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What We Will Cover

After a couple of weeks to introduce the fundamental concepts and set the context (material
chosen from the first three chapters of the text), the course will proceed with the development
of first-order model theory. In the text this is the material covered beginning in Chapter 4.
Our aim is cover most of the material in the text (although not all the examples) as well as
some material that extends beyond the topics covered in the text (notably a proof of Morley’s
Categoricity Theorem).

The Work

Once the introductory phase of the course is completed, there will be a series of problem sets
to entertain and challenge each student. Mastering the problem sets should give each student
a detailed familiarity with the main concepts and theorems of model theory and how these
concepts and theorems might be applied. So working through the problems sets is really the
heart of the course. Most of the problems require some reflection and can usually not be
resolved in just one sitting.

Grades

The grades in this course will be based on each student’s work on the problem sets. Roughly
speaking, an A will be assigned to students whose problems sets eventually reveal a mastery
of the central concepts and theorems of model theory; a B will be assigned to students whose
work reveals a grasp of the basic concepts and a reasonable competence, short of mastery,
in putting this grasp into play to solve problems. Students are invited to collaborate on
the problem sets. Some of the problems will be designated as individual efforts. Students
intending to use this course as part of the Comprehensive Exams should make particularly
diligent efforts on the problems sets.

The Final

As the material is ill-suited to a sit down three hour writing effort, in place of a final exam-
ination we will instead have a party at my house. Everyone (and their partners) is invited.
The party does have a little exit exam. . . .
I plan to offer a MATH 748V in the spring 2012 semester. The topic of that course will be

Varieties of Aglebras, which is an algebraic counterpart to a portion of MATH 762.
MATH 762 and MATH 748V would form a course sequence upon which a Ph.D. Compre-

hensive Exam could be based.
Please feel free to drop by my office at any time. My office is 302 LeConte.
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LECTURE 0

Mathematical Structures and
Mathematical Formulas

A host of systems have attracted the attention of mathematicians. There are groups, graphs,
and ordered sets. There are geometries, ordered fields, and topological spaces. There are
categories, affine varieties, and metric spaces. The list is seemingly enormous, as is the list of
concepts and theorems emerging from the efforts mathematicians have spent in their investi-
gation.
It is the ambition of model theory to attach to such mathematical systems some formalized

linguistic apparatus appropriate for framing concepts and stating theorems. This linguistic or
syntactical apparatus, once it is given an unambiguous definition, can be subjected itself to a
mathematical analysis. Roughly speaking, model theory is that branch of mathematics that
exploits the connections between such a syntax and the appropriate mathematical systems.
This means that model theory is a kind of mathematical semantics: it is centered on the
meanings that syntactical expressions achieve in particular mathematical systems.
The ambition of model theory to make and to exploit such connections stands in a common

mathematical tradition: by adjoining extra structure and developing its mathematics one
hopes to be able to throw light on old problems and also to open up new parts of mathematics
to further development. It is surely evident, for example, that the geometric, analytic, and
topological aspects of the complex plane have greatly informed our understanding of ordinary
addition and multiplication of whole numbers—an example of associating extra structure.
First observe that a linguistic apparatus suitable for the theory of groups need not be suitable

for the theory of rings and may be quite unsuitable for the theory of ordered sets. So we
envision the need for a wide assortment formal syntactical systems.
Next observe that groups, graphs, ordered sets, ordered fields, and certain geometries have

the form of nonempty sets equipped with some system of operations and relations, each having
some fixed finite number of places. For example a graph G = 〈G,E〉 can be construed as a
set G of vertices and a set E of edges—so that E is a symmetric irreflexive two-place relation
on the set G of vertices. On the other hand, a topological space is a system 〈X,T〉, where X
is a set and T is a collection of subsets of X that satisfy certain properties making T into a
topology of X.
In the part of model theory we will develop, we will allow mathematical systems like groups,

graphs, ordered fields, and many others, but we will exclude systems like topological spaces,
as well as many other very interesting mathematical systems.

