim. For the inductive step, we suppose the claim holds for any j of the selected congruences, and argue
that it must hold for any j + 1 of them, say for η0, η1, . . . , ηj .

By our inductive assumption η0 ⊆ CgF(b0b1 · · ·j−1 , 1). So pick a conjugate product polynomial π(x) so
that b0 = π(b0b1 · · ·j−1). It follows that 〈π(b0), 1〉 generates η0 and that 〈π(bi), 1〉 ∈ µ for all i with 1 ≤ i < j.
Now consider π(b0b1 . . . bj−1bj) = π(b0)dπ(bj) where 〈d, 1〉 ∈ µ. There are two cases:
Case: 〈π(bj), 1〉 ∈ µ. In this case, we have

η0 ⊆ CgF(π(b0b1 . . . bj), 1〉 ⊆ CgF(b0b1 . . . bj , 1).

This means that 〈b0, 1〉 ∈ CgF(b0b1 . . . bj , 1). Consequently, 〈b1b2 . . . bj , 1〉 ∈ CgF(b0b1 . . . bj , 1). But by the
inductive hypothesis η1 ∨ η2 ∨ . . . ∨ ηj ⊆ CgF(b1b2 . . . bj , 1). Therefore,

η0 ∨ η1 ∨ . . . ∨ ηj ⊆ CgF(b0b1 . . . bj , 1)

as desired.
Case: 〈π(bj), 1〉 generates ηj. We know that π(b0b1 . . . bj) = π(b0)π(bj)d where 〈d, 1〉 ∈ µ. This means

〈π(b0)π(bj), 1〉 ∈ CgF(π(b0)π(bj)d, 1) ⊆ CgF(π(b0b1 . . . bj), 1) ⊆ CgF(b0b1 . . . bj , 1).

By Claim 9, we conclude that η0 ∨ ηj ⊆ CgF(b0b1 . . . bj , 1). In particular, 〈bj , 1〉 ∈ CgF(b0b1 . . . bj , 1). It
follows that 〈b0b1 . . . bj−1, 1〉 ∈ CgF(b0b1 . . . bj , 1) as well. By the inductive hypothesis, η0 ∨ η1 ∨ . . .∨ ηj−1 ⊆
CgF(b0b1 . . . bj , 1). Putting the pieces together, we find

η0 ∨ η1 ∨ . . . ∨ ηj ⊆ CgF(b0b1 . . . bj , 1),

as desired. ¤

Without loss of generality, assume that |1/ν0| ≥ |1/νi| for all i < n. Now let F act on 1/ν0 by conjugation.
The kernel of this action is γ, the centralizer of ν0. So

〈t, d〉 ∈ γ ⇔ tct−1 = dcd−1 whenever 〈c, 1〉 ∈ ν0.

Evidently, F/γ is embeddable into Aut(1/ν0). Because |1/ν0| ≤ r2 we have the conclusion that |F/γ| ≤ (r2)!.
Let D be a transversal of F/γ, that is a set of distinct representatives for the congruence classes of γ. Without
loss of generality, we place a0 ∈ D. Let F′′ be the subgroup of F generated by D ∪ {a}. Observe that the
cardinality of F′′ is bounded above in terms of V alone. Finally, let α′′ denote CgF′′

(a, 1). Observe that
α′′ ⊆ α.

Pick u ∈ F ′′ so that 〈u, 1〉 ∈ α′′ and 〈a0, 1〉 ∈ CgF(u, 1) and so that 〈ai, 1〉 ∈ CgF(u, 1) for the least
number if i’s. Since 〈u, 1〉 ∈ α, the element u can be decomposed as a product, (after rearranging indices,
except for 0, as needed):

u = u0u1 . . . uq−1 where 〈ui, 1〉 ∈ νi for all i < q ≤ m,
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and, moreover, 〈ui, 1〉 generates νi, for all i < q, in view of Claim 10 and the irredundance of the νi’s.
Claim 11. If 〈v, 1〉, 〈w, 1〉 ∈ CgF′′

(u, 1) so that decompositions of v and w are v0v1 . . . vq−1 and w0w1 . . . wq−1,
and 〈v0, w0〉 /∈ µ, then 〈vi, wi〉 /∈ µ.

Proof. Evidently, 〈vw−1, 1〉 ∈ CgF′′
(u, 1〉 ⊆ α′′ and we have

vw−1 = v0w
−1
0 v1w

−1
1 . . . vq−1w

−1
q−1.

