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Abstract

Suppose that T is an equational theory of groups or of rings. If T is finitely axioma-
tizable, then there is a least number µ so that T can be axiomatized by µ equations.
This µ can depend on the operation symbols that occur in T . In the 1960’s, Alfred
Tarski and Thomas C. Green completely determined the values of µ for arbitrary
equational theories of groups and of rings. While Tarski and Green announced the
results of their collaboration in 1970, the only fuller publication of their work oc-
curred as part of a seminar led by Tarski at Berkeley during the 1968-69 academic
year. The present paper gives a full account of their findings and their proofs.
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1 Equational logic and equational theories of algebras

Equational logic can be viewed as that fragment of first-order logic in which the
only sentences are universal sentences whose quantifier-free part is an equation
between terms. The familiar distributive law ∀x∀y∀z[x · (y + z) ≈ x · y + x · z]
is an example of such a sentence. Equational logic has no logical connectives,
no relation symbols apart from the logical equality symbol ≈, and its sole
quantifier is the universal quantifier which plays such a restrained role that it
is usually surpressed—the distributive law, for example, is expressed simply
as x ·(y+z) ≈ x ·y+x ·z. In comparison to first-order logic, equational logic is
equipped with an apparently meager means of expression. Still, many classes
of algebras that have found important places in mathematics can be specified
by means of equations and certainly reasoning about equations is ubiquitous.
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Equational logic can be developed as a formal system in its own right. Gar-
rett Birkhoff (1935) proved a completeness theorem for equational logic using
a system of simple rules of inference referring only to equations. He also proved
that the classes of algebras axiomatized by equations are exactly those which
are closed with respect to the formation of homomorphic images, subalgebras,
and arbitrary direct products—the earliest preservation theorem.

Two formalisms for equational logic can differ only in their operation symbols.
While for more general considerations arbitrary systems of operation symbols
are appropriate, in this paper we restrict our attention to those equational
formalisms provided with only systems of finitely many operation symbols.
Suppose a formalism has been specified by selecting a system of operation
symbols. We will say that a set T of equations is an equational theory if
and only if it is closed under logical consequence. A set Σ of equations is a
base for T provided T is the set of all logical consequences of Σ. Thus Σ is a
set of equational axioms for T . We say that the equational theory T if finitely
based if it has a finite base. A set Σ of equations is irredundant if and only
if Σ is not logically equivalent to any of its proper subsets.

In practice, equational theories arise in two ways: as the set of consequences of
some particular set Σ of equations, and as the set of all equations true in all the
algebras belonging to some class K of algebras. Ring theory probably arose in
the first way while the theory of groups arose in the second way with K being
the class of all groups of permutations. These two ways in which equational
theories ordinarily arise correspond to two purposes to which equational bases
are put: to provide a basis upon which to construct proofs, and to provide
a means to determine whether an algebra belongs to a particular class K of
algebras. The work of Tarski and Green, which is at the heart of this paper,
concerned a third purpose.

In first order logic, any finitely axiomatizable theory can be axiomatized by
a single sentence. Because equational logic lacks connectives, many finitely
based equational theories fail to be based a just a single equation. For an
equational theory T we let µT be the least among all cardinals κ so that T
has a base of cardinality κ. This parameter µT offers a means to differentiate
among equational theories. Alfred Tarski and Thomas Green took on the task
of determining µT in the cases when T is either a theory of rings or a theory
of groups.

2 Term equivalence of equational theories

The theory of groups has been formalized as an equational theory using a
number of systems of operation symbols. Certain of these formalizations differ
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from others only cosmetically. For example, one could be formalized using a
binary operation symbol · and a unary operation symbol −1 while another
formalization might use a binary operation symbols ∗ and a unary operation
symbol .̄ While the equational theories arising from these two formulations
are certainly different, the difference carries no mathematically interesting in-
formation. Such theories are said to be literally similar. More interesting
are other equational formalizations. For example, Marshall Hall (1976) pro-
vides two formalizations of group theory using different systems of operation
symbols—the first formalization uses the customary symbols ·,−1 and 1 while
the second uses only one symbol / to stand for division. In this paper we use
symbol ·− in place of /. The connection between these two formulations of the
theory of groups can be described as follows. Let T0 be the equational theory
of groups in the first formulation. Following Hall, this theory is based on

{x · (y · z) ≈ (x · y) · z, 1 · x ≈ x, x−1 · x ≈ 1}.

Let T1 be the equational theory of groups in the second formulation. Again
following Hall (but using ·− in place of /), this theory is based on

{x ·−x ≈ y ·−y, x ·−(y ·−y) ≈ x, (x ·−x) ·−(y ·−z) ≈ z ·−y, (x ·−y) ·−(z ·−y) ≈ x ·−z}.

Let T2 be the equational theory based on

T0 ∪ {x ·− y ≈ x · y−1}.

The theory T2 is a definitional extension of T0 because it is obtained from
T0 by adding equations which define the new operation symbol(s) by means
of term(s) built up from variables and the operation symbols of T0. It can be
proved that T2 is also based on

T1 ∪ {1 ≈ x ·− x, x−1 ≈ (x ·− x) ·− x, x · y ≈ x ·− ((y ·− y) ·− y)}.

So T0 and T1 have a common definitional extension. An important technical
point illustrated by the second base for T2 is that the term x ·− x involves
more variables than 1, the term it defines. In order for this to be legitimate
we require that x ·− x ≈ y ·− y ∈ T1. In other words, for T2 to be a definitional
extension of T1 it is necessary that T1 contain equations which assert that the
terms used in the definitions do not depend on such surplus variables.

We say that equational theories T0 and T1 are term equivalent if and only if
there are equational theories T ′

0, T
′
1 and T ′

2 so that T0 is literally similar to T ′
0,

that T ′
2 is a common definitional extension of T ′

0 and T ′
1, and that T ′

1 is literally
similar to T1. Tarski referred to this concept as definitional equivalence and
Maltsev used the phrase rational equivalence. Term equivalence can also be
developed from a connection between the models of T0 and the models of T1,
see for example (McKenzie et al., 1987).
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Suppose that T2 is a definitional extension of T1. The definitions of the new
operation symbols offer a means to eliminate the new symbols from the terms
of T2 to obtain equivalent terms of T1. Here are the details for the case given
above. The elimination map λ from the set of terms appropriate for T2 to
terms appropriate for T1 is defined by the following recursion, where x is any
variable and s and t are any terms appropriate for T2:

λ(x) = x

λ(1) = x ·− x

λ(t−1) = (λ(t) ·− λ(t)) ·− λ(t)

λ(s · t) = λ(s) ·− ((λ(t) ·− λ(t)) ·− λ(t))

λ(s ·− t) = λ(s) ·− λ(t)

It is not hard to prove that if Σ is a base for T2 then {λ(s) ≈ λ(t) | s ≈ t ∈ Σ}
is a based for T1. The same applies to any pair of theories such that one is a
definitional extension of the other.

