
Solutions to Unique Readability Homework Set

30 August 2011

In the problems below L is a signature and X is a set of variables.

Problem 0.
Define a function λ from the set of finite nonempty sequences of elements of X ∪ L into the
integers as follows:

λ(w) =


−1 if w ∈ X,
r − 1 if w is an operation symbol of rank r,∑

i<n λ(ui) if w = u0u1 . . . un−1 where ui ∈ X ∪ L and n > 1.

Prove that w is a term if and only if λ(w) = −1 and λ(v) ≥ 0 for every nonempty proper
initial segment v of w.

Solution
Let us first tackle the implication from left to right. We will prove, by induction on the complexity
of terms w that

λ(w) = −1 and λ(v) ≥ 0 for every nonempty proper initial segment v of w

For the base step of the induction, w either belongs to X or it is an operation symbol of rank
0. In either case, λ(w) = −1. Also, w has no nonempty proper initial segments, so the second
requirement holds vacuuously.

For the inductive step we have w = Qt0 . . . tr−1, where r > 0 is the rank of the operation
symbol Q and t0, . . . , tr−1 are terms less complex than w. By the definition of λ and the induction
hypothesis, we have

λ(w) = (r − 1) +
∑
k<r

λ(tk) = (r − 1) +
∑
k<r

−1 = (r − 1) + (−1)r = −1.

This gets us the first requirement. We prove the second requirement by induction on the length
of the nonempty proper initial segment v. The base step of this induction is v = Q. In this
case, λ(v) = r − 1 ≥ 0. The induction step has two cases. In the first, v = Qt0 . . . tk−1, where
k < r. In the case, λ(v) = (r − 1) + (−1)k = (r − k) − 1 ≥ O. The second case is that
v = Qt0 . . . tk−2u where u is a nonempty proper initial segment of tk−1. So we know k ≤ r. In
this case,

λ(v) = (r − 1) + (−1)(k − 1) + λ(u) = (r − k) + λ(u).

Since u is a nonempty proper initial segment of tk−1 and tk−1 is less complex than w, our induction
hypothesis yields that λ(u) ≥ 0. So λ(v) ≥ 0, as desired. This completes the second induction
and secures the left-to-right implication in the problem.

For the right-to-left implication, let

W := {w |w is a finite nonempty sequence of elements of X ∪ L so that

λ(w) = −1 and λ(v) ≥ 0 for all nonempty proper initial segments v of w}
We want to show that everything in W is a term. Pick w ∈ W .
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If w has length 1 then w is a term since λ(w) = −1 and the only symbols with this value
are the variables and the operation symbols of rank 0. These are terms. If w is longer then the
leftmost symbol in w must have a nonnegative λ, making it an operation symbol of positive rank.

Claim
If Q is an operation symbol of positive rank occurring in w, then the final segment
of w starting at Q (and going rightward to the end) is a sequence of terms.

To see this, consider the leftmost occurrence of such a Q and let r be its rank. So w = AQB,
where A and B are strings of symbols. Observe that B must be a string consisting of symbols
that are either variables or operation symbols of rank 0. Then −1 = λ(w) = λ(A)+(r−1)−|B|.
Hence, |B| = r + λ(A) ≥ r. Let B = CD where |C| = r. Then D is a sequence, possibly
empty, of terms and QC is a term. This means QB is a sequence of terms. This was secretly
the first step of a process. The idea is now to find the next operation symbol of positive rank
to the left of Q and continue. The general situation is w = AQBs0 . . . sm−1, where the sj’s are
terms and Q is the first operation symbol of positive rank to the left of s0. This means that B
is either empty or it is a string of variables and/or operation symbols of rank 0. This gives

−1 = λ(w) = λ(A) + (r − 1)− |B| −m.

So |B|+m = r+λ(A) ≥ r. This means that Bs0 . . . sm−1 is a sequence of at least r terms. So
once again QBs0 . . . sm−1 is a sequence of terms. So we can continue all the way to the leftmost
symbol, which is an operation symbol of positive rank. This means w is a sequence of terms. So
w = s0 . . . sm−1 for some terms s0, . . . , sm−1.

−1 = λ(w) = λ(s0) + · · ·+ λ(sm−1)

−1 = −m
1 = m

So we find that w is a sequence of one term, another way of saying that w is a term.

Problem 1.
Let w = u0u1 . . . un−1, where ui ∈ X ∪ L for all i < n. Prove that if λ(w) = −1, then there
is a unique cyclic variant ŵ = uiui+1 . . . un−1u0 . . . ui−1 of w that is a term.