Now 〈v0w
−1
0 , 1〉 generates ν0 since 〈v0, w0〉 /∈ µ. Consequently, 〈a0, 1〉 ∈ CgF(vw−1, 1). Thus, by the

minimality of the choice of u, we obtain 〈vi, wi〉 /∈ µ for all i < q. ¤

Now for each i < q, let

Hi = {c/µ | 〈c, 1〉 generates νi and c is a canonical factor of v for some v such that 〈v, 1〉 ∈ CgF′′
(u, 1)}

Define Ψi : Hi → H0 by Ψi(c/µ) = b/µ provided there is 〈v, 1〉 ∈ CgF′′
(u, 1) so that vi = c and v0 = b

in the canonical decomposition of v. This definition of the function Ψi is sound according the Claim 11.
Evidently, Ψi maps Hi onto H0. Consequently, |Hi| ≥ |H0|. On the other hand, because D ⊆ F ′′, the
algebra F′′ has enough conjugate product polynomials to ensure that |(1/ν0)/µ| = |H0| + 1. So consider
these inequalities:

|Hi| + 1 ≤ |(1/νi)/µ| ≤ |(1/ν0)/µ| = |H0| + 1.

In this way we discover that |Hi| = |H0| for all i < q. Because these numbers are finite, we conclude that Ψi

maps Hi one-to-one and onto H0. It also follows that Hi consists exactly of those c’s so that 〈c, 1〉 generated
νi.
Claim 12. There is a conjugate product polynomial π(x) with all coefficients in D so that

(1) π(c) 6= 1 for some c such that 〈c, 1〉 ∈ ν0, and
(2) 〈π(d), 1〉 ∈ µ whenever 〈d, 1〉 ∈ νi for all i < q.

Proof. Let 〈w, 1〉 ∈ µ with w 6= 1. As noted in the proof of Claim 9, the group (1/ν0)/µ can be decomposed
as the internal direct power (let us say the kth power) of cyclic groups of order p. Let g0, g1, . . . gk−1 ∈ (1/ν0)
so that g0/µ, g1/µ, . . . , gk−1/µ will be respective generators of each of these internal direct factors. Since
〈w, 1〉 ∈ CgF(g0, 1) there is conjugate product polynomial π0(x) such that π0(g0) = w. Moreover, we can
suppose that all the coefficients of π0(x) belong to D, because D is a transversal of the centralizer. Unless
〈π0(gi), 1〉 ∈ µ for all i < k, we suppose without loss of generality that 〈π0(g1), 1〉 /∈ µ. So there is a conjugate
product polynomial κ1(x) with coefficients in D so that κ1(π0(g1)) = w. Let π1(x) = κ1(π0(x)). It follows
that π1(g1) = w 6= 1 and (π1(gi), 1〉 ∈ µ for all i < 2. Repeating this process no more than k times will
result in a conjugate product polynomial π(x) such that π(gj) = w 6= 1 for some j < k while 〈π(gi), 1〉 ∈ µ
for all i < k.

Now let h ∈ 1/ν0. Then h = gr0
0 gr1

1 . . . g
rk−1
k−1 , by the internal direct decomposition. By invoking the

commutativity, we get π(h) = (π(g0))r0(π(g1))r1 . . . (π(gk−1))rk−1 . Therefore 〈π(h), 1〉 ∈ µ.
At this point we know

• π(c) 6= 1 for some c such that 〈c, 1〉 ∈ ν0, and
• 〈π(d), 1〉 ∈ µ whenever 〈d, 1〉 ∈ ν0.

It remains to prove that 〈π(d), 1〉 ∈ µ whenever 〈d, 1〉 ∈ νi for all i < q. So let 〈d, 1〉 ∈ ν0. Should
〈d, 1〉 ∈ µ, our conclusion is immediate. Otherwise, d/µ ∈ Hi. Let d′/µ = Ψi(d/µ). Then we know that
π(d′)/µ = Ψi(π(d)/µ). But in view of Claim 11 and the fact that Ψi is a one-to-one correspondence between
Hi and H0, we conclude that 〈π(d), 1〉 ∈ µ since 〈π(d′), 1〉 ∈ µ. ¤

Now the membership condition 〈u, 1〉 ∈ CgF′′
(a, 1) can be witnessed by a polynomial of complexity

bounded in terms of |F ′′|, which is in turn bounded in terms of V. Also 〈c, 1〉 ∈ ν0 ⊆ CgF(u, 1). This means
that c can be factored as a product of conjugates of u and u−1. Invoking commutativity, it turns out that
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π(c) can be expressed as a product of terms of the form π(tut−1) and π(tu−1t−1). Because π(c) 6= 1, one of
these factors must also be different from 1. Say π(tut−1) 6= 1. Now

tut−1 = e0e1 . . . eq−1 where ei = tuit
−1 and 〈ei, 1〉 ∈ νi for all i < q.

