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Abstract. Ross Willard proved that every congruence meet-semidistributive variety of
algebras that has a finite residual bound and a finite signature can be axiomatized by some
finite set of equations. We offer here a simplification of Willard’s proof, avoiding its use
of Ramsey’s Theorem. This simplification also extends Willard’s theorem by replacing the
finite residual bound with a weaker condition.

1. Introduction

Over the last thirty years the following theorems have been established which
draw the conclusion that a variety of finite signature is finitely based from the
stipulation that the variety has a finite residual bound coupled with a condition on
the congruence lattices.

Baker’s Finite Basis Theorem(Baker, 1977). Let V be a variety of finite sig-
nature. If V is congruence distributive and has a finite residual bound, then V is
finitely based.

McKenzie’s Finite Basis Theorem(McKenzie, 1987). Let V be a variety of
finite signature. If V is congruence modular and has a finite residual bound, then
V is finitely based.

Willard’s Finite Basis Theorem(Willard, 2000). Let V be a variety of finite
signature. If V is congruence meet-semidistributive and has a finite residual bound,
then V is finitely based.

For lattices, modularity and meet-semidistributivity are familiar generalizations
of distributivity. The prevalence of congruence distributive varieties (especially
for algebras arising from logic) and of congruence modular varieties (for algebras
possessing group operations) has led to a vigorous investigation of these congruence
properties. Semilattices have meet-semidistributive congruence lattices. So does
any algebra which includes among its basic operations (or even among its term-
operations) the basic operation of semilattices, as shown, for example, by J. B.
Nation in 1971. Such algebras have recently played prominent roles in McKenzie’s
solution of Tarski’s Finite Basis Problem, see (McKenzie, 1996a; 1996b; 1996c),
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and Székely’s example of a finite algebra that generates of a variety with an NP-
complete finite algebra membership problem, see (Székely, 1998; 2002).

The proof in (Willard, 2000) of Willard’s Finite Basis Theorem relies on a new
characterization of congruence meet-semidistributivity. It also shares many points
in common with the proof in (Baker, 1977). In particular, Willard’s proof, like
Baker’s, includes an involved combinatorial argument invoking Ramsey’s Theorem.
A number of alternate proofs of Baker’s Finite Basis Theorem have been published.
The most direct is that given recently by Baker and Wang (2002). It avoids the in-
volved combinatorial argument and even the use of the Jónsson terms characterizing
congruence distributivity. One of the objectives of the present paper is to provide
a proof of Willard’s Finite Basis Theorem that avoids the involved combinatorial
argument.

Independently of this paper, Maróti and McKenzie (preprint) have recently given
a different proof of Willard’s Finite Basis Theorem that avoids the use of Ramsey’s
Theorem. Their argument depends on a variant of the Principal Meet Theorem
below. This work of Maroti and McKenzie, in fact, investigates finite basis questions
for congruence meet-semidistributive quasivarieties and for relatively congruence
distributive varieties, in the presence of a finite residual bound.

An algebra A is said to be finitely subdirectly irreducible if and only if for
every finite set X of pairs of distinct elements of A there are two distinct elements
a, b ∈ A so that any homomorphism that separates a and b also separates all the
pairs in X. For any class K of algebras we let Kfsi denote the class of all finitely
subdirectly irreducible algebras belonging to K. Every subdirectly irreducible al-
gebra is finitely subdirectly irreducible and every finite algebra which is finitely
subdirectly irreducible is subdirectly irreducible.

Bjarni Jónsson (1979) provided a generalization of Baker’s Finite Theorem.

Jónsson’s Finite Basis Theorem(Jónsson, 1979). Let V be a variety of finite
signature. If V is congruence distributive and Vfsi is finitely axiomatizable, then V

is finitely based.
Jónsson’s proof also avoids the involved combinatorial argument. Loosely speak-

ing, we follow in Jónsson’s footsteps and give a corresponding generalization of
Willard’s Finite Basis Theorem. Just as Jónsson’s approach relied on key elements
of Baker’s original proof, so our approach relies on two key elements of Willard’s
proof.