1
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0.1 Symbols for Operations, Symbols for Relations, and Signatures

Let us consider an example: the set of real numbers endowed with addition, multiplication,
negation, zero, one, and the usual ordering. We could denote this structure by

〈R,+, ·.−, 0, 1,≤〉.

We mean here, in part, that + : R×R→ R is a function from the set of pairs of real numbers
into the set of real numbers and that ≤⊆ R × R is a two-place relation on the set of real
numbers.
Consider another example: the set of real numbers that are algebraic over the rationals

endowed with addition, multiplication, negation, zero, one, and the usual ordering. We could
denote this structure by

〈A,+, ·,−, 0, 1,≤〉.
In this example + : A×A→ A is again a two-place function but it differs from the operation
+ of the first example—the domains are not the same. A sharper illustration of this point
might use the set of all continuous functions from the unit interval into the set of real numbers,
endowed with addition, multiplication, negation, the constantly zero function, the constantly
one function, and the usual pointwise ordering.
In mathematical practice, we trust to context to resolve any ambiguities that arise in this

way. At least tacitly, what happens is that we treat + as a symbol that can be subjected to
many interpretations requiring only that in every such interpretation that + denote a two-
place operation. In the same way, we treat ≤ as a symbol open to many interpretations,
requiring only the in every such interpretation that ≤ denote a two-place relation.
We start our project by formalizing this common piece of mathematical practice. In the

examples above, we used two 2-place operation symbols, one 1-place operation symbol (it was
−), two 0-place operation symbols (these were 0 and 1) and one 2-place relation symbol. It
is important for the development of the theory of the ordererd field of real number not to
confuse addition and multiplication. Our arrangements must take that into account. Here is
how we do it.
A signature is a pair 〈σ, ρ〉 of functions so that the domain of σ and the domain of ρ are

disjoint, that σ assigns values that are natural numbers and the ρ assigns values that are
positive natural numbers. The elements of the domain of σ are referred to as operation
symbols and the elements of the domain of ρ are referred to as relation symbols. The
functions σ and ρ assign ranks to the symbols. So we say, for example, that + has rank 2.
Operation symbols of rank 0 are also called constant symbols.
The examples above all had the same signature. In these examples, dom σ = {+, ·,−, 0, 1}

and dom ρ = {≤}. Moreover,

σ(+) = 2
σ(·) = 2
σ(−) = 1
σ(0) = 0
σ(1) = 0
ρ(≤) = 2
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In a signature 〈σ, ρ〉 we allow either or both of σ and ρ to be the empty function—that is
functions with empty domain. A signature appropriate for the theory of groups may have
no relation symbols, while a signature appropriate to the theory of ordered sets may have no
operation symbols.

0.2 Mathematical Structures of a Given Signature

Fix a signature 〈σ, ρ〉.
A structure for the signature is a system consisting of a nonempty set, called the universe

of the structure, endowed with

• a system of basic operations, one for each operation symbol of the signature, so that
the rank of each basic operation agrees with the rank of the correlated operation symbol,
and

• a system of basic relations, one for each relation symbol of the signature, so that the
rank of each basic relation agree with the rank of the correlated relation symbol.

Generally, we use the notation

A = 〈A,QA, RA〉Q∈domσ,R∈dom ρ

for structures. Here, QA is the basic operation of the structure A denoted by the operation
symbol Q and RA is the basic relation of A denoted by the relation symbol R. In case the
signature is finite, we suppress the indexing and write things like

R = 〈R,+R, ·R,−R, 0R, 1R,≤R〉.