3 Tarski and Irredundant Bases of Equational Theories

Alfred Tarski (1938) considered the equational theory of Abelian groups con-
strued as algebras with a single operation ·− to stand for right subtraction.
That is a ·− b = a + (−b) where + and − represent the customary Abelian
group operations of addition and additive inversion (negation). He demon-
strated that the equational theory of Abelian groups so construed can, in fact,
based on some one equation. Higman and Neumann (1952) extended this re-
sult to all finitely based equational theories of groups where ·− stands for right
division, i.e. a ·−b = ab−1 using the more customary operations. In that paper,
Higman and Neumann raise the problem of discovering the cardinalities of all
irredundant bases of a finitely based equational theory. As Higman and Neu-
mann point out, all these cardinalities must be finite (a simple consequence
of the Compactness Theorem). But they noted that these cardinalities may
have no finite upper bound. They also observed that these problems were then
open for the variety of groups and the variety of Abelian groups, among others.
They also note that there seemed to be no example of an infinite irredundant
set of equations using just a single operation which is binary. In a footnote,
Higman and Neumann say that this last problem had been solved recently.
This is probably a reference to the work of Jan Kalicki (1955) carried out
under Tarski’s influence at Berkeley.

Tarski and his collaborators made decisive inroads on the problems raised
by Higman and Neumann. Their results are spelled out in Tarski (1968) and
in the two abstracts of Green and Tarski (1970a,b). Proofs for two of these
results were later published, but proofs for the remaining results have not been
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published in the ensuing thirty years. During the late 1960’s Thomas C. Green
pursued a Ph.D. under Tarski’s supervision, but left Berkeley (and apparently
mathematics) before a final version of their joint work was completed and
submitted for publication. It seems to me appropriate for this volume to finally
place these proofs in the literature.

My knowledge of these proofs stems from notes from a seminar conducted
by Tarski at Berkeley during the 1968-1969 academic year. I was a partic-
ipant in that seminar, as were Fred Backer, Gary Cooper, Steven Givant,
Thomas C. Green, Joel Karnofsky, Michael Kwatinetz, Charles Martin, Don
Pigozzi, Kan Ching Ng, William Wadge, and Benjamin F. Wells. My role is
expositor—neither the theorems nor any of the proofs given here should be
credited to me. Any errors below are mine.

Theorem 0 (Tarski) If T is a finitely based equational theory with irredun-
dant bases of cardinalities m and n, and k is a natural number such that
m < k < n, then T has an irredundant base of cardinality k.

Tarski (1975) gives a proof of this theorem has a consequence of a more general
result about certain kinds of closure operators. In the same issue of Discrete
Mathematics one can find the related papers McNulty and Taylor (1975) and
Givant (1975).

Tarski introduced ∇T to stand for the set of cardinalities of irredundant bases
of the equational theory T . As a consequence of the theorem above ∇T must
either be empty, a finite interval of natural numbers, an infinite interval of
natural numbers, or the set {ω}. Equational theories of the first kind and of
the last kind cannot be finitely based, while those of the other kinds are finitely
based. In this way, to any finitely based equational theory T one can associate
a pair m, n ∈ N ∪ {∞} of parameters so that ∇T = [m,n). As described in
(Tarski, 1968), all the possibilities for ∇T left open by the theorem above have
actually been realized by examples, using just one binary operation symbol,
constructed by Tarski, Judith Ng, and Ralph McKenzie.

Theorem 1 (Tarski) Let T be a finitely based equational theory such that
t ≈ x ∈ T for some term t in which the variable x occurs at least twice. Under
these assumptions ∇T is infinite.

Tarski never published a proof of this theorem. A proof of the following modest
extension can be found in (McNulty, 1976).

Theorem 2 Let T be a finitely based equational theory such that t ≈ x ∈ T
for some term t in which some operation symbol of rank at least two occurs
or else in which two different unary operation symbols occur. Under these
assumptions ∇T is infinite.
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Consequently, the most commonly encountered finitely based equational the-
ories will have irredundant bases of all large enough finite cardinalities. For
such equational theories determining the least among the cardinalities of irre-
dundant bases becomes a natural question. Tarski used µT to stand for this
least cardinality.

Higman and Neumann had already determined that µT = 1 for any finitely
based theory T of groups construed using only the operation symbol ·− stand-
ing for right division. During the last half of the 1960’s Tarski undertook the
determination of µT for equational theories T of groups or of rings subject
only to the restriction that the number of basic operation symbols should be
finite. Green joined in this enterprise. The results of their efforts are definitive.
Some of these findings are due to Tarski, some to Green, and some to both
jointly. I have tried to attribute the results appropriately, but the notes I have
leave some of attributions in doubt.

Here are the findings about groups. This is joint work of Tarski and Green.

Theorem 3 Let T be a finitely based theory of groups in which exactly n
different operation symbols appear and such that T has a model with more
than one element. Then µT = max{1, n− 1}.

The notion of ring used here is distinct from the notion of ring with unit in that
the latter has a distinguished constant denoting a unit element, while rings of
the former sort may have no element playing the role of a multiplicative unit.
An equational theory T of rings is said to be of the first kind provided T
has a model with more than one element in which the multiplication of any
elements results in the additive unit 0; if T is not of the first kind it is said to
be of the second kind. Here are the findings about rings.

Theorem 4 Let T be a finitely based equational theory of rings with exactly
n operation symbols which has a model with more than one element.

(i) If T is a theory of the first kind, then µT = max{1, n− 1} .
(ii) If T is a theory of the second kind, then µT = 1.
(iii) If T is a theory of rings with unit, then µT = 1.

Theorem 4 (i) and (iii) were established by Tarski with part (iii) done in-
dependently and by different means by Ralph McKenzie (see the abstract
(Grätzer and McKenzie, 1967) and the paper (Grätzer and Padmanabhan,
1978)). Theorem 4 (ii) is due to Green.

These results about groups and rings are particular cases of more general
results proven by Tarski and Green, as described in the next section.

Ralph McKenzie (1970) proved that if T is a finitely based equational theory
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of lattices, then µT = 1 if T is the theory of all lattices or if T is the theory of
one element lattices and in all other cases at least two equations are needed—
Padmanabhan (1969c) had proven that two equations suffice. Subsequently,
Padmanabhan and his collaborators published a series of papers concerning
µT . For example, (Padmanabhan and Quackenbush, 1973) proved that if T
is finitely based and every model of T is both congruence distributive and
congruence permutable, then µT = 1. Further reference to this body of work
can be found in the bibliography.

4 Results from the 1968 Seminar

To establish the theorems about minimum bases for equational theories of
groups and rings requires proving two sorts of things: the existence of bases
of the requisite sizes and the nonexistence of any smaller bases. We take up
the existence proofs first.