Willard (2001) presents a discussion of the extension of Jónsson’s Finite Basis
Theorem to the congruence meet-semidistributive case. He presents several pos-
sible approaches, listing problems that these approaches encounter. We provide
progress on several of these problems. In particular, our Principal Meet Theorem
solves Willard’s Problem 4.8 and also Problem 4.7 (but the latter under the addi-
tional stipulation that V has bounded critical depth—a concept explained several
paragraphs below). We also offer some progress on Problem 5.2 and Problem 5.3,
but with the notion of bounded critical depth replacing term-finite principal con-
gruences (alias bounded Mal′cev depth).
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Let A be an algebra. A basic translation of A is a one-place function on A
of the form QA(a0, a1, . . . , ai−1, x, ai+1, . . . , ar−1) where Q is an operation symbol
of positive rank r, where aj ∈ A for all j < r, and where i < r. The elements
a0, a1, . . . , ar−1 are called the coefficients of the translation. This basic transla-
tion is associated with the term Qz0z1 . . . zi−1xzi+1 . . . zr−1. A translation is the
composition of some finite sequence of basic translations. For a natural number `,
we say that a translation has complexity ` if it is the composition of a sequence
of length no more than ` of basic translations. The identity map is the only trans-
lation of complexity 0. Each translation is associated with a term that is built from
the terms associated to basic translations by means of repeated substitution.

Let A be an algebra and a, b, q, r ∈ A. We use the notation

{a, b} #1
` {q, r}

to mean
{u(a), u(b)} = {q, r} or q = r

for some translation u(x) of complexity `. Further, we use the notation

{a, b} #n
` {q, r}

to mean that there are g0, g1, . . . , gn ∈ A such that

q = g0

{a, b} #1
` {gi, gi+1} for all i < n

gn = r

We also use {a, b} #m
k ◦ #n

` {q, r} to mean

{a, b} #m
k {c, d} and {c, d} #n

` {q, r}
for some c, d ∈ A, in which case we can compose and conclude that

{a, b} #mn
k+` {q, r}.

According to the description of principal congruences implicit in (Mal′cev, 1954;
1963), we have

〈q, r〉 ∈ CgA(a, b) if and only if {a, b} #n
` {q, r} for some n and `.

For finite signatures there are only finitely many terms associated to basic trans-
lations. Therefore, we regard {x, y} #n

` {z, w} as an elementary (first-order) for-
mula. When the signature is not finite, we must in addition specify a finite set F
of operation symbols and construe

{x, y} #n
`,F {z, w}

as referring to translations of complexity ` built with the help only of operation
symbols belonging to F .

A class K of algebras of the same finite signature is said to have bounded
critical depth provided there is a natural number ` so that for every A ∈ Ksi

and all a, b, c, d ∈ A such that c 6= d and 〈a, b〉 is a critical pair of A we have
{c, d} #n

` {a, b} for some natural number n. When the signature is not finite
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in addition to the existence of ` there must also exist a finite set F of operation
symbols to which this notion is relativized.

Main Theorem. If V is a locally finite, congruence meet-semidistributive variety
of finite signature and of bounded critical depth, and if Vfsi is finitely axiomatizable,
then V is finitely based.

Actually, we prove something slightly stronger, since we only need to bound
critical depth in the finite algebras in Vsi.

The following Principal Meet Theorem, which is of independent interest, encap-
sulates the key step in the proof of the Main Theorem.