Solution
Pick k0 < n as small as possible so that λ(u0 . . . uk0−1) = −1. This is possible since at each step
the value of λ can decrease by at most 1 and we are assured that λ(w) = −1. So u0 . . . uk0−1
is a term according to Problem 0. Now begin at uk0 and move rightward until the value of λ is
−1. In this way we decompose w into a sequence of terms and a final segment:

w = s0s1 . . . sm−1B

so that all the initial segments of B have nonnegative λ’s. Because −1 = λ(w) = −m + λ(B)
we see that λ(B) = m − 1. But then Bs0s1 . . . sm1 is a cyclic variant of w and the λ values
of all the proper initial segments of this variant are nonnegative. So it is a term according to
Problem 0.
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To see the uniqueness, suppose t is a term. Let t = uv where neither of the strings u and v
are empty. Then λ(u) ≥ 0 and λ(v) = −1− λ(u). It follows that vu cannot be a term since it
has a proper initial segment with a negative λ. So no proper cyclic variant of a term is a term.

Problem 2.
Prove that if w is a term and w′ is a proper initial segment of w, then w′ is not a term.

Solution
Proper initial segments of terms must have nonnegative λ values but terms must have λ value
−1.

Problem 3.
Let T be the term algebra of L over X. Prove

IfQ and P are operation symbols, and PT(p0, p1, . . . , pn−1) = QT(q0, q1, . . . , qm−1),
then P = Q, n = m, and pi = qi for all i < n.

Solution
According to the hypotheses of the implication, Pp0 . . . pn−1 = Qq0 . . . qm−1. So P = Q since
these are the leftmost symbols in the strings. We also see that n = m since these are the ranks
of the operation symbols. Next, we see that either the term p0 is an initial segment of the term
q0 or that q0 is an initial segment of p0. Since proper initial segments of terms are not terms,
this mean p0 = q0. But now the same reasoning applies to p1 and q1. Moving rightward a step
at a time, we see that pi = qi for each i < n.

Solutions for the First Compactness Problem Set

22 September 2011

Problem 4.
Let L be the signature for group theory with operation symbols ·,−1 , and 1. Let T be a set
of L-sentences which includes all the group axioms (so every model of T will be a group).
Suppose that for each n, there is a model of T which has no elements, other than 1, of order
smaller than n. Prove that there is a model of T such that 1 is the only element of finite
order.

Solution
For each natural number n > 1 let ϕn be an L-sentence expressing the notion that every element
other than 1 has order larger than n. Here is one sentence that will serve for ϕ4:

∀x[¬x ≈ 1→ (¬x2 ≈ 1 ∧ ¬x3 ≈ 1 ∧ ¬x4 ≈ 1)]
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Now let Σ = {ϕn | n > 1}. Now T ∪ Γ has a model whenever Γ is a finite subset of Σ. (This is
just what we have assumed about T .) By the Compactness Theorem T ∪ Σ has a model. But
all the sentences in Σ, taken together, assert that each element other than 1 cannot have a finite
order. So any model of T ∪ Σ will serve our need.

Problem 5.
Suppose that G is a group which has elements of arbitrarily large finite order. Prove that G
is elementarily equivalent to a group with an element of infinite order.

Solution
Let T be the elementary theory of G. So any model of T will be elementarily equivalent to G.
Expand the signature by adjoining one new constant symbol c. For each natural number n > 1,
let ϕn(c) express the notion that the element named by c has order larger than n. Here is a
sentence which will serve as ϕ4(c):

¬c2 ≈ 1 ∧ ¬c3 ≈ 1 ∧ ¬c4 ≈ 1

Let Σ = {ϕn(c) | n > 1}. Then T ∪ Γ has a model (indeed, we can just expand G by naming
an element of large enough finite order) whenever Γ is a finite subset of Σ. By the Compactness
Theorem we know that T ∪Σ has a model. Now the sentences in Σ, taken together, assert that
the element named by c is not of finite order. So the reduct to the signature of group theory of
any model of T ∪Σ will be a group elementarily equivalent to G and which has an element (the
one named by c in the expanded signature) which is of infinite order.

Problem 6.
Let 〈N,+, ·, 0, 1,≤〉 be the familiar structure consisting of the natural numbers equipped
with addition, multiplication, the two distinguished elements 0 and 1, and the usual order
relation. Let T consist of all the sentences true in 〈N,+, ·, 0, 1,≤〉. Prove T has a model M
with an element ω so that all the following are true in M:

0 ≤ ω, 1 ≤ ω, 2 ≤ ω, . . . .