As in the earlier works (Tarski, 1938) and (Higman and Neumann, 1952), an
analysis of the operation ·− of right division (alias right subtraction) is the
point of departure. The key result is the following theorem.

Theorem 5 (Tarski) Let T be an equational theory based on the finite set Σ
of equations and suppose T contains the following equation:

y ≈ [(z ·− z) ·− (x ·− y)] ·− [(w ·− w) ·− x]. (ε)

Assume that there is a nonempty set Γ ⊆ T such that each equation in Σ has
a substitution instance which is a logical consequence of Γ ∪ {ε}. Under these
assumptions, T has a base with no more than |Γ| equations.

The proof of this theorem relies on the four lemmas which follow.

Lemma 6 (The Cancellation Lemma) Let p, s, and t be any terms. The
following cancellation laws hold:

(a) ε, p ·− s ≈ p ·− t ` s ≈ t
(b) ε, s ·− p ≈ t ·− p ` s ≈ t.

PROOF. Here is the reasoning to establish (a.):

s ≈ [(z ·− z) ·− (p ·− s)] ·− [(w ·− w) ·− p] a substitution instance of ε

≈ [(z ·− z) ·− (p ·− t)] ·− [(w ·− w) ·− p] since p ·− s ≈ p ·− t

≈ t a substitution instance of ε
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To establish (b.) observe that the next two equations are substitution instances
of ε.

[(z ·− z) ·− (s ·− p)] ·− [(w ·− w) ·− s] ≈ p

p ≈ [(z ·− z) ·− (t ·− p)] ·− [(w ·− w) ·− t]

Consequently

[(z ·− z) ·− (s ·− p)] ·− [(w ·− w) ·− s] ≈ [(z ·− z) ·− (t ·− p)] ·− [(w ·− w) ·− t].

But in view of s ·− p ≈ t ·− p we obtain

[(z ·− z) ·− (t ·− p)] ·− [(w ·− w) ·− s] ≈ [(z ·− z) ·− (t ·− p)] ·− [(w ·− w) ·− t].

Now two applications of the cancellation law (a.) give first

(w ·− w) ·− s ≈ (w ·− w) ·− t

and then the desired result

s ≈ t

2

Lemma 7 The equations (z ·− z) ·− ((z ·− z) ·− x) ≈ x, y ·− y ≈ z ·− z, and
x ·− (z ·− z) ≈ x are logical consequences of the equation ε.

PROOF. This short proof relies on three different substituion instances of ε.
The first is

x ≈ [[(x ·− x) ·− (x ·− x)] ·− [(w ·− w) ·− x]] ·− [(w ·− w) ·− (w ·− w)]

which arises from ε by the substitution

x 7→ w ·− w

y 7→ x

z 7→ x ·− x.

The second substitution instance is

x ≈ [(x ·− x) ·− (x ·− x)] ·− [(w ·− w) ·− x] (∗)

which arises from ε by the substitution

y 7→ x

z 7→ x.

The right side of the second substitution instance occurs in the first substitu-
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tion instance. Hence,

x ≈ x ·− [(w ·− w) ·− (w ·− w)]. (∗∗)

The third substitution instance of ε we need is

y ·− y ≈ [(z ·− z) ·− ((y ·− y) ·− (y ·− y))] ·− [(y ·− y) ·− (y ·− y)]

which arises from ε by the substitution

x 7→ y ·− y

y 7→ y ·− y

w 7→ y

Now apply (∗∗) twice to this last substitution instance to obtain first

y ·− y ≈ (z ·− z) ·− [(y ·− y) ·− (y ·− y)]

and then

y ·− y ≈ z ·− z

The other two equations we need to prove follow from the last equation applied
to (∗) and (∗∗). 2

Lemma 8 Let s and t be any terms. The set {ε, s ≈ t} is logically equivalent
with {ε, s ·− t ≈ z ·− z}.

PROOF. According to Lemma 7, we have

ε ` s ·− s ≈ z ·− z.

Consequently,
ε, s ≈ t ` s ·− t ≈ z ·− z.

For the reverse direction, observe that

ε, s ·− t ≈ z ·− z ` s ·− t ≈ t ·− t.

Therefore, by the Cancellation Lemma

ε, s ·− t ≈ z ·− z ` s ≈ t

as desired. 2

Now for any terms s and t we will let δs,t stand for the following equation

y ≈ [(z ·− z) ·− (x ·− y)] ·− [(s ·− t) ·− x].
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Lemma 9 Let s and t be any terms. The equation δs,t is logically equivalent
to the set {ε, s ≈ t} of equations.

PROOF. We assume, without loss of generality, that the variables x, y, z, and
w do not occur in s ≈ t. Evidently, ε, s ≈ t ` δs,t, so it remains to establish
δs,t ` ε and δs,t ` s ≈ t. These derivations are accomplished at once by an
argument like the proof of Lemma 7. We need three substitution instances of
δs,t (rather than of ε). The first two are

z ≈ [[(z ·− z) ·− (z ·− z)] ·− [(s ·− t) ·− z]] ·− [(s ·− t) ·− (s ·− t)]

z ≈ [(z ·− z) ·− (z ·− z)] ·− [(s ·− t) ·− z]

The right side of the second equation occurs in the first equation, giving

z ≈ z ·− [(s ·− t) ·− (s ·− t)]

Substitute z ·− z for z to obtain

z ·− z ≈ (z ·− z) ·− [(s ·− t) ·− (s ·− t)]. (∗ ∗ ∗)

The third substitution instance of δs,t is

s ·− t ≈ [(z ·− z) ·− [(s ·− t) ·− (s ·− t)]] ·− [(s ·− t) ·− (s ·− t)]

Applying (∗ ∗ ∗) twice to this equation we obtain first

s ·− t ≈ (z ·− z) ·− [(s ·− t) ·− (s ·− t)]

and then

s ·− t ≈ z ·− z.

But z does not occur in s ·− t, so substituting w for z gives

s ·− t ≈ w ·− w.

Now replace s ·−t in δs,t by w ·−w to obtain ε. With ε in hand, the last equation
displayed above yields s ≈ t by Lemma 8. 2

This lays the groundwork for the proof of Theorem 5.

PROOF. [Proof of Theorem 5] Let Σ = {u0 ≈ r0, u1 ≈ r1, . . . , um−1 ≈ rm−1}.
For each i < m, let u∗

i ≈ r∗i denote a substitution instance of ui ≈ ri such that
Γ ∪ {ε} ` u∗

i ≈ r∗i . We suppose, without loss of generality, that no variable
that occurs in any one equation in Σ or in Γ or in {u∗

i ≈ r∗i | i < m} or in ε

10



occurs also in any of the other equations. Pick p ≈ q ∈ Γ and let s be

p ·−
(
[u0 ·− (· · · ·− (um−2 ·− um−1) · · · )] ·− [u∗

0
·− (· · · ·− (u∗

m−2
·− u∗

m−1) · · · )]
)

and let t be

q ·−
(
[r0 ·− (· · · ·− (rm−2 ·− rm−1) · · · )] ·− [r∗0 ·− (· · · ·− (r∗m−2

·− r∗m−1) · · · )]
)

Now let ∆ = (Γ− {p ≈ q}) ∪ {δs,t}. The set ∆ turns out to be a base, of the
desired cardinality, for the equational theory T . It is evident that |∆| ≤ |Γ|
and that ∆ ⊆ T . To complete the proof, it remains only to establish that
∆ ` Σ.