Principal Meet Theorem. If V is a locally finite, congruence meet-semidistrib-
utive variety of finite signature and of bounded critical depth, then there is an
elementary formula Π(x, y, z, w) such that for all algebras B ∈ V and all a, b, c, d ∈
B

CgB(a, b) ∩ CgB(c, d) is nontrivial if and only if B |= Π(a, b, c, d).
A proof of the Main Theorem occupies the following section, which includes a

proof of The Principal Meet Theorem in the guise of a more detailed Principal Meet
Lemma. The remainder of this introduction describes how Willard’s Finite Basis
Theorem follows from the Main Theorem; it goes on to describe two corollaries of
the Main Theorem and concludes with an example of a finitely generated variety
to which the Main Theorem applies but to which Willard’s Finite Basis Theorem
does not.

Willard’s Finite Basis Theorem follows from the Main Theorem easily. In fact,
congruence meet-semidistributivity plays no role in deducing Willard’s Theorem
from the Main Theorem (other than as a hypothesis that is passed along). In view
of the finite residual bound, up to isomorphism, Vsi is a finite set of finite algebras.
Evidently, V has bounded critical depth. Also, V is locally finite since it is generated
by this finite set of finite algebras. Furthermore, Vsi is finitely axiomatizable. It
only remains to establish that Vfsi is also finitely axiomatizable. It turns out that
Vsi = Vfsi. As Ross Willard remarked, this is probably part of the folklore. A short
proof is sketched by Ross Willard (2000) in the proof of his Lemma 4.2. We give
here a different proof (which might also be part of the folklore).

Folklore Lemma. Let V be a variety such that Vsi is axiomatizable by a set of ele-
mentary sentences. Every finitely subdirectly irreducible algebra in V is embeddable
into some subdirectly irreducible algebra in V.

Proof. Let B be a finitely subdirectly irreducible algebra belonging to V and let
Φ be a set of elementary sentences which axiomatizes Vsi. Expand the signature
by adding a new constant to name each element of B. We use B∗ to denote the
corresponding expansion of B. Let ∆ be the atomic diagram of B. To prove the
Lemma we need to show that ∆ ∪ Φ has a model. In view of the Compactness
Theorem, we need only show that Γ ∪ Φ has a model whenever Γ is a finite subset
of ∆. So consider such a Γ. Without loss of generality, we assume that the only
negated equations in Γ are of the form c 6= d were c and d are constant symbols.



AN EXTENSION OF WILLARD’S FINITE BASIS THEOREM 5

Let S be the set of all elements of B named by constants occurring in Γ. Since S is
finite and B is finitely subdirectly irreducible, pick p, q ∈ B with p 6= q and so that
〈p, q〉 ∈ CgB(r, s) whenever r and s are distinct elements of S. Let θ be a maximal
congruence of B which separates r and s. Then B/θ is subdirectly irreducible. So
B∗/θ |= Φ. Now the equations in Γ hold in B∗/θ since equations are preserved in
the passage to quotient algebras. The negated equations in Γ also hold in B∗/θ
since θ separates all the elements of S. Therefore, B∗/θ |= Γ ∪ Φ, as desired. ¤

Thus in a variety V of finite signature with a finite residual bound b, every
finitely subdirectly irreducible algebra must have cardinality bounded by b as well.
It follows that every finitely subdirectly irreducible algebra is finite and so it is
subdirectly irreducible. Thus, Vfsi = Vsi and therefore Vfsi is finitely axiomatizable.

In this way, Willard’s Finite Basis Theorem follows from the Main Theorem.
A class K of algebras sharing a finite signature is said to have term-finite prin-

cipal congruences provided there is a natural number ` so that for every A ∈ K

and all a, b, c, d ∈ A we have 〈a, b〉 ∈ CgA(c, d) if and only if {c, d} #n
` {a, b} for

some natural number n. For infinite signatures, we must also demand the existence
of a finite set F of operation symbols from which to build the required translations.
For finite signatures, this notion was introduced by Baker (1983). Independently,
the notion (for arbitrary signatures) was introduced recently by David Clark, Brian
Davey, Ralph Freese, and Marcel Jackson (preprint). Ju Wang (1988), (1990)(see
also (Baker and Wang, to appear)) has shown that finitely generated congruence dis-
tributive varieties of finite signature have term-finite principal congruences. Wang
employed the name finite principal length. It is an enticing open problem whether
the same holds in the case of congruence meet-semidistributive varieties with finite
residual bounds (or which have bounded critical depth). Evidently, if Vsi has term-
finite principal congruences, then V has bounded critical depth. So the following
corollary is obtained.