Solution
Such a nonstandard model of arithmetic can be obtained in a number of ways. Perhaps the
quickest is to invoke the Upward Löwenhein-Skolem-Tarski Theorem. This gives an uncountable
elementary extension M of the structure N = 〈N,+, ·, 0, 1,≤〉. Evidently, M |= T . Among
the sentences in T one finds those expressing that 0 names the least element, that ≤ is a linear
ordering, and that for each x there are no elements properly between x and x + 1. Now the
elements of M named by 0, 1, 1+1, 1+1+1, . . . will constitute an initial segment of the ordering
of M (as we shall see shortly). This list is countable. Since M is uncountable there must be an
element ω of M which is not listed. It cannot come before the element named by 0, nor can it
fall between the element named by n and that named by n + 1. So the only alternative is that
it comes after all the listed elements.

We can also obtain this result by following the ideas used to solve Problem 1. Namely,
expand the signature with a new constant symbol c (for naming our pathological element).
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Let θn(c) be the sentence n ≤ c. Here we understand n to be the correct term of the form
(. . . (((1 + 1) + 1) . . . ) + 1) + 1. Let Σ = {θn(c) | n ≥ 0}. Then once more argue that T ∪ Σ
has a model. In that model take ω to be the element named by c.

Problem 7.
Let L be the signature of rings. Find a set Σ of L-sentences such that Mod Σ is the class of
algebraically closed fields. Then prove that there is no finite set of L-sentences which will
serve the same purpose.

Solution
A field K is algebraically closed provided every polynomial in one variable of positive degree with
coefficients from K—that is the every member of K[x] of postive degree—has a root in K. In
essence, there is a finite set of sentences which capture the notion of a field in the obvious way.
This finite set is then supplemented by an infinite list of sentences of the form ϕn:

∀y0y1 . . . yn−1∃x[xn + yn−1x
n−1 + · · ·+ y1x+ y0 = 0]

The sentence displayed above asserts that every (monic) polynomial of degree n has a root. The
set Σ consists of the field axioms and the sentences ϕn for each n > 0. So Σ is a countably
infinite set of sentences.

Suppose there were a finite set Γ of sentences serving the same purpose. So Σ and Γ are
logically equivalent—they have the same models. Then Σ |= Γ and Γ |= Σ. By a corollary of the
Compactness Theorem, there is a finite set ∆ ⊂ Σ so that ∆ |= Γ. This entails that ∆ |= Σ,
since Γ |= Σ. But plainly, Σ |= ∆ since ∆ is a subset of Σ. This means that if some finite set Γ
serves to axiomatize the class of algebraically closed fields, then some finite subset ∆ of Σ itself
would work as well. To show that this is impossible what we need is the following claim.

Claim
For arbitrarily large natural numbers n there is a field K which is not algebraically closed
but such that every polynomial of positive degree no more than n and with coefficients in
K has a root in K.

This claim is an exercise in the theory of fields. I will sketch a construction, leaving aside
the demonstration of those points which can be regarded as well-known (to those who know
something of fields. . . ). First, here is some notation and the Key Facts from the theory of fields
that I will use. Suppose F is a field and L and M are subfields of F . The field F can be construed
as a vector space over the field M . The dimension of F as a vector space over M is denoted
by [F : M ]. If a ∈ F then L(a) denotes the smallest subfield of F containing L ∪ {a}. We use
L∨M to denote the smallest subfield of F that contains L∪M . We use L ≤M to denote that
L is a subfield of M and e use L[x] to denote the ring of polynomials with coeffecients from L.

Here are the Key Facts:

Key Fact
If L ≤M ≤ F , then [F : L] = [F : M ][M : L].

Key Fact
If S, T and M are subfields of F with S ≤ T , then [T ∨M : S ∨M ] ≤ [T : S].

5



Key Fact
Suppose L is a subfield of the field F and a ∈ F is a root of an irreducible polynomial in L[x]
with degree r. Then [L(a) : L] = r. Consequently, if a is a root of q(x) ∈ L[x] (irreducible
or not), then [L(a) : L] is less than or equal to the degree of q(x).

Key Fact
Suppose L is a subfield of the field F and a ∈ F . If [F : L] is finite, then a is the root of an
irreducible polynomial in L[x].

The construction I have in mind happens within the field of complex numbers. Let n be a
postive integer. Call a subfield L of C n-algebraically closed provided every polynomial in
L[x] with positive degree no greater than n has a root in L. So what we are looking for is a
subfield K which is n-algebraically closed but is not algebraically closed. Let K be the set of all
n-algebraically closed subfields of C. Observe that C ∈ K, so we know that K is not empty. Let
K =

⋂
K. It is straightforward to check that K is the smallest n-algebraically closed subfield of

C. This is the field we want.
It remains only to show that K is not algebraically closed. For this purpose, rather than the

“shrinkwrapped” description of K given above, we use one that builds K up from the inside.
We start with the field Q of rational numbers and add roots of polynomials of degree no larger

than n. We do this as much as possible to get K. Here are the details. We will say that a
subfield L of the complex numbers is reachable provided there is a finite sequence of subfields
L0 ≤ · · · ≤ Lm so that

• L0 = Q and Lm = L, and
• [Li+1 : Li] ≤ n for all i < m.