Because δs,t ∈ ∆, it follows from Lemma 9 that ∆ ` ε, s ≈ t. So after the
appropriate substitutions, we see that the following equation is a consequence
of ∆.

p ·−
(
[u∗

0
·− (· · · ·− (u∗

m−2
·− u∗

m−1) · · · )] ·− [u∗
0

·− (· · · ·− (u∗
m−2

·− u∗
m−1) · · · )]

)
≈

q ·−
(
[r∗0 ·− (· · · ·− (r∗m−2

·− r∗m−1) · · · )] ·− [r∗0 ·− (· · · ·− (r∗m−2
·− r∗m−1) · · · )]

)
Now, in view of Lemma 7 and the presence of ε we obtain

p ·− (z ·− z) ≈ q ·− (z ·− z).

Therefore, according to the Cancellation Lemma, we have ∆ ` p ≈ q and also(
[u0 ·− (· · · ·− (um−2 ·− um−1) · · · )] ·− [u∗

0
·− (· · · ·− (u∗

m−2
·− u∗

m−1) · · · )]
)
≈(

[r0 ·− (· · · ·− (rm−2 ·− rm−1) · · · )] ·− [r∗0 ·− (· · · ·− (r∗m−2
·− r∗m−1) · · · )]

)
by cancellation in δs,t. Now observe that ∆ ` Γ. Since Γ ` u∗

i ≈ r∗i for all
i < m, we find that the next equation is also a consequence of ∆.(

[u0 ·− (· · · ·− (um−2 ·− um−1) · · · )] ·− [r∗0 ·− (· · · ·− (r∗m−2
·− r∗m−1) · · · )]

)
≈(

[r0 ·− (· · · ·− (rm−2 ·− rm−1) · · · )] ·− [r∗0 ·− (· · · ·− (r∗m−2
·− r∗m−1) · · · )]

)
Applying the Cancellation Lemma yet again, we arrive at the next consequence
of ∆.

u0 ·− (u1 ·− · · · ·− (um−2 ·−um−1) · · · ) ≈ r0 ·− (r1 ·− · · · ·− (rm−2 ·− rm−1) · · · ). (?)

Now substitution gives

u0 ·− (u∗
1

·− · · · ·− (u∗
m−2

·− u∗
m−1) · · · ) ≈ r0 ·− (r∗1 ·− · · · ·− (r∗m−2

·− r∗m−1) · · · )

but Γ ` u∗
i ≈ r∗i so we get
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u0 ·− (u∗
1

·− · · · ·− (u∗
m−2

·− u∗
m−1) · · · ) ≈ r0 ·− (u∗

1
·− · · · ·− (u∗

m−2
·− u∗

m−1) · · · )

The Cancellation Lemma applied to the equation above gives

u0 ≈ r0

and, from (?), we get

u1 ·− · · · ·− (um−2 ·− um−1) · · · ) ≈ r1 ·− · · · ·− (rm−2 ·− rm−1) · · · ).

We can repeat this process to obtain ∆ ` ui ≈ ri for all i < m. But this means
that ∆ ` Σ, which is what was to be proved. 2

Corollary 10 (Tarski) Let T be term equivalent to a finitely based equational
theory with ·−, ·, and 1 among its operation symbols to which that following
equations belong:

[(z ·− z) ·− (x ·− y)] ·− [(w ·− w) ·− x] ≈ y

x · (z ·− z) ≈ z ·− z

x · 1 ≈ x

Under these assumptions, T is one-based.

PROOF. At first we suppose that T includes ·−, ·, and 1 among its operation
symbols. So the equations listed in the theorem actually belong to T . Let
{p0 ≈ q0, . . . , pm−1 ≈ qm−1} be a base for T . Let Σ be

{p0 · z0 ≈ q0 · z0, . . . , pm−1 · zm−1 ≈ qm−1 · zm−1} ∪ {x · 1 ≈ x, ε}

where none of the distinct variables z0, . . . , zm−1 occur in any of the pi ≈ qi.
The set Σ is a base for T . Take Γ to be {(x·1) ·−x ≈ (y ·(w ·−w)) ·−(z ·(w ·−w))}.
Evidently, Γ ⊆ T .

The set Γ ∪ {ε} has the following logical consequences.

x · 1 ≈ x
By substituting x for y, z, and w in (x · 1) ·−x ≈ (y · (w ·−w)) ·− (z · (w ·−w))
we obtain (x · 1) ·− x ≈ (x · (x ·− x)) ·− (x · (x ·− x)). By Lemma 7 it follows
that (x · 1) ·− x ≈ z ·− z. So by Lemma 8 we get x · 1 ≈ x.

y · (w ·− w) ≈ z · (w ·− w)
As just observed, we know that (x · 1 ·− x ≈ z ·− z). Consequently, (y ·
(w ·− w)) ·− (z · (w ·− w)) ≈ z ·− z. But then by Lemma 8 we arrive at
y · (w ·− w) ≈ z · (w ·− w).
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In particular, pi · (zi ·− zi) ≈ qi · (zi ·− zi) is a logical consequence of Γ∪{ε} for
every i < m. Thus, each equation in Σ has a substitution instance which is a
logical consequence of Γ ∪ {ε}. So T is one-based according Theorem 5.

Now suppose that T is term-equivalent to an equational theory T0 which has
·−, ·, and 1 among its operation symbols and the three equations listed in
the theorem among its equations. Thus, there are definitions for these three
operation symbols in terms of the operation symbols of T . Let T1 be the
resulting definitional extension of T . By the argument above, there is a single
equation s ≈ t that is a base for T1. Then {λ(s) ≈ λ(t)} is a base of T where
λ is the map that eliminates the new operation symbols from terms in favor
of their definitions. 2

It is worth noting that if T satisfies the conditions of Corollary 10 and T ′ is
another finitely based equational theory such that T ⊆ T ′, then T ′ also satisfies
the conditions of the Theorem, and so must also be one-based. We refer to
one-based theories all of whose finitely based extensions are also one-based as
essentially one-based. Thus, each finitely based equational theory of rings
with unit is essentially one-based and Theorem 4 (iii) has been established.

A variant of Corollary 10 was discovered by Green and Tarski. They used this
next corollary to establish that every finitely based equational theory of rings
of the second kind is one-based.