Corollary 1. Let V be a variety of finite signature. If V is locally finite and
congruence meet-semidistributive, Vsi has term-finite principal congruences, and
Vfsi is finitely axiomatizable, then V is finitely based.

In view of the results in (Wang, 1990), (Baker and Wang, to appear) and in
(Clark et al., preprint), Corollary 1 gives a generalization of Jónsson’s Finite Basis
Theorem, in the case of locally finite varieties of finite signature.

A class K of algebras of the same finite signature is said to have bounded
critical diameter provided there is a natural number ` so that for every A ∈ Ksi

such that A is finite and all a, b, c, d ∈ A such that 〈a, b〉 and 〈c, d〉 are critical pairs
of A we have {c, d} #n

` {a, b} for some natural number n. As above, this notion
can be extended to arbitrary signatures by requiring the existence of some finite
set F of operation symbols from which to devise the required translations.

Corollary 2. Let V be a variety of finite signature. If V is a locally finite, con-
gruence meet-semidistributive variety with bounded critical diameter such that Vsi

is elementary and Vfsi is finitely axiomatizable, then V is finitely based.
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Corollary 2 is an immediate consequence of the Main Theorem and the Lemma
below. For each natural number k let σk be the following elementary sentence:

∃z, w[z 6≈ w ∧∧ ∀x, y(x 6≈ y ⇒ ({x, y} #k
k {z, w}))].

Thus, σk asserts, among other things, that there is a critical pair.

Lemma. Let V be an elementary class of finite signature. The following conditions
are equivalent:

(i) Vsi is an elementary class.
(ii) Vsi is closed with respect to ultraproducts.
(iii) There is a natural number ` such that A ∈ Vsi if and only if A ∈ V and

A |= σ`.
(iv) Vsi is finitely axiomatizable relative to V.

Proof. Taking the implications cyclically, only (ii) =⇒ (iii) is not immediate.
Consider condition (iii). Evidently, if A ∈ V and A |= σ`, then A ∈ Vsi, no

matter what value ` has.
To prove the converse of (iii), suppose for the sake of contradiction, that Vsi is

an closed with respect to ultraproducts but that Vsi 6|= σk for all k.
For each k pick Sk ∈ Vsi so that Sk |= ¬σk. Let U be a nonprincipal ultrafilter

on the set ω of natural numbers. Finally, let S =
∏

k∈ω Sk/U. Since Vsi is closed
with respect to the formation of ultraproducts, we see S ∈ Vsi.

Let 〈c, d〉 be a critical pair for S. For each k ∈ ω pick ck, dk ∈ Sk so that

c = 〈c0, c1, . . .〉/U and

d = 〈d0, d1, . . .〉/U

For each k ∈ ω we pick distinct ak and bk in Sk so that Sk |= {ak, bk} 6#k
k {ck, dk}.

Let

a = 〈a0, a1, . . .〉/U and

b = 〈b0, b1, . . .〉/U

Since {k | ak 6= bk} = ω ∈ U, we have that a and b are distinct elements of S. Since
〈c, d〉 is a critical pair for S, pick a natural number ` so that

{a, b} #`
` {c, d}.

By ÃLos’ Theorem,
{k | {ak, bk} #`

` {ck, dk}} ∈ U.

Since U is nonprincipal, {k | k ≥ `} ∈ U. It follows that

{k | {ak, bk} #`
` {ck, dk} and k ≥ `} ∈ U.