Let R be the set of reachable subfields of C.
Suppose that L and M are reachable subfields of C with the sequences L0 ≤ · · · ≤ Lm and

M0 ≤ · · · ≤Mr witnessing the reachability. Then our Key Facts tell us that the sequence

M0 ≤ · · · ≤Mr = M ≤M ∨ L0 ≤M ∨ L1 ≤ · · · ≤M ∨ Lm = M ∨ L
witnesses that M ∨ L is also reachable. This means that R is upward directed by the subfield
relation. So

⋃
R is also a subfield of C. Call it K ′. An easy application of one of the Key Facts

reveals that K ′ is n-algebraically closed. So K ≤ K ′. On the other hand, our Key Facts also
reveal that each reachable subfield must be a subfield of K. So K = K ′ =

⋃
R.

To show that K is not algebraically closed, we must find a polynomial over K which has no root
in K. We give this polynomial explicitly. Let p be a prime number larger than n. By Eisenstein’s
Criterion, the polynomial xp − 2 is irreducible over Q. Since the rationals are contained in K,
this is also a polynomial over K. We will show that K contains no root of this polynomial.

Why did I pick this polynomial? One of the Key Facts asserts that if r is a complex number
which is a root of this polynomial, then [Q(r) : Q] = p. On the other hand, p cannot divide any
positive integer less than or equal to n.

Let a ∈ K. So we can find subfields Q = L0 ≤ L1 ≤ · · · ≤ Lm so that a ∈ Lm and
[Li+1 : L1] ≤ n for all i < m.

So now we observe

[Lm : Q] = [Lm : Lm−1][Lm−1 : Lm−2] · · · [L2 : L1][L1 : L0]

The factors occurring on the right are each no greater than n. This means the prime factors of
the dimension on the left all have to be less than or equal to n. But now, since Q ≤ Q(a) ≤ Lm,
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we see that [Q(a) : Q] is a divisor of [Lm : Q]. So the prime factors of [Q(a) : Q] must all be less
than or equal to n. Since p is a prime larger than n, we see that a cannot be a root of xp − 2.
This means that K is not algebraically closed, as desired.

There are two remarks I would like to add. First, this argument is very similar to the standard
argument that there is no straightedge-and-compass method for trisecting angles. Second, I
worked inside of the field of complex numbers to make the exposition a bit simpler. Actually,
this argument can be carried out without reference to such an ambient algebraically closed field.
One point needs some adjustment if the smallest field L0 that came up is not chosen to be
the rationals. Any field will serve as L0 provided L0[x] has irreducible polynomials for arbitrarily
large prime degree. I used Eisenstein’s Criterion above to establish this for the field of rational
numbers. This property does not always hold. For example C[x] only has irreducible polynomials
of degree 1 and R[x] has no irreducible polynomials of degree greater than 2. On the other hand,
it is a standard exercise in field theory to show that if F is any finite field, then in F [x] there
are irreducible polynomials of every positive degree. So any finite field would work for L0 in the
construction above.
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Problem 8.
Let L be the signature of ordered sets. Prove that there is no set Σ of L-sentences such that
Mod Σ is the class of all well-ordered sets.

Solution
We take < to be the relation symbol in the signature L. We intend to show that there is no set Σ
of L-sentences so that the models of Σ are exactly the sets equipped with a strict well-ordering.
So suppose that Σ is a set of L-sentences such that every well-ordered set is a model of Σ.
We aim to produce a model of Σ which is not a well ordered set. So we make a model with a
nonempty set that has no least element. Our paradigm is the set of nonpositive integers. So we
expand the language by adding countably many new constants c0, c−1, c−2, . . . . Let ψn be the
sentence c−n−1 < c−n. Let Ψ = {ψn | n ≥ 0}. Notice that Σ ∪ Φ has a model whenever Φ
is a finite subset of Ψ. For example, the natural numbers with their usual ordering is a model
of Σ which has arbitrarily long finite chains, so it is easy to name elements so that everything
is Φ will be true. By the Compactness Theorem, Σ ∪ Ψ has a model. In this model, the set of
elements named by the new constants is nonempty but has no least element. This means Σ has
a model which is not a well ordered set. Thus Σ does not constitute a set of elementary acioms
for the notion of well ordering. In short, there is no set of elementary axioms for the notion of
well ordering.