Corollary 11 (Green and Tarski) Let T be term equivalent to a finitely
based equational theory with ·− and ∗ among its operation symbols to which
that following equations belong:

[(z ·− z) ·− (x ·− y)] ·− [(w ·− w) ·− x] ≈ y

x ∗ (z ·− z) ≈ z ·− z

(z ·− z) ∗ x ≈ z ·− z

x ∗ t ≈ x

where t is some term. Under these assumptions, T is one-based.

PROOF. As in the proof of the previous corollary, at first we suppose that
T includes ·− and ∗ among its operation symbols. So the equations listed in
the theorem actually belong to T . Let {p0 ≈ q0, . . . , pm−1 ≈ qm−1} be a base
for T . Let Σ be

{(p0 ∗ ·−q0) ∗ z0 ≈ z ·− z, . . . , (pm−1 ·− qm−1) ∗ zm−1 ≈ z ·− z} ∪ {x ∗ t ≈ x, ε}

where none of the distinct variables z0, . . . , zm−1 occur in any of the pi ≈ qi.
The set Σ is a base for T . Take Γ to be {(x ∗ t) ·− x ≈ (y ∗ (z ·− z)) ∗w}, where
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we assume that y, x and w do not occur in the term t. Evidently, Γ ⊆ T .

The set Γ ∪ {ε} has the following logical consequences.

y ∗ (z ·− z) ≈ z ·− z
By substituting y ∗ (z ·− z) for x and t∗ for w in (x∗ t) ·−x ≈ (y ∗ (w ·−w))∗ z
we obtain (y ∗ (z ·− z) ∗ t∗) ·− y ∗ (z ·− z) ≈ (y ∗ (z ·− z)) ∗ t∗, where t∗

results from substituting y ∗ (z ·− z) for x in t. By Lemma 7 it follows that
(y ∗ (z ·−z)∗ t∗) ·−y ∗ (z ·−z) ≈ (y ∗ (z ·−z))∗ t∗ ·− (z ·−z). By the Cancellation
Lemma we get y ∗ (z ·− z) ≈ z ·− z.

x ∗ t ≈ x
Observe

x ∗ t ·− x ≈ (y ∗ (z ·− z)) ∗ w

≈ (z ·− z) ∗ w

≈ (z ·− z) ∗ (z ·− z)

≈ z ·− z

So the equation we need follows from Lemma 8.

Notice, in particular, (pi ·−qi)∗(z ·−z) ≈ z ·−z is a logical consequence of Γ∪{ε}
for every i < m. Thus, each equation in Σ has a substitution instance which
is a logical consequence of Γ ∪ {ε}. So T is one-based according Theorem 5.

Now suppose that T is term-equivalent to an equational theory T0 which
has ·− and ∗ among its operation symbols and the three equations listed in
the theorem among its equations. Thus, there are definitions for these two
operation symbols in terms of the operation symbols of T . Let T1 be the
resulting definitional extension of T . By the argument above, there is a single
equation s ≈ t that is a base for T1. Then {λ(s) ≈ λ(t)} is a base of T where
λ is the map that eliminates the new operation symbols from terms in favor
of their definitions. 2

To complete the proof of Theorem 4 (ii) we need to show that any equational
theory of rings of the second kind satisfies the hypotheses of Corollary 11. Our
line of reasoning is essentially that of Thomas Green.

PROOF. [Proof of Theorem 4 (ii)] Suppose that T is an equational theory of
rings of the second kind. Because we need only concern ourselves with theories
up to term equivalence, we assume without loss of generality that the standard
ring operation symbols +,−, 0 and · as well as ·− are the operation symbols
of T ; moreover, we suppose that the equation x ·− y ≈ x + (−y) belongs to T .
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Actually, the only properties of rings that we will need are:

x + (y + z) ≈ (x + y) + z

x + y ≈ y + x

x + (−x) ≈ 0

x + 0 ≈ x

x · (y + z) ≈ (x · y) + (x · z)

(x + y) · z ≈ (x · z) + (y · z).

Let ∆ be the set consisting of these equations together with x ·−y ≈ x+(−y).
So this line of reasoning applies to a class of equational theories wider than
the theories of rings of the second kind.

To invoke Corollary 11 we must find a suitable term t and a term p(x, y) in
the two variables x and y which can be used to define ∗. We will take the term
t to be the variable x. So what we need is a term p(x, y) so that the following
equations belong to T :

p(x, 0) ≈ 0

p(0, x) ≈ 0

p(x, x) ≈ x

A monomial is a term built from the product · and variables. A proper
monomial is one that is not a variable. A sum is a term of the form s0 + s1 +
· · · + sm−1 where each si is a monomial or the negation of a monomial. This
sum is proper if all the monomials involved are proper. The term s is a sum
in x provided x is the only variable to occur in s. For each integer k we use kx
to abbreviate x + · · ·+ x︸ ︷︷ ︸

k−times

when k ≥ 0 and to abbreviate −k(−x) when k < 0.

Let I = {k | 0 ≈ kx + s ∈ T for some proper sum s in x}. I is an ideal of the
ring of integers. Since such ideals are principal, let d ≥ 0 be a generator of I.

On the basis of ∆ every equation is equivalent to one of the form

0 ≈ k0x0 + · · ·+ km−1xm−1 + s

where s is a proper sum and x0, . . . , xm−1 are the variables appearing in the
original equation. We say equations in this form are normal and we refer to
k0, . . . , km−1 as coefficients. Because T is of the second kind, it cannot happen
that the coefficients of normal equations in T are always 0. In particular,
I 6= {0} and so d > 0.

Suppose 0 ≈ k0x0 + · · ·+ km−1xm−1 + s is a normal equation belonging to T .
Let i < m. By substituting 0 for xj whenever i 6= j, we see that ki ∈ I. Hence,
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d | ki for all i < m. This means that the cyclic group of order d equipped with
the constantly 0 product is a model of T . Because T is a theory of the second
kind, this model can have only one element. Hence d = 1.

This means that 0 ≈ −x+s ∈ T for some proper sum s in x. Hence s ≈ x ∈ T .
Let p(x, y) result from s changing the leftmost occurrence of x to y in each of
the monomials in s. This term p(x, y) has the required properties. 2

Theorem 5 has another corollary that has particular applications to equational
theories of groups as well as to rings.

Corollary 12 (Tarski) Let T be a finitely based equational theory such that
ε ∈ T and every model of T has a one-element subalgebra. Under these as-
sumptions, T has a base with no more than max{1, n − 1} where n is the
number of operation symbols occurring in T .