On the other hand,

{k | {ak, bk} #`
` {ck, dk} and k ≥ `} ⊆ {k | {ak, bk} #k

k {ck, dk} and k ≥ `}.
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But this last set is empty, by the way in which we selected the ak’s and bk’s. Thus
we find that the empty set belongs to the nonprincipal ultrafilter U. This is a
contradiction. ¤

A version of this Lemma holds with Vfsi in place of Vsi and τ` in place of σ`,
where τ` is the following sentence:

∀x, y, z, w[(x 6≈ y ∧∧ z 6≈ w) =⇒
∃u, v(u 6≈ v ∧∧ ({x, y} #`

` {u, v}) ∧∧ ({z, w} #`
` {u, v}))]

The proof of this variant requires only modest changes in the proof given above.
It may be that having a bounded critical diameter is a consequence of the other

hypotheses of Corollary 2—or at least those hypotheses strengthened so that the
Vsi is finitely axiomatizable. One attempt to prove this was to find a finite bound
b so that the number of critical pairs in any algebra in Vsi never exceeded b. Ralph
McKenzie shared with us a counterexample showing that such a b need not exist.
We observe here that this same example provides a case to which Corollary 2
applies, even though Willard’s Finite Basis Theorem does not.

McKenzie’s example is a flat graph algebra. Graph algebras originated in the
Ph.D. dissertation of Caroline Shallon (1979), see also (McNulty and Shallon, 1983).
Flat algebras gained prominence in (McKenzie, 1996a; 1996b; 1996c) and their
theory was developed further in (Willard, 1996). Flat graph algebras are discussed
in (Székely, 1998; 2002; Delić, 2001; Lampe et al., 2001).

Given a graph G with vertex set V the flat graph algebra AG of G is the
algebra with universe V ∪ {0}, where 0 /∈ V , and two binary operations · and ∧
defined via

x · y =

{
x if there is an edge of G joining x and y

0 otherwise

x ∧ y =

{
x if x = y

0 otherwise

Let A be the flat graph algebra for the graph displayed below:

b b

Let V be the variety generated by A. McKenzie observed that
i. Vsi consists of those flat graph algebras associated with complete graphs with

loops at each vertex.
ii. Thus, Vsi is finitely axiomatizable.
iii. Also, Vsi consists entirely of simple algebras.
iv. Hence, every pair of distinct elements of any member of Vsi is critical.
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v. There is no finite bound on the number of critical pairs, since V has simple
algebras of every cardinality larger than 1.

The later conclusions all follow from (i), which can be found, in essence, in (Delić,
2001). Similar arguments, although restricted to the finite members of Vsi can be
found in (Székely, 1998). Dejan Delić (2001) actually characterizes the finitely based
flat graph algebras (A is one such) and shows in fact that they generate varieties
with definable principal congruences. As a consequence our particular variety V has
a bounded critical diameter. It is also easy to verify this directly. Indeed, suppose
that S ∈ Vsi. We regard the elements of S as vertices of a complete graph together
with the default element 0. Let {a, b} and {c, d} be two-element subsets of S with
a 6= 0. Then

{a, b} #1
1 {a, 0} #2

1 {c, d}
where the translation on the left is a ∧ x and the translations on the right are c · x
and d · x. So 2 bounds the critical diameter.

Finally, observe that Vsi is closed under the formation of nontrivial subalgebras.
It follows from the Folklore Lemma that Vsi = Vfsi. So Vfsi is finitely based. Hence,
V satisfies all the hypotheses of Corollary 2 but it is residually large. This means,
in particular, that the Main Theorem applies to finitely generated varieties that do
not fall under Willard’s Finite Basis Theorem.

2. Proof of the Main Theorem

The proof depends on a sequence of lemmas. Building on work of Czédli (1983),
Kearnes and Szendrei (1998), Hobby and McKenzie (1988), and Lipparini (1998),
Willard (2000) characterized congruence meet-semidistributive varieties by six equiv-
alent conditions. The following theorem and lemma encapsulate a portion of that
information, in modified language.