Then, by Claim 12

π(tut−1) = π(e0)π(e1) . . . π(eq−1) ∈ 1/µ.

Let F′ be the subalgebra of F generated by D ∪ {a, t}. Then 〈π(tut−1), 1〉 ∈ CgF′
(u, 1) ⊆ CgF′

(a, 1).
Finally, we can take b = π(tut−1). Because |F ′| is bounded in terms of V, there is a polynomial witnessing
〈b, 1〉 ∈ CgF(a, 1) of complexity also bounded in terms of V, as desired. ¤

We are now in a position to prove Theorems 7 and 8.

Proof of Theorem 8. According to Lemma 7 there is a finite upper bound n such that for every finite sub-
directly irreducible group F ∈ V and every a ∈ F with ρF(a) = 2, there is b ∈ F with b 6= 1 such that 〈b, 1〉
is a critical pair for F and 〈b, 1〉 ∈ CgF(a, 1) can be witnessed by a polynomial of complexity no more than
n. By Lemma 6, applied no more than 2r times, there is a finite upper bound n′ such that for every finite
subdirectly irreducible group F ∈ V and every a ∈ F with ρF(a) < 2r, there is b ∈ F with b 6= 1 such that
〈b, 1〉 is a critical pair for F and 〈b, 1〉 ∈ CgF(a, 1) can be witnessed by a polynomial of complexity no more
than n′. Now an application of Lemma 5 finishes the proof. ¤

Theorem 7 follows immediately from Theorem 5, Theorem 8, and Lemma 6.
Finally, we are in a position to prove Theorem 1 and so complete the proof of our Main Theorem.

Proof of Theorem 1. By Theorem 5 we know that |G| is an upper bound on the ladder height of any element
in any algebra in V. By invoking Theorem 7 no more than |G| times we conclude that there is a bound
n∗ such that for any A ∈ V and any a ∈ A with ρA(a) > 1 there is b ∈ A with ρA(b) = 1 such that
〈b, 1〉 ∈ CgA(a, 1) can be witnessed by a conjugate product polynomial of complexity no more than n∗. Now
suppose that A is subdirectly irreducible. Then, according to Corollary 6, 〈b, 1〉 ∈ µ since ρA(b) = 1.

Now let S be the set of all conjugate product terms in the variable v of complexity no more than n∗ using
y0, . . . , yn∗−1 to stand for the coeficients. Take Ψ(x, y, z, w) to be

∃y0, . . . , yn∗−1[ ∨∨
s∈S

x ≈ s(zw−1, y0, . . . , yn∗−1)y].

Let Φ(u, v, x, y) be a congruence formula which defines all the atoms in the congruence lattices of algebras
belonging to the variety. This formula is given to us by Theorem 4. The congruence formulas Ψ(x, y, z, w)
and Φ(u, v, , x, y) establish that Vsi has definable principal subcongruences.

This concludes our proof. ¤

It is worth noting that Theorem 1 can be extended to finite pointed groups. A pointed group is an
algebra 〈G, ·,−1 , 1, p0, . . . , pn−1〉 where p0, . . . , pn−1 ∈ G and 〈G.·,−1 , 1〉 is a group. Thus, for pointed groups
one has the privilege of mentioning in terms certain elements by name. In contrast to the Theorem of Oates
and Powell, Roger Bryant [6] has been able to construct of finite pointed group (with just one additional point
designated by a constant symbol) which generates a nonfinitely based variety. The extension of Theorem 1 to
the case of finite pointed groups is easy since adding additional constant symbols in no way changes the unary
polynomials that played such a central role is our arguments. So Bsi has definable principal subcongruences,
where B is the variety generated by Bryant’s pointed group. We expect that Bsi will turn out not to be finitely
axiomatizable, even though it is axiomatizable by a set of elementary sentences, according to Theorem 0.
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