PROOF. Because Lemma 7 tells us that x ·− x ≈ y ·− y ∈ T we see that
each model of T has a unique one-element subalgebra whose single element is
denoted by the term x ·− x. If n > 1, let Γ be the set consisting of the n − 1
equations of the form

Q(x ·− x)(x ·− x) . . . (x ·− x) ≈ x ·− x

where Q is an operation symbol other than ·−. If n = 1 (that is, ·− is the only
operation symbol in T ) let Γ = {x ≈ x}. Then Γ ⊆ T . Now let Σ be any
finite base for T . For each equation u ≈ r ∈ Σ let u∗ ≈ r∗ be the result of
substituting x ·− x for each variable in u ≈ r. Evidently Γ ∪ {ε} ` u∗ ≈ r∗ for
every u ≈ r ∈ Σ. So according to Theorem 5, T has a base with no more than
max{1, n− 1} equations. 2

This corollary includes the Theorem of Higman and Neumann according to
which each finitely based equational theory of groups, construed as algebras
with the sole basic operation of right division, is one-based. Moreover, every
finitely based equational theory of groups is one-based provided it is framed
using two operation symbols, one of which is ·−. Of course, every finitely
based equational theory of groups has a definitional extension including the
operation symbol ·−. So every finitely based theory of groups with n operation
symbols has a base with no more than max{1, n} equations. In particular, we
see that each finitely based equational theory of groups using the customary
symbols · and −1 has a base with no more than two equations. This result is
improved by the following theorem due to Thomas C. Green.
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Theorem 13 A finitely based equational theory of groups has a base with
no more than max{1, n − 1} equations, where n is the number of operation
symbols.

PROOF. It does no harm to restrict our attention to a finitely based equa-
tional theory T of groups such that T has at least 2 operation symbols and
T has models with more than one element. We also suppose that ·− and the
constant symbol e do not occur in T .

Let Q0, . . . , Qn−1 be the operation symbols occurring in T . Now T is term
equivalent to a theory T0 in just the symbols ·− and e such that ε, e ≈ z ·− z ∈
T0. We let T1 be a common definitional extension of T and T0. We select terms
t0, . . . , tn−1 built from variables x0, x1, . . . and the operation symbols ·− and e,
and the term d(x, y) built using only the variables x and y and the operation
symbols Q0, . . . , Qn−1 has appropriate definitions. In particular, the following
equations belong to T1:

x ·− y ≈ d(x, y)

Q0x0x1 . . . xr0−1 ≈ t0(x0, x1, . . . , xr0−1)
...

Qn−1x0x1 . . . xrn−1−1 ≈ tn−1(x0, x1, . . . , xrn−1−1)

Here ri denotes the rank of the operation symbol Qi. The only variables to
occur in ti are among x0, . . . , xri−1.

It is convenient to abbreviate various terms. When s and t are terms in which
the variable z does not occur and r is an integer, then

s−1 abbreviates (z ·− z) ·− s

s · t abbreviates s ·− (t−1) = s ·− ((z ·− z) ·− t)

ei abbreviates Qi(z ·− z) . . . (z ·− z)

sr abbreviates



s · · · · · s︸ ︷︷ ︸
r-times

if r > 0

(s · · · · · s︸ ︷︷ ︸
r-times

)−1 if r < 0

z ·− z if r = 0

Let Σ = T0 ∪ {ei · x ≈ x · ei | i < n} ∪ {Qix0 . . . xri−1 ≈ ti · ei | i < n}.
Let Γ = {e ≈ z ·− z}. It is not hard to see that every equation in Σ has a
substitution instance which is a consequence of Γ∪{ε}. For equations from T0

we can substitute e for every variable. For equations of the form ei · x ≈ x · ei

we substitute ei for x, while for equations of the last sort we can substitute
z ·− z for all the xi’s. Lemma 7 helps secure these substitution instances. So it
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follows from Theorem 5 that we can pick a single equation η which is logicially
equivalent to Σ.

By reasoning familiar from elementary group theory, for any term t built from
the variable x and the operation symbols ·− and e there is an integer p such that
t ≈ xp ∈ T0. Pick integers p0, p1, . . . , pn−1 so that tj(x, x, . . . , x) ≈ xpj ∈ T0.

Recall that the term d(x, y) built from the variables x and y and the operations
symbols Qi for i < n serves as a definition of x ·− y. Using the equations
Qix0 . . . xri−1 ≈ ti ·ei we can recursively eliminate the Qi’s from d(x, x) in favor
of ti · ei to obtain a term d̄ built from the variable x, the operation symbols ·−
and e, and the terms ei. In fact η ` d(x, x) ≈ d̄. A careful accounting shows

η ` d(x, x) ≈ x1−m · er0,0

0 · er0,1

1 · · · · · er0,n−1

n−1

where each r0,j is an integer and

m = −
∑
j<n

r0,j(pj − 1).

Now x ·− x ≈ x1−m ∈ T0 by the term equivalence between T and T0. Conse-
quently, xm ≈ x ∈ T0. This means

η ` xm ≈ x.

Since T has a nontrivial model, we know that m 6= 0.

The following lemma from linear algebra was attributed by Thomas Green to
Andrew Ogg.

Lemma 14 Let 〈r0,0, r0,1, . . . , r0,n−1〉 and 〈c0, c1, . . . , cn−1〉 be n-tuples of in-
tegers. There are n× n integer matrices A and R so that

(1) AR = mI, where m =
∑

j<n cjr0,j, and
(2) 〈r0,0, r0,1, . . . , r0,n−1〉 is the top row of the matrix R.

The proof uses the Euclidean algorithm for computing greatest common divi-
sors and some elementary matrix theory. Roughly speaking, the matrix R is
constructed by starting with the following matrix

g 0 0 . . . 0

0 m/g 0 . . . 0

0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1


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where g is the greatest common divisor of 〈r0,0, r0,1, . . . , r0,n−1〉, and reversing
the steps in the Euclidean algorithm, treated as elementary column operations,
to obtain the desired top row. In this way, R will be an integer matrix with
determinant m. The matrix A is the adjoint of R.

The integer ri,j is the (i, j) entry in the matrix R. Let

Ψ = {η} ∪ {e ≈ e
ri,0

0 · eri,1

1 · · · · · eri,n−1

n−1 | i < n}

Now let 〈ai,0, . . . , ai,n−1〉 be the i-th row of A and let j < n. Then

ai,0r0,j + ai,1r1,j + · · ·+ ai,n−1rn−1,j =

m if i = j

0 if i 6= j

Relying on the equations ei · x ≈ x · ei and familiar group theory we obtain
the following consequences of Ψ:

eai,0 ≈ e
ai,0r0,0

0 · eai,0r0,1

1 · · · · · eai,0r0,n−1

n−1

eai,1 ≈ e
ai,1r1,0

0 · eai,1r1,1

1 · · · · · eai,1r1,n−1

n−1

...

eai,n−1 ≈ e
ai,n−1rn−1,0

0 · eai,n−1rn−1,1

1 · · · · · eai,n−1rn−1,n−1

n−1

Again with the help of the equations ei ·x ≈ x ·ei and ek ≈ e for all k we can in
essence multiply these equations vertically to obtain the following consequence
of Ψ:

e ≈ em
i

for each i < n. But Ψ ` xm ≈ x. This means that Ψ ` e ≈ ei for each i < n.
Since Ψ ` Qix0x1 . . . xri−1 ≈ ti · ei, consequently,

Ψ ` T0 ∪ {Qix0x1 . . . xri−1 ≈ ti | i < n}.