By a bracket expression, let us mean a string of bracket symbols, for example
〈 〈 〈 〉 〈 〉 〉 〈 〉 〉, constructed recursively by the rules (a) 〈 〉 is a bracket expression and
(b) for k ≥ 1 if β1, . . . , βk are bracket expressions then so is 〈β1 . . . βk〉. If β = b0...bn

is a bracket expression, let us say that a left bracket bi = 〈 and right bracket
bj = 〉 are matched if they bound a subexpression involved in the construction;
equivalently, we may say that their indices i, j are matched.

Theorem 1 (Willard). A variety V is congruence meet-semidistributive if and
only if there are a bracket expression β and ternary terms t0, . . . , tn in the language
of V obeying the set Σβ of laws

t0(x, y, z) ≈ x tn(x, y, z) ≈ z

ti(x, x, y) ≈ ti+1(x, x, y) for each even i < n

ti(x, y, y) ≈ ti+1(x, y, y) for each odd i < n

ti(x, y, x) ≈ tj(x, y, x) for each matched pair of indices i, j

Here the bracket expressions correspond to trees in Willard’s presentation and
parity of subscripts corresponds to colors of nodes.
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c

d

h = ti(p, d, p)
= tj(p, d, p)

u = ti(p, d, q)

v = tj(p, d, q)

p

q

g = ti(p, c, p)
= tj(p, c, p)

r = ti(p, c, q)

s = tj(p, c, q)

1

1

1

1

1

1

Figure 1. A hexagonal configuration

It simplifies matters to assume that the Willard terms ti are basic operations of
V, and we do so freely in the following. For example, for B ∈ V and matched bracket
indices i, j, any c, d, p, q ∈ B generate the hexagonal configuration of Figure 1, or
a “homomorphic image” of it, where the arrows represent translations of length 1
and {p, q} #2

1 {r, s}, {p, q} #2
1 {u, v}. A possible image, for example, would be

the diamond configuration of Figure 2.

Lemma 1 (Willard, 2000, Corollary 3.3 for N = 1). Suppose that V is con-
gruence meet-semidistributive, with Willard terms assumed to be basic operations,
and let A ∈ V. If 〈p, q〉 ∈ CgA(a, b) with p 6= q, so that {a, b} #n

m {p, q} for
some m,n, then there exist matched bracket indices i, j, elements c, d ∈ A, and a
translation {a, b} #1

m {c, d} giving the diamond configuration of Figure 2, with

u = v, r 6= s, {a, b} #1
m {c, d} #2

1 {r, s}, {p, q} #2
1 {r, s}.

In this event, let us say that {a, b} #1
m ◦ #2

1 {r, s} via the diamond configuration
generated by c, d, p, q with indices i, j. (In adapting Willard’s proof to this notation,
notice that by interchanging the roles of c and d if necessary, one can always obtain
u = v and r 6= s rather than the other way around.)

It is helpful to observe that such translations through a diamond configuration
are preserved by inverse homomorphisms provided that CgA(p, q) is atomic:

Lemma 2. Let V be congruence meet-semidistributive, with Willard terms as-
sumed to be basic operations, and let ϕ : A → B be a surjection in V. Suppose
that a, b, c, d, p, q, r, s in A map respectively to ā, b̄, etc., in B, in such a way that
{ā, b̄} #1

m {c̄, d̄} #2
1 {r̄, s̄} via the diamond configuration with indices i, j gen-

erated by c̄, d̄, p̄, q̄. If CgA(p, q) is atomic in Con(A), then in A we can replace
c, d, r, s by new elements of the same name (without modifying their images) so
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a

b

c

d

m
h u = v

p

q

g

r

s

1

1

1

1

Figure 2. A diamond (collapsed-hexagon) configuration

that {a, b} #1
m {c, d} #2

1 {r, s} via the diamond configuration with indices i, j
generated by c, d, p, q.