Of course, all those superscripts are cumbersome, so where the ambiguities can be resolved by
context, we write R = 〈R,+, ·,−, 0, 1,≤〉.
When the signature provides no relation symbols, we also refer to structures as algebras. By

the misfortunes of mathematical history, the word algebra has a couple of other meanings. We
meet it in school as a branch of mathematics, only to meet it again in university as the name
of a broader branch of mathematics (which might be construed as the investigation of what
we have here called algebras). More inconvenient for us, is that within algebra itself those
structures that can be made from vector spaces by imposing an additional basic operation of
rank 2, a product, perhaps satisfying some additional properties are also called algebras.
When the signature provides no operation symbols, we also refer to structures as relational

structures.
Suppose that A and B are structures of the same signature. We say that B is a substructure

of A and write B ≤ A, provided

• B ⊆ A,

• QB is the restriction of QA to Br, where r is the rank of Q, for each operation symbol
Q, and

• RB = RA ∩Br, where r is the rank of R, for each relation symbol R.
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So the substructures of the structure A inherit their basic operations and basic relations from
A. Observe that the universe B of the substructure B of A is closed under the basic operations
of A. Indeed, any nonempty subset of A that is closed with respect to all the basic operations
of A will be the universe of a uniquely determined substructure. We call the subsets of A
that are closed with respect to all the basic operations of A subuniverses of A. There is
one thing to take note of here. If the signature provides no operation symbols of rank 0, that
is no constant symbols, then the empty set will be a subuniverse of A but it will not be the
universe of any substructure of A.
Let A and B be structures of the same signature. We say that a function h : A → B is a

homomorphism from A to B, and we write h : A→ B, provided

• h(QA(a0, . . . , ar−1)) = QB(h(a0), . . . , h(ar−1)) where r is the rank of Q and a0, . . . , ar−1
are arbitrary elements of A, for all operation symbols Q, and

• if (a0, . . . , ar−1) ∈ RA, then (h(a0), . . . , h(ar−1)) ∈ RB, where r is the rank of R and
a0, . . . , ar−1 are arbitrary elements of A, for all relation symbols R.

The homomorphism h is said to be a strong homomorphism when the last item listed above
is replaced by

• (a0, . . . , ar−1) ∈ RA if and only if (h(a0), . . . , h(ar−1)) ∈ RB, where r is the rank of R
and a0, . . . , ar−1 are arbitrary elements of A, for all relation symbols R.

One-to-one strong homomorphisms are called embeddings of A into B. If, in addition, they
are onto B then they are called isomorphisms. When h is an embedding of A into B we
write h : A ↪→ B. When h is an isomorphism from A onto B, we write A

h∼= B. When we
write A ∼= B, we mean there is an isomorphism from A onto B.
Finally, let Ai be a structure for each i ∈ I. We require that these structures all have the

same signature. By the direct product, denoted ∏I Ai of the system < Ai | i ∈ I〉 of sets, we
mean the set

{ā | ā : I →
⋃
I

Ai such that ā(i) ∈ Ai for all i ∈ I}.

We could render ā = 〈ā(i) | i ∈ I〉. It is convenient to think of ā as an I-tuple such that the
ith coordinate of ā (which is, in fact, ā(i) ) comes from the ith factor set Ai. So if I = {0, 1},
then ā would, to all intents and purposes, be an “ordered pair”. But actually, it is only really
necessary to know that 0 6= 1 and not that 0 < 1, so that the word “ordered” here is a little
misleading. In general, we impose no ordering of any kind on the set I.
Let us take A = ∏

I Ai. We make a structure A, which we call the direct product of the
system of structures 〈Ai | i ∈ I〉, and denote it as

A =
∏
I

Ai

by imposing on the set A the basic operations and basic relations coordinatewise. That is
for each operation symbol Q of the signature, let r be the rank of Q and let ā0, . . . , ār−1 be
arbitrary elements of A. Define

QA(ā0, . . . , ār−1) = 〈QAi(ā0(i), . . . , ār−1(i)) | i ∈ I〉.
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And when R is a relation symbol of the signature, let r be the rank of R and let ā0, . . . , ār−1
be arbitrary elements of A. Define RA by

(ā0, . . . , ār−1) ∈ RA if and only if (ā0(i), . . . , ār−1(i)) ∈ RAi for all i ∈ I.

The notions of substructure, homomorphism, and direct product described here agree, for
the most part, with mathematical practice. Perhaps the most significant departure comes in
graph theory. The notion of substructure given above is commonly referred to among graph
theorists as that of induced subgraph. This because it is convenient in graph theory to also
omit edges to obtain a smaller graph. Of course one might like to omit both some edges and
some vertices. So the graph H = 〈H,E〉 is called a subgraph of the graph G = 〈G,F 〉 provided
H ⊆ G and E ⊆ F . Similar considerations apply to any relational structure (for example, to
any ordered set). This means that some care must be taken is these cases.

0.3 Terms, Formulas, and Sentences

We turn now to describing the linguistic or syntactical apparatus that we will associate with
each signature.
Fix a signature.
The things belonging to our syntax will generally be finite strings (i.e. sequences) of symbols.

In addition to our operation symbols and our relation symbols we require a countably infinite
list of variable, which are also symbols. Here is the official list of variables: x0, x1, x2, . . . .We
insist that these variables are always distinct from the operation and relation symbols of any
signature. The variables will play the role of pronouns in our syntactical apparatus. For any
structure A of our signature, these pronouns are intended to range over the elements of the
universe A of A. In particular, the variables are not intended to range over subsets of A nor
over sequences of elements of A or over, say the natural numbers (unless the natural numbers
happen to belong to A). It is this limitation that the variables are intended to range over
elements of the universe that explains the prevalence of the word “elementary” in our subject.
One might, of course, provide a richer syntax by including variables to range of subsets of
the universe, or binary relations or functions on the universe, . . . . This would result in a
nonelementary model theory and it lies outside to scope of our course.
We will say the elementary language of our signature is just the set consisting of all oper-

ation and relation symbols. Of course, taking this perspective carries the hidden assumption
that the rank of any of these symbols is a trait of the symbol itself. So, while it is more
pedantic it is also more proper to to identify a language L with its signature 〈σ, ρ〉.

Terms
We can combine variables and operation symbols to obtain terms.
The set of terms is the smallest set T of finite strings of symbols that

• contains all the variables, and

• for each operation symbol Q and any t0, . . . , tr−1 ∈ T , where r is the rank of Q, the
string 〈Q, t0, . . . , tr−1〉 also belongs to T .
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As a matter of practice, we write Qt0 . . . tr−1 in place of 〈Q, t0, . . . , tr−1〉. Notice that if Q
has rank 0, that is Q is a constant symbol, then the associated sequence is just 〈Q〉 which
we typically write as Q. If the signature provides constant symbols, then they are, like the
variables, terms of the simplest kind.
This style of definition is known as definition by recursion and its hallmark is to declare

the simplest of the things being defined and them tell how to obtain the more complicated
things from those that are simpler. As we shall see, definitions by recursion invite proofs by
induction.
Our definition of terms invokes the prefix notation: the operation symbols occur to the left

of their “arguments”. This notation is sometimes called Polish notation, in honor of the Polish
logician Jan Łukasiewicz who promoted its use in the 1920’s. There is also postfix notation,
which places the operation symbols to the right. The standard notation we are all so use to
for dealing with + and · is called infix notation. It has two disadvantages over the other two
systems: it only works for binary operation symbols and it requires the use of parentheses,
which would have to be added to our list of symbols and our rules of the correct formation of
terms would have to take them into account. What we do in these notes is to adopt the prefix
notation officially, but when dealing with binary operation symbols we will informally follow
the traditional notation and rely of the diligent graduate students to put it all into prefix form
at their pleasure.
Here is what one side of the associative law for + would look like

+ + xyz in our official prefix notation.
((x+ y) + z) in the unofficial infix or traditional notation.

There is another, highly informative, way to view terms. We can render them as rooted
trees whose nodes have a left-to-right ordering. The internal nodes of such a tree are labelled
with operation symbols (and a node labelled by an operation symbol of rank r must have r
children). The leaves have to be labelled either with variables or with constant symbols. Here
is the tree depiction of the term we used above:

+

+

x y

z

The tree depicting the term + + xyz.