This means that Ψ is a base for T1.

Now we make a small adjustment in Ψ. Let

∆ = {η} ∪ {d(x, y) ≈ x ·− y} ∪ {e ≈ e
ri,0

0 · eri,1

1 · · · · · eri,n−1

n−1 | 1 ≤ i < n}

To see that ∆ is also a base for T1 we need only derive the equation

e ≈ e
r0,0

0 · er0,1

1 · · · · · er0,n−1

n−1 .

We have already noted the following consequences of η
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d(x, x) ≈ x1−m · er0,0

0 · er0,1

1 · · · · · er0,n−1

n−1

x ·− x ≈ x1−m

So using d(x, x) ≈ x ·− x we get

x ·− x ≈ (x ·− x) · er0,0

0 · er0,1

1 · · · · · er0,n−1

n−1

this gives immediately

e ≈ e
r0,0

0 · er0,1

1 · · · · · er0,n−1

n−1

So ∆ is a base for T1 and ∆ has cardinality n + 1. Now using the equation
d(x, y) ≈ x ·− y we can eliminate ·− from ∆ to obtain the set ∆′, which will
have just n equations (since we can drop the tautology d(x, y) ≈ d(x, y)).
Now we use one of the equations in ∆′ as a definition of e. Eliminating e from
∆′ results in the desired base of T with n − 1 equations (since we can drop
another tautology). 2

To tackle the proof of Theorem 4 (i) we need to prove an analog of Theorem 13.

Theorem 15 A finitely based equational theory of rings has a base with no
more than max{1, n−1} equations, where n is the number of operation symbols.

PROOF. The proof given above for Theorem 13 needs to be modified at
several points. This time we assume that ·− and · do not occur in T and we
take T0 to be term equivalent to T in just the symbols ·− and ·. As before
the equational theory T1 is the common definitional extension of T and T0.
We select terms t0, . . . , tn−1 built from variables x0, x1, . . . and the operation
symbols ·− and ·, and terms d(x, y) and p(x, y) built using only the variables
x and y and the operation symbols Q0, . . . , Qn−1 has appropriate definitions.
In particular, the following equations belong to T1:

x ·− y ≈ d(x, y)

x · y ≈ p(x, y)

Q0x0x1 . . . xr0−1 ≈ t0(x0, x1, . . . , xr0−1)
...

Qn−1x0x1 . . . xrn−1−1 ≈ tn−1(x0, x1, . . . , xrn−1−1)

Here ri denotes the rank of the operation symbol Qi. The only variables to
occur in ti are among x0, . . . , xri−1.
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It is convenient to abbreviate various terms. When s and t are terms in which
the variable z does not occur and r is an integer, then

−s abbreviates (z ·− z) ·− s

s + t abbreviates s ·− (t−1) = s ·− ((z ·− z) ·− t)

ei abbreviates Qi(z ·− z) . . . (z ·− z)

rs abbreviates



s + · · ·+ s︸ ︷︷ ︸
r-times

if r > 0

−(s + · · ·+ s︸ ︷︷ ︸
r-times

) if r < 0

z ·− z if r = 0

Let Σ = T0∪{ei ·x ≈ z ·−z | i < n}∪{x ·ei ≈ z ·−z | i < n}∪{Qix0 . . . xri−1 ≈
ti + ei | i < n}. Now T0 fulfills the conditions of Corollary 12 so we can pick
a single equation γ which is a base for T0. Among the consequences of γ we
find:

ε

x · (z ·− z) ≈ z ·− z

(z ·− z) · z ≈ z ·− z

As a consequence of Theorem 5, taking Γ = {γ} we find that there is a single
equation η which is logically equivalent with Σ.

Observe that any term built using just ·− and · and variables can be recast,
using η, in the form a0x0 + · · · + a`−1x`−1 + s where s is a proper sum and
a0, . . . , a`−1 are integers. In particular, we pick integers pi and proper sums si

so that
η ` ti(x, x, . . . , x) ≈ pix + si

As in the proof of Theorem 13 this leads to integers r0,0, . . . , r0,n−1 and a
proper sum s(x) so that

η ` d(x, x) ≈ (1−m)x + s + r0,0e0 + · · ·+ r0,n−1en−1

m = −
∑
j<n

r0,j(pj − 1)

η ` mx ≈ x + s

We can obtain integers ri,j as in the previous proof. We take

Ψ = {η} ∪ {z ·− z ≈ ri,0e0 + · · ·+ ri,n−1en−1 | i < n}

Among the consequences of Ψ we find z ·− z ≈ mei for each i as well as
mx ≈ x + s(x) and z ·− z ≈ s(ei). This means Ψ ` z ·− z ≈ ei for each i < n.
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Hence Ψ is a base for T1. Finally, we take ∆ to be the union of the following
three sets of equations:

{η}
{x ·− y ≈ d(x, y)}

{x · y ≈ p(x, y) ·− p(z ·− z, z ·− z) + ri,0e0 + · · ·+ ri,n−1en−1 | 1 ≤ i < n}

Notice that each equation in the latter set, with the help of η, entails z ·− z ≈
ri,0e0 + · · ·+ ri,n−1en−1.

The rest of this proof is accomplished in the same manner that the proof of
Theorem 13 is concluded. 2

At this point we have in hand bases of all the cardinalities required in The-
orems 3 and 4. So we turn to the task of demonstrating the nonexistence of
smaller bases, has required by Theorem 3 and Theorem 4 (i).

Lemma 16 (Thomas Green) Let T be a finitely based equational theory of
groups such that T has a model with more than one element. Assume that
the operation symbols of T are ·− and the n constant symbols e0, . . . , en−1 all
denoting the identity element. Under these assumptions, T has no base with
fewer than n equations.

PROOF. Let G be a finite Abelian group with more than one element which
is a model of T . (In fact, we could even choose G to be cyclic.) So G =
〈G, ·−, 0, . . . , 0〉 where we can construe ·− as subtraction. As above we take
x + y as an abbreviation from the term x ·− ((z ·− z) ·− y).

Let r = 〈r0, . . . , rn−1〉 be an n-tuple of elements of G. Let Gr be the algebra
〈G, ·−, r0, . . . , rn−1〉. So Gr is a model of T if and only if r = 〈0, . . . , 0〉.

Just using the properties of Abelian groups we know that every equation s ≈ t
in the operation symbols ·−, e0, . . . , en−1 is equivalent to one of the form

z ·− z ≈ a0e0 + · · ·+ an−1en−1 + b0x0 + · · ·+ bm−1xk−1

where a0, . . . , an−1, b0, . . . , bk−1 are certain integers and x0, . . . , xm−1 are the
variables that occur in s ≈ t.