Proof. By choosing any pre-images of the constants involved in the unary polyno-
mial giving {a, b} #1

m {c̄, d̄}, we obtain new c, d ∈ A so that {a, b} #1
m {c, d} in A

and c̄ = c̄, d̄ = d̄. Then c, d, p, q at least generate a hexagonal configuration as in
Figure 1, with possible equalities between vertices, in which r, s are recomputed as
values of term functions. Since CgA(p, q) is atomic and not under kerϕ, and since
{p, q} #2

1 {u, v} we have 〈u, v〉 ∈ ker ϕ ∩ CgA(p, q) = 0, so that u = v. Also r̄ 6= s̄
entails r 6= s. Therefore the hexagonal configuration must collapse to a diamond
configuration, as required. ¤

We now turn to the Principal Meet Lemma (Lemma 3), which gives criteria for
nontriviality of meets of principal congruence relations in terms of a translation
condition with depth parameter m. The first assertion describes the general situ-
ation, in which m depends on particular pairs of elements. The second assertion
applies for given m to those algebras in which m is a sufficient length uniformly
over all pairs. The third assertion gives a condition enabling us to choose a single
value m = ` applying uniformly throughout the whole variety.

Lemma 3 (Principal Meet Lemma). Let V be a congruence meet-semidistribu-
tive variety, with Willard terms assumed to be basic operations. For algebras A ∈ V

and for elements a1, b1, a2, b2 ∈ A, consider the conditions

CgA(a1, b1) ∩ CgA(a2, b2) > 0, (*)

{ai, bi} #1
m ◦ #4

2 {r, s} for some r 6= s in A and for i = 1, 2, (†m)

for each m = 1, 2, . . . These conditions are related as follows.
(1) For all A ∈ V and for all a1, b1, a2, b2 ∈ A, (*) holds if and only if for some m

(†m) holds.
(2) If V has finite signature, then for each m = 1, 2, . . .,
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(a) the condition (†m) can be expressed as Πm(a1, b1, a2, b2), where
Πm(x1, y1, x2, y2) is an elementary formula in the language of V;

(b) if we denote by V[m] the subclass of V consisting of all A ∈ V in which (*)
and (†m) are equivalent for all choices of a1, b1, a2, b2, then V[m] is finitely
axiomatizable relative to V.

(3) If V is locally finite with critical depth bounded by `, then V[`] = V , i.e., (*) is
equivalent to (†`) for all choices of a1, b1, a2, b2 in all algebras of V.

Proof. For (1): If (†m) holds for some m, observe that 0 6= {r, s} ∈ CgA(a1, b1) ∩
CgA(a2, b2), so that (*) holds. Suppose conversely that (*) holds. We reason
as in the case N = 2 of (Willard, 2000, Corollary 3.3): Choose p, q ∈ A with
p 6= q and CgA(p, q) ⊆ CgA(a1, b1)∩CgA(a2, b2). Then by Lemma 1, {a1, b1} #1

m1

{c1, d1} #2
1 {r1, s1} and {p, q} #2

1 {r1, s1} for suitable c, d, r1, s1 ∈ A via a diamond
configuration generated by c1, d1, p, q. Again by Lemma 1, using r1, s1 in place of
p, q and noting that 〈r1, s1〉 ∈ CgA(a2, b2), we see that for some m2 there exist
c2, d2, r2, s2 ∈ A with {a2, b2} #1

m2
{c2, d2} #2

1 {r2, s2}. Then composing arrows
and setting r = r2, s = s2, we have {a1, b1} #1

m ◦ #2
1 ◦ #2

1 {r, s} and also
{a2, b2} #1

m ◦ #2
1 {r, s}, which yield (†m), with m being the larger of m1,m2.