Solutions: Second Problem Set About the Compactness Theorem

18 October 2011

Problem 9.
Let L be a signature and K be a class of L-structures. We say that K is axiomatizable
provided K = Mod Σ for some set Σ and L-sentences. K is finitely axiomatizable provided
there is a finite such Σ. Prove that K is finitely axiomatizable if and only if both K and
{A | A is an L-structure and A /∈ K} are axiomatizable.

Solution
First suppose that K is finitely axiomatizable. Then it is axiomatizable by some single sentence σ.
(This σ can be just the conjunction of some finite set of sentences axiomatizing K.) Then, as eas-
ily checked, the sentence ¬σ axiomatizes {A | A is an L-structure and A /∈ K}, the complement
of K. Thus both K and its complement are axiomatizable (and even finitely axiomatizable).

For the converse, suppose Σ axiomatizes K and ∆ axiomatizes its complement. Then Σ ∪∆
can have no models, since no structure can belong to both K and to its complement. So by
the Compactness Theorem, there is a finite Σ′ ⊆ Σ and a finite ∆′ ⊆ ∆ so that Σ′ ∪ ∆′

has no model. This means that Mod Σ′ and Mod ∆′ are disjoint classes of L-structures. But
Mod Σ ⊆ Mod Σ′ and Mod ∆ ⊆ Mod ∆′ and Mod Σ ∪Mod ∆ is the class of all L-structures.
This forces Mod Σ = Mod Σ′ (and Mod ∆ = Mod ∆′). Thus K is finitely axiomatizable (as is
its complement).
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Problem 10.
Show that the class of fields of finite characteristic is not axiomatizable.

Solution
Let χp be the sentence

¬(1 + · · ·+ 1︸ ︷︷ ︸
p−times

≈ 0).

Let Γ be the set of all sentences which are true in every field of finite characteristic. If any set
axiomatizes the class of field of finite characteristic, then the set Γ must also axiomatize this
class.

We contend that Γ ∪ {χp | p is and prime number} has a model. To see this, by the Com-
pactness Theorem it is enough to see that Γ ∪ {χp | p < n and p is prime} has a model for
each natural number n. But this is easy. Let r > n be prime. Then the field Zr is a model of
Γ ∪ {χp | p < n and p is prime}.

Now any field which is a model of χp for all primes p is a field of characteristic 0. So Γ must
have a model which is of characteristic 0. Hence, Γ does not axiomatize the class of fields of
finite characteristic.

Problem 11.
Show that the class of fields of characteristic 0 is not finitely axiomatizable.

Solution
Let φ be a sentence which axiomatizes the theory of fields and let χp be the sentences defined
in the solution to Problem 6. Then {φ} ∪ {χp | p is a prime number } axiomatizes the class of
fields of characteristic 0. (This is just a formalization of the standard definition.). Let ∆ be any
finite set of sentences true in every field of characteristic O. Then

{φ} ∪ {χp | p is a prime number} |= ∆

and, since ∆ is finite, the Compactness Theorem entails that

{φ} ∪ {χp | p is a prime number and p < n} |= ∆

for some natural number n. Let r be any prime larger than n. Then Zr |= {φ} ∪ {χp |
p is a prime number and p < n}. So also Zr |= ∆. Hence ∆ has a model which is not of
characteristic 0. This means ∆ cannot axiomatize the class of fields of characteristic 0. So this
class has no finite axiom set.

Note: It is possible to use Problem 5 to help with the solutions to Problem 6 and Problem
7. Here is one way. With Problem 7 in hand we prove Problem 6 with the help of Problem
5. Suppose to the contrary that ∆ axiomatizes the class of fields of finite characteristic. Then
{φ → δ | δ ∈ ∆} axiomatizes the complement of the class of fields of characteristic 0 (notice
that there are structures in this complement which are not fields. . . ). In Problem 7, we saw that
the class of fields of characteristic 0 is axiomatizable as well. By Problem 5 we would get that
the class of fields of characteristic 0 is finitely axiomatizable. But in Problem 7 we proved it was
not. So there can be no such ∆.
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Problem 12.
Let θ be any sentence in the signature of fields. Prove that if θ is true in every field
of characteristic 0, then there is a natural number n so that θ is true in every field of
characteristic p for all primes p > n.