Let T be the set of terms of our signature. There is a natural way to impose the structure of
an algebra on T . We call it the term algebra and denote by T. Of course, we are obliged to
impose operations to obtain this algebra. To this end, let Q be an operation symbol and let
r be the rank of Q. Let t0, . . . , tr−1 be any terms of our signature. We define QT by putting

QT(t0, . . . , tr) = Qt0 . . . tr−1.

The set of terms has a key parsing property that is expressed in the following theorem.
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The Unique Readability Theorem for Terms. Let T be the term algebra for some fixed
signature. For any operation symbols P and Q and any terms p0, . . . , pn−1 and q0, . . . , qm−1,
where n is the rank of P and m is the rank of Q. if PT(p0, . . . , pn−1) = QT(q0, . . . , qm−1), then
P = Q, n = m, and pi = qi for all i < n.
We offer no proof here, but rather make this the object of the first set of exercises.
Of course, our intention is that just as the operation symbols are to name the basic operations

in a structure, so the terms are intended to name certain derived operations in the structure.
But even after we make this explicit, our syntax will be lacking everything but certain, perhaps
very involved, names. We need more.

Formulas and Sentences
The operation and relation symbols have meanings that differ from structure to structure.
The meanings of the logical symbols of our syntactical apparatus, on the other hand, will not
vary from structure to structure—apart from, perhaps, a restriction to the universe of each
structure. The logical symbols have essentially grammatical roles intended to be the same
from structure to structure. We have already seen one sort of logical symbols, namely the
variables x0, x1, x2, . . . . There are four remaining logical symbols: ≈, which is referred to as
the equality symbol ≈, ¬ and ∨, which are referred to as the negation symbol ¬ and the
disjunction symbol ∨, and ∃, which is referred to as the existential quantifier ∃.
Just as operation symbols and variables can be put together to form terms, with the help

of terms, relation symbols and the logical symbols, we can build more complicated strings of
symbols called formulas.
Atomic formulas are those strings of symbols of the form ≈ st where s and t are terms and

those of the form Rt0, t1 . . . tr−1 where R is a relation symbol and t0, . . . , tr−1 are terms, where
r is the rank of R. The set of formulas is the smallest set F of finite strings of symbols such
that

• F contains all the atomic formulas,

• if ϕ, ψ ∈ F , then ¬ϕ ∈ F and ∨ϕψ ∈ F , and

• if ψ ∈ F , then ∃xiψ ∈ F for all natural numbers i.

Like the definition of the set of terms, this definition is recursive and it invites proofs by
induction. You will observe that we have continued to use prefix notation here. This is our
official definition. In practice, we never write things like ≈ st or ∨ϕψ, writing instead s ≈ t
and ϕ ∨ ψ.
Just as for terms, there is a Unique Readability Theorem for formulas. We leave not only

the proof but even the formulation of this theorem to the eager graduate students.
We need one more notion, that of a variable occurring free in a formula. Let us define a

function, FreeVar on the set of formulas, by the following recursion:

• If ϕ is an atomic formula, then FreeVarϕ is the set of variables occurring in ϕ.

• If ϕ is ¬ψ, then FreeVarϕ = FreeVarψ.

• If ϕ is ψ ∨ θ, then FreeVarϕ = FreeVarψ ∪ FreeVar θ.



0.4 Satisfaction and Truth 8

• If ϕ is ∃xiψ, then FreeVarϕ = FreeVarψ \ {xi}.

We call FreeVarϕ the set of variables occurring freely in ϕ and we refer to the elements
of FreeVarϕ has the free variables of ϕ.
A formula with no free variables is called a sentence.

0.4 Satisfaction and Truth

Assigning an exact meaning to an English sentence like “It is snowing.” is difficult largely
because it is so indefinite. One must know something about the time and place to which
the pronoun “it” refers. So it is also with the formulas and sentences of our syntactical
apparatus. A structure of the signature gives meanings to the operation and relation symbols
and the universe of the structure at least tells us the set of elements to which the variables,
the pronouns of of syntax, refer. Still, even with, say the ring of integers designated as the
structure of interest, a formula like x · y ≈ 2 · x+ 2 cannot be given a definite value as true or
false—it depends on which integers are assigned to x and y.
Given a structure A for each operation symbol Q we have associated an operation QA on

the set A. Likewise, for each relation symbol R we have associated a relation RA on A. In
essence, our plan is to associate with each term t an operation tA on A and with each formula
ϕ a relation ϕA. We might want to assign to tA a finite rank and we might want to do the
same for ϕA. Such a procedure has a natural appeal, and it can be carried out. However,
there are some troubles with it as well. Consider the two terms t = 2 · x + 2 and s = x · y.
We might decide that tA should be an operation of rank 1, while sA should be an operation
of rank 2. On the other hand, a sentence like ∀x∀y

(
t ≈ s

)
would seem to express that s and

t denote the same function in the structure A, provided of course that this sentence in true
in A. But no function of rank 1 can be equal to any function of rank 2, as long as A is not
empty. A similar trouble arises with formulas and the meaning of disjunction. For example,
the consider the formulas ϕ = x ≤ y and ψ = z ≈ z · z. In the structure A we might want
ϕ to name a subset of A× A and ψ to name a subset of A. The same impulse would lead us
to see that the formula ϕ ∨ ψ should name a subset of A×A×A, disrupting the idea that ∨
should correspond to the union of the two earlier relations. So we will drop the insistence on
finite rank.
Let A be a structure. By an assignment for A we mean a function ā : Aω → A. That is

ā = 〈a0, a1, a2, . . . 〉 = 〈ai | i ∈ ω〉

for some a0, a1, a2, · · · ∈ A. We define tA for each term t by the following recursion.

• xA
i (ā) = ai for each natural number i and each assignment ā.

• (Qt0 . . . tr−1)A(ā) = QA(tA0 (ā), . . . , tAr−1(ā)), for each operation symbol Q, for all terms
t0, . . . , tr−1, where r is the rank of Q, and for all assignments ā.

According to the first condition above, we see that ā actually ends up assigning an element of
A to each variable. We also see that tA is an operation on A, but of rank ω:

tA : Aω → A.
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Despite its infinite rank, tA only depends on finitely many on its inputs—a fact the eager
graduate students are invited to prove by induction on the complexity of the term t.
We define what it means to say that ā satisfies ϕ in A, which we display as A |= ϕ[ā], by

the following recursion on the complexity of the formula ϕ.

In case ϕ is s ≈ t,

A |= (s ≈ t)[ā] if and only if sA(ā) = tA(ā).

In case ϕ is Rt0 . . . tr−1,

A |= (Rt0 . . . tr−1)[ā] if and only if (tA0 (ā), . . . , tAr−1(ā)) ∈ RA.

In case ϕ is ¬ψ,

A |= (¬ψ)[ā] if and only if A |= ψ[ā] fails.

In case ϕ is ψ ∨ θ,

A |= (ψ ∨ θ)[ā] if and only if A |= ψ[ā] or A |= θ[ā].

In case ϕ is ∃xiψ,

A |= (∃xiψ)[ā] if and only if A |= ψ[b̄] for some assignment b̄
such that ā(j) = b̄(j) for all j 6= i.

This definition attaches to the logical symbols ≈,¬,∨, and ∃ the meanings of equality, nega-
tion, or (in the inclusive sense), and existence as we ordinarily use them in mathematical
discourse.
At this point a word is in order about why we made this particular choice of logical symbols

and not some other. In particular, we don’t have symbols like ∧,→,↔,∀ . . . to symbolize
“and, implies, if and only if, for every. . . ” and other forms of usage that arise so often in
mathematics. The short answer is that were we to undertake the formalization of mathematics
having a richer vocabulary would pay off, but our object here is different. Roughly speaking,
we intend, rather, to prove things about what is expressible. These proofs are less involved—in
short, more convenient—when the syntactical setup is less involved.
We attempt to have our cake and eat it too by adopting the following system of abbreviations:

ϕ ∧ ψ abbreviates ¬(¬ϕ ∨ ¬ψ)
ϕ→ ψ abbreviates ¬ϕ ∨ ψ
ϕ↔ ψ abbreviates (ϕ→ ψ) ∧ (ψ → ϕ)
∀xiϕ abbreviates ¬∃xi¬ϕ

where ϕ and ψ are any formulas and i is a natural number.
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In our syntax, our official symbols ¬ and ∨ and the unofficial ∧,→, and ↔ are referred to
as connectives. Grammatically, they are used to connect clauses. In school, my languages
teachers called them conjunctions (this was a “part of speech” other parts being noun, verb,
adjective,etc.). Here, however, we will say that ∧ is the conjunction symbol (even though it
is an abbreviation), that ∨ is the disjunction symbols, and so on.
As with terms, whether an assignment ā for the structure A satisfies the formula ϕ can

depend only on the values in A that ā assigns to the free variables of ϕ. Graduate students
should find delight in carrying out the appropriate induction on the complexity of ϕ to establish
this.
We say a sentence ϕ is true in the structure A provided that any assignment ā for A satisfies
ϕ (or, what is the same, that some assignment satisfies ϕ). We also say that ϕ holds in A
and that A is a model of ϕ. We write this as

A |= ϕ.

More generally, we write A |= Γ and say that A is a model of Γ, in case Γ is a set of sentences
and every sentence belonging to Γ is true in A.

The notions of structure, signature, formula, sentence, satisfaction, and truth that are central
in this lecture have a surprising intricate history. It wasn’t until the early 1930’s that Alfred
Tarski was able to give an entirely explicit account of satisfaction and truth of elementary
formulas in structures. Perhaps intuitively known for thousands of years and at times a
clear goal—for example of Leibniz—these ideas emerged slowly. Structures, perhaps under a
different guise, certainly arose in the 19th century—this notion is plainly visible in the work
of Richard Dedekind, Wilhelm Weber, David Hilbert, and even Hermann Grassmann. The
notion of satisfaction of a formula was implicit in the work of George Peacock as early as 1834
and was explicit in the work of 1847 of George Boole. However, no unambiguous notion
of formula was available at the time. That notion arose out of the work of Ernst Schröder,
Charles Saunders Pierce, and Gottlob Frege in the late 19th century.The manner in which
these notions are laid out above would have been familiar in the 1950’s.
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0.5 Problem Set 0

Problem Set About Unique Readability
Due 30 August 2011

In the problems below L is the set of operation and relation symbols of same signature and
X is a set of variables.

Problem 0.
Define a function λ from the set of finite nonempty sequences of elements of X ∪ L into the
integers as follows:

λ(w) =


−1 if w ∈ X,
r − 1 if w is an operation symbol of rank r,∑
i<n λ(ui) if w = u0u1 . . . un−1 where ui ∈ X ∪ L and n > 1.

Prove that w is a term if and only if λ(w) = −1 and λ(v) ≥ 0 for every nonempty proper
initial segment v of w.

Problem 1.
Let w = u0u1 . . . un−1, where ui ∈ X ∪ L for all i < n. Prove that if λ(w) = −1, then there is
a unique cyclic variant ŵ = uiui+1 . . . un−1u0 . . . ui−1 of w that is a term.

Problem 2.
Prove that if w is a term and w′ is a proper initial segment of w, then w′ is not a term.

Problem 3.
Let T be the term algebra of L over X. Prove

If Q and P are operation symbols, and PT(p0, p1, . . . , pn−1) = QT
1 (q0, q1, . . . , qm−1),

then P = Q, n = m, and pi = qi for all i < n.



LECTURE 1
Models, Theories, and Logical Consequence

1.1 The Galois Connection Established by Truth

Fix a signature. Let Σ be the set of all sentences of the signature and let S be the class of all
structures of the signature. The concept of truth establishes a binary relation between S and
Σ:

A