For (2a): As mentioned earlier, in a variety V of finite signature an assertion
{x, y} #n

m {z, w} is expressible as an elementary formula. Then (†m) is the asser-
tion Πm(a1, b1, a2, b2), where

Πm(x1, y1, x2, y2) := (∃r)(∃s)(¬r ≈ s ∧ (∧2
i=1{xi, yi} #1

m ◦ #4
2 {r, s})).

For (2b): By an induction, V[m] consists of the models in V of the sentence

ψm := (∀x1)(∀y1)(∀x2)(∀y2)(Πm+1(x1, y1, x2, y2) → Πm(x1, y1, x2, y2)).

For (3): By Mal’tsev’s construction, the presence of a nontrivial pair in the inter-
section can be determined within a finitely generated, and hence finite, subalgebra
of A. Without loss of generality we may assume that A is finite to begin with.
Choose an atom α = CgA(p, q). Let θ ∈ Con(A) be maximal splitting p, q, so that
S = A/θ is subdirectly irreducible with critical pair {p̄, q̄}. Since the critical depth
of S is bounded by `, by Lemmas 1 and 2 we have {ā1, b̄1} #1

` ◦ #2
1 {r̄1, s̄1} in S via

a diamond configuration that is the image of arrows {a1, b1} #1
` ◦ #2

1 {r1, s2} in
A. Observe that CgA(r1, s1) is contained in the atom α and so equals α. Therefore
as in the proof of (1) we may repeat the process for {a2, b2}, to obtain the result
of (1) but with m = `.

¤

We are now able to complete the proofs of theorems stated in the Introduction:

Proof of the Principal Meet Theorem. By (3) of Lemma 3, the conditions (*) and
(†m) are equivalent throughout V for m = `. By (2a), the condition (†m) is ex-
pressible as Π`(a1, b1, a2, b2), where Π`(x1, y1, x2, y2) is an elementary formula. ¤

Proof of the Main Theorem. Let V be congruence meet-semidistributive, locally fi-
nite, of critical depth bounded by `, and of finite signature, with Vfsi being finitely
axiomatizable. It is harmless to assume that the Willard terms are basic operations.
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Let W be the class of the same signature as V determined by the set Σβ of Willard
laws of V and consider the class K = W[`], in the notation of Lemma 3 applied to
W in place of V. Then we observe the following.

(i) V is contained in K, since by (3) of Lemma 3 we have V = V [`].
(ii) K is finitely axiomatizable, since W is finitely axiomatizable by definition and

K is finitely axiomatizable relative to W, by (2b) of Lemma 3 applied to W

in place of V,
(iii) Kfsi is finitely axiomatizable via the sentence

(∀x1)(∀y1)(∀x2)(∀y2)(Π`(x1, y1, x2, y2) ↔ x1 ≈ y1 ∨ x2 ≈ y2),

by (2a) of Lemma 3 for W.

We now have the ingredients to apply the technique of Jónsson (Jónsson, 1979b):
If a variety V is contained in a finitely axiomatizable class K such that KSI is
contained in an axiomatizable class C (here Kfsi) whose intersection (here Vfsi)
with V is finitely axiomatizable (here by hypothesis), then V is finitely based. ¤

References

Kirby A. Baker. 1977. Finite equational bases for finite algebras in a congruence-distributive
equational class, Advances in Math. 24, 207–243. MR 56 #5389

. 1983. Nondefinability of projectivity in lattice varieties, Algebra Universalis 17, 267–274.
Kirby A. Baker and Ju Wang. 2002. Definable principal subcongruences, Algebra Universalis 47,

145–151. MR 2003c:08002

. to appear. Approximate distributive laws and finite equational bases for finite algebras
in congruence distributive varieties, Algebra Universalis.

David Clark, Brian Davey, Ralph Freese, and Marcel Jackson. preprint. Standard topological al-
gebras and syntactic congruences.
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