Solution
Let the sentence φ axiomatize the theory of fields and let χp be the sentence described in the solu-
tion to Problem 6. So we know {φ}∪ {χp | p is a prime number } axiomatizes the class of fields
of characteristic 0. Hence {φ}∪{χp | p is a prime number } |= θ. By the Compactness Theorem
there is some natural number n so that {φ} ∪ {χp | p is a prime number and p < n} |= θ. Now
any field of characteristic r where r > n is a model of {φ}∪{χp | p is a prime number and p < n}
and so it is also a model of θ, as desired.
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Problem 13.
Let L be a signature and for each natural number n suppose that Tn is a set of L-sentences
closed with respect to logical consequence. Further, suppose that T0 ⊂ T1 ⊂ T2 ⊂ . . . is
strictly increasing. Let T =

⋃
n∈ω Tn. Prove that

(1) T has a model.
(2) T is closed under logical consequence.
(3) T is not finitely axiomatizable.

Solution
First we contend that Tn has a model for each n. Since Tn is a proper subset of Tn+1 pick
σn ∈ Tn+1 with σn /∈ Tn. Since Tn is closed under logical consequence we see that Tn 6|= σn.
This means that Tn has a model in which σn is false. But in particular, Tn has amodel.

To see that T has a model we show that each finite subset ∆ of T has a model and then
appeal to the Compactness Theorem. Since ∆ ⊆ T =

⋃
n∈ω Tn we see that ∆ ⊆ Tn for some

natural number n, because ∆ is finite and the Tk’s form an ascending chain. Since Tn has a
model we see that ∆ has a model (the same one).

Now suppose that T |= θ. By the Compactness Theorem, there is a finite ∆ ⊆ T so that
∆ |= θ. But then, as above, there is a natural number n so that ∆ ⊆ Tn. Since Tn is closed
under logical consequence, we see that θ ∈ Tn ⊆ T . So T is closed under logical conquence.

To see that T is not finitely axiomatizable, let ∆ ⊆ T with ∆ finite. As before, pick a natural
number n so that ∆ ⊆ Tn and pick σn ∈ Tn+1 with σn /∈ Tn. Then ∆ 6|= σn since Tn is closed
under logical consequence, but σn ∈ Tn+1 ⊆ T . So ∆ cannot axiomatize T .

Solutions to Problem Set About Infinite Models of Complete Theories

December 2011

Suppose A is a structure. The group AutA of all automorphisms of A partitions A into
orbits. [Elements a, b ∈ A belong to the same orbit iff there is an automorphism f such that
f(a) = b.] Notice that the same applies the n-tuples from A: the group AutA partitions An

into orbits.

Problem 14.
Let L be a countable signature and let T be a complete set of L-sentences with infinite
models. Prove that T is ω-categorical if and only if AutA partitions An into only finitely
many orbits for every natural number n, for every countable A |= T .

Problem 15.
Let L be a countable signature and let T be a complete set of L-sentences with infinite
models. Prove that T is ω-categorical if and only if AutA partitions An into only finitely
many orbits for every natural number n, for some countable A |= T .

Solution
We will handle Problem 10 and Problem 11 at once. Recall, as part of that multipart character-
ization theorem we did in class, we know that the following are equivalent:
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(0) T is ω-categorical.
(1) T has a countably infinite model which is both saturated and atomic.
(2) Every complete n-type of T is supported, for each natural number n.
(3) The number of complete n-types of T is finite, for each natural number n.

The two additional conditions given in Problem 10 and Problem 11 are

(a) AutA partitions An into only finitely many orbits, for each natural number n and for each
countable model A of T .

(b) AutA partitions An into only finitely many orbits, for each natural number n and for some
countable model A of T .

Our aim is to include these last two conditions on the list of equivalent statements. We will
do this by showing that (0)⇒ (a)⇒ (b)⇒ (2).

(0)⇒ (a).
Because (0) implies (1) and (3) we can use all three of these to get (a). So let A be a countably
infinite model of T and let n be a natual number. Because of (1) we know that T has a countably
infinite model which is saturated. Because of (0) we know that any two countably infinite models
of T are isomorphic. So we find that A is saturated. Now let Φ(x̄) be a complete n-type of T .
Because T is complete, we know T = ThA. So Φ(x̄) is realized in A since A is saturated.

Suppose that two n-tuple ā and b̄ of A both realize Φ(x̄). Then (A, ā) ≡ (A, b̄). But since A
is saturated, it follows from the definition of saturation, that both (A, ā) and (A, b̄) are saturated.
But then (A, ā) ∼= (A, b̄). Let f be such an isomorphism. Then f ∈ AutA and f takes the
tuple ā coordinatewise to the tupe b̄.

What we have just established is that if ā and b̄ are two n-tuples of A which realize the same
complete n-type, then they lie in the same orbit.

Now we define a function G which assigns to each complete n-type of T an orbit of An. This
function will even be onto the set of orbits. Once we have this, since (3) tells us that the number
of complete n-types in finite, we will know that the number of orbits is finite.