Now suppose z ·− z ≈ a0e0 + · · ·+ an−1en−1 + b0x0 + · · ·+ bk−1xk−1 ∈ T . Then
z ·− z ≈ b0x0 + · · · + bk−1xk−1 ∈ T . Since none of the ei’s occurs in this last
equation, we see that Gr is a model of z ·− z ≈ b0x0 + · · · + bk−1xk−1 ∈ T ,
regardlesss of the choice of r.
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So for s ≈ t ∈ T , we find that Gr is a model of s ≈ t if and only if 0 =
a0r0+a1r1+· · ·+an−1rn−1 where integer multiples stand for repeated additions
and all the additions are carried out in the sense of 〈G, ·−〉.

Now, for the sake of contradiction, suppose that Σ is a base for T and that
|Σ| = m < n. As above, each equation in Σ is associated wtih an n-tuple of
integers. These m n-tuples can be organized into an m× n matrix

A =



a0,0 a0,1 . . . a0,n−1

a1,0 a1,1 . . . a1,n−1

...
...

. . .
...

am−1,0 am−1,1 . . . am−1,n−1



Taking r as a column vector and letting 0 denote the column vector of 0’s we
find

Gr is a model of Σ if and only if Ar = 0

where the additions in the matrix multiplication are carried out in 〈G, ·−〉. But
since Σ is a base for T this means

r = 0 if and only if Ar = 0.

But multplication by A gives a function from Gn into Gm. Since the finite set
Gn is larger than the finite set Gm, this function must fail to be one-to-one. So
there must be an n-tuple r 6= 0 so that Ar = 0. This is a contradiction. 2

With the help of this lemma and Theorem 13 we can complete the proof of
Theorem 3.

PROOF. [Proof of Theorem 3] Let T be a finitely based theory of groups in
n operation symbols such that T has a model with more than one element.
All that remains in to prove that if n > 1, then T has no base with fewer
than n − 1 elements. Without loss of generality, we assume that the symbol
·− does not occur in T . Let d(x, y) be a term in the symbols of T that can
define difference/division. Let T ′ be the definitional extension of T based on
T ∪ {x ·− y ≈ d(x, y)}. Then T ′ is an equational theory using n + 1 operation
symbols. Suppose for the moment that we know that every base of T ′ has
cardinality at least n. Let Σ we any base for T . Then Σ∪ {x ·− y ≈ d(x, y)} is
a base for T ′. Hence n ≤ |Σ|+ 1. This means that n− 1 ≤ |Σ|, as desired. It
remains to argue that every base of T ′ has cardinality at least n.

Take Q0, Q1, . . . , Qn−1 to be the operation symbols that occur in T and take
e0, e1, . . . , en−1 to be constant symbols not occuring in T . We consider three
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equational theories which are term equivalent to T :

T ′ with operation symbols ·−, Q0, . . . , Qn−1

T ′
1 with operation symbols ·−

T ′
2 with operation symbols ·−, Q0, . . . , Qn−1, e0, . . . , en−1

T ′
3 with operation symbols ·−, e0, . . . , en−1

Observe that T ′
2 is based on T ′ ∪ {z ·− z ≈ ei | i < n}. Now pick n terms

t0, . . . , tn−1 built up from variables with only the help of ·− and such that
Qix0x1 . . . xri−1 ≈ ti ∈ T ′ for each i < n. Let

∆ = {Qix0 . . . xri−1 ≈ ti ·− ei | i < n}.

To see that T ′ ∪∆ is a base for T ′
2 we only need to derive z ·− z ≈ ei for each

i < n. Here is how. The equation ti ≈ ti ·− ei is immediate from the last few
lines. Next ε holds since T ′

1 is a theory of groups. So ti ·− (z ·− z) ≈ ti ·− ei

follows from Lemma 7. So from the Cancellation Lemma we obtain z ·− z ≈ ei

as desried.

Now let Σ be any base for T ′. Then Σ ∪ ∆ is a base for T ′
2. Now use the

equations in ∆ to eliminate the symbols Q0, . . . , Qn−1, obtaining a set Σ′ of
equations in ·− and e0, . . . , en−1. This set Σ′ is a base of T ′

3 and |Σ′| ≤ |Σ|. But
by Lemma 16 we know that n ≤ |Σ′|. So Σ has no fewer than n equations. 2

We are now in a position to complete the proof of Theorem 4 (i).

PROOF. [The proof of Theorem 4 (i) ] Suppose that T is a finitely based
equational theory of rings so that T is of the first kind. Let n be the number
of operation symbols occurring in T . We already know that T has a base
consisting of n − 1 equations according to Theorem 15. We argue here that
every base of T has at least n− 1 equations.

Without loss of generality, we suppose that the operation symbols ·− and · do
not occur in T .

Let Σ be a base for T . Pick terms d(x, y) and p(x, y) built from the operations
of T and the variables x and y so that d(x, y) denotes the ring difference and
p(x, y) denotes the ring product in every model of T . Let T ′ be the equational
theory based on Σ ∪ {x ·− y ≈ d(x, y), x · y ≈ p(x, y)}. So T ′ is a definitional
extension of T and all the operations of T can be defined by terms in ·− and
·. Also T ′ is an equational theory of the first kind. Let T ′′ be the equational
theory based on Σ∪ {x ·− y ≈ d(x, y), x · y ≈ p(x, y), x · y ≈ z ·− z}. Since T ′ is
an equational theory of the first kind, we know that T ′′ has a model with more
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than one element. But observe that T ′′ is a finitely based equational theory of
groups since all the operations can be defined using only terms built from the
group operation ·− and variables.

Claim 17 The set Σ ∪ {x ·− y ≈ d(x, y), x · z ≈ p(x, y)} is a base for T ′′.

PROOF. The equation x · z ≈ p(x, y) is a consequence of x · y ≈ p(x, y)
and x · y ≈ z ·− z. It is also evident that x · y ≈ p(x, y) is a consequence of
x · z ≈ p(x, y). It remains only to show that x · y ≈ z ·− z is a consequence
of Σ ∪ {x ·− y ≈ d(x, y), x · z ≈ p(x, y)}. Now in any ring x · (z ·− z) ≈ z ·− z.
Using this equation and x · (z ·− z) ≈ p(x, y), which is a substitution instance
of x · z ≈ p(x, y), we obtain z ·− z ≈ p(x, y). But we have the consequence
x · y ≈ p(x, y). So symmetry and transitivity yield x · y ≈ z ·− z. 2

T ′′ is an equational theory of groups in n + 2 operation symbols and it has a
model with more than one element. By Theorem 3 any base of T ′′ must have
at least n + 1 equations. This means Σ∪ {d(x, y) ≈ x ·− y, x · z ≈ p(x, y)} has
at least n + 1 elements. Therefore |Σ| ≥ n− 1, as desired. 2
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