Here is how to evaluate G at the complete n-type Φ(x̄) of T : Since A is a countable saturated
model of T and T is complete, we know that Φ(x̄) is realized in A. Suppose ā in an n-tuple
of A which realizes Φ(ā). As the value of G upon input of Φ(x̄) output the orbit to which ā
belongs. This definition of G is sound since if b̄ also realizes Φ(x̄) then we know that ā and b̄
belong to the same orbit. Of course, G is onto the set of orbits since for each orbit O we can
select ā ∈ O and let Φ(x̄) be the type realized by ā. The G will send Φ(x̄) to O.

This establishes (0)⇒ ((a)).�

(a)⇒(b)
This is just logically true.�

(b)⇒(2)
Let A be a countably infinite model of T so that AutA partitions An into only finitely many
orbits, for each natural number n.

Fix a natural number n. Suppose ā and b̄ are two n-tuples which lie in the same orbit. Then
there is f ∈ AutA so that f carries ā coordinatewise to b̄. Because isomorphisms preserve
the satisfaction of all formulas (this can be proved by a routine induction on the complexity
of formulas) we see that the complete n-type realized by ā is the same as the complete n-type
realized by b̄. Thus, we can define a function F which assigns to each orbit O of An the complete
n-type Φ(x̄) as follows: Pick ā ∈ O and let Φ(x̄) be the complete n-type realized by ā. Since
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any other b̄ ∈ O gives the same Φ(x̄), this definition is sound. The function F is onto the set of
n-types realized in A since F sends the orbit to which a n-tuple belongs to the type realized by
the n-tuple. This means that the number of complete n-types realized in A is bounded above
by the number of orbits. Since the number of orbits is finite, then only finitely many complete
n-types are realized in A.

Let Φ0(x̄),Φ1(x̄), . . . ,Φm−1(x̄) be a list of the distinct complete n-types realized in A. Now
for each i, j < m with i 6= j, pick ϕij(x̄) ∈ Φi(x̄) so that ¬ϕij(x̄) ∈ Φj(x̄). We can do this
since our n-types are complete and distinct. Now put

θi(x̄) equal to
∧
j 6=i

ϕij(x̄).

Evidently, A |= θi(ā) whenever ā realizes Φi(x̄). This means θi(x̄) ∈ Φi(x̄). But we also see
that θi(x̄) /∈ Φj(x̄) for any j 6= i with j < m. Let b̄ be any n-tuple such that A |= θi(b̄). Then b̄
cannot realize any Φj(x̄) with j 6= i and j < m. But b̄ must realize some complete n-type. The
only remaining one is Φi(x̄). Another way to say all this is

(i) A |= ∃x̄θi(x̄) for each i < m.
(ii) A |= ∀x̄[θ0(x̄) ∨ · · · ∨ θm−1(x̄)].

(iii) A |= ∀x̄[θi(x̄)→ ψ(x̄)] for all ψ(x̄) ∈ Φi(x̄) for all i < m.

Now (i) and (iii) yield that each θi(x̄) is a complete formula for ThA. (This means that A
is atomic, since every n-type realized in A is supported.) Since T is complete and A |= T
we have that T = ThA. So each θi(x̄) is a complete formula for T . We also have T |=
∀x̄[θ0(x̄) ∨ · · · ∨ θm−1(x̄)]. Now let B |= T and let b̄ be an n-tuple from B. Then b̄ must
satisfy one of the complete formulas θi(x̄) where i < m. Thus the complete n-type realized by b̄
contains a complete formula. This means that every complete n-type of T is supported and we
have established (2), as desired. We have also established that the only complete n-types of T
are the ones realized in A—so they are finite in number giving us (3). This also shows that A
is saturated and we already noted that A is atomic—hence we also have (1).

The two conditions from Problem 10 and Problem 11 were the contribution of Svenonius to
the characterization of ω-categorical theories. Actually, in the course of this proof we have come
across yet another equivalent condition:

There is a countably infinite model of T which, for each natural number n, realizes
only finitely many complete n-types.

Problem 16.
Let T be an elementary theory in a countable signature and suppose that T is κ-categorical
for some infinite cardinal κ. Let K = {A | A |= T and A is infinite}. Prove that K is
axiomatizable and that ThK is complete.

Solution
This statement is called Vaught’s Test for Completeness.

For each natural number n > 1, let γn be the sentence which asserts that there are at least
n elements. These sentences can be written without the help of relation symbols and function
symbols, so they are sentences of every signature. For example

γ3 can be taken to be ∃x0, x1, x2[¬(x0 ≈ x1) ∧ ¬(x0 ≈ x2) ∧ ¬(x1 ≈ x2)].
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Let Γ = {γn | n > 1}. Evidently, K is axiomatized by T ∪ Γ.
Now since T is κ-categorical it must have a model M of cardinality κ. The theory of any

structure is complete. We will prove that ThK is complete by showing that ThK = ThM.
Since κ is infinite, we see that M ∈ K. This means that ThK ⊆ ThM.

To see the reverse inclusion, let σ be a sentence with σ /∈ ThK. So we can pick A ∈ K so
that A 6|= σ. Now A |= T and A is infinite. Since the signature is countable, the Löwenheim-
Skolem-Tarski theorems give us B with A ≡ B and B of cardinality κ. (We use the upward
theorem if the cardinality of A is smaller than κ and the downward theorem otherwise.) Because
T is κ-categorical we have that B ∼= M. This gives A ≡M. Thus M 6|= σ. So σ /∈ ThM, as
desired.

Problem 17.
Construct an example of a complete theory in a countable signature which has, up to iso-
morphism, exactly 3 models. (Well, I posed the problem so as to give a hint. . . )

Solution
Our signature will provide one 2-place relation symbol ≤ and a countably infinite list c0, c1, . . .
of operation symbols of rank 0. Let ∆ be the theory of dense linear orders without endpoints,
and T be axiomatized by ∆∪{ck < ck+1 | k ∈ ω}. I claim that T is a complete theory and that,
up to isomorphism it has exactly 3 countable models.

For completeness, let θ(c̄) be a sentence so that T 2 θ(c̄). So there must be a countable model
of T ∪ {¬θ(c̄)}. It is harmless to suppose this countable model is just the ordered set of rational
in which infinitely many elements have been designated. Let ȳ be a tuple of new variables to
match the tuple c̄ of constant symbols. Let φ(ȳ) be a formula expressing that the variables are
ordered the same way that the elements named by the constant symbols are ordered. Because
the ordered set of rationals is homogenous (any two tuples of elements ordered the same way
can be mapped to each other by automorphisms), we see that ∀ȳ[φ(ȳ) → ¬θ(ȳ)] is true in the
ordered set of rationals. But the theory of dense linear orders without endpoints is complete, so
∆ |= ∀ȳ → ¬θ(ȳ). But then T |= ¬θ(c̄) since T |= φ(c̄). This establishes that T is a complete
theory.

What are the three countable models? Well, any countable model amounts to the ordered set
of rationals with a designated increasing infinite sequence of elements named by the constant
symbols. Because every dominated increasing sequence of real numbers converges, there are
three possibilities:

(a) The designated sequence increases without bound.
(b) The designated sequence converges to a rational.
(c) The designated sequence converges to an irrational.

So to complete the proof we need to argue two things. First that any two countable models of
T that are any one of these three types are isomorphic. Second, that models of different types
are not isomorphic.

For the first task, let A and B be countable models of one of the three kinds. We suppose
A = B = Q and the a0 < a1 < . . . is the sequence of designated elements of A and that
b0 < b1 < . . . are the designated elements of B. (And in handling alternative (b) that d and e
are the respective rational limit points.) The isomorphism F we want must give us F (ai) = bi
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for all i (and F (d) = e in the middle alternative). Observe that the elements strictly below the
element named by c0 in each model is a dense linear order without endpoints. So that part of A is
isomorphic to the corresponding part of B. Likewise, the parts of the models that lie between the
elements named by ci and ci+1 are dense linear orders without endpoints, so they are isomorphic.
What is left over? Nothing in alternative (a). In the other alternatives, we have the parts above
the limit points: again isomorphic dense linear orders without endpoints. So just put together
these isomorphisms with what we already said about F to show that A and B are isomorphic.

For the second task, suppose that A falls under alternative (a) and that B falls under one of
the other alternatives. Let F : B → A be one-to-one and let b ∈ B so that b is an upper bound
on all the named elements. Now F (b) ∈ A and there must be a named element strictly above
F (b). Say it is named by the constant symbol c. Then we have in B that cB < b and in A
that F (b) < cA. But F (cB) = cA in the event that F is an isomorphism—this would lead to
cA = F (cB) < F (b) < cA, a contradiction. So F cannot be an isomorphism.

It remains to show that if A falls under alternative (b) and B fall under alternative (c), then
A and B are not isomorphic. Let us suppose not. Let F : A → B is an isomorphism and that
d is the limit point for the designated sequence in A. The F (d) must lie strictly above all the
named elements of B. In B these named elements do not have a rational least upper bound. So
there is r ∈ B with r < F (d) and r strictly above each named element of B. Let t ∈ A be the
element so that F (t) = r. Because F is an isomorphism we must have in A that t < d and that
t is strictly larger than all the named elements of A. This is impossible, since d is the least upper
bound of all the named elements in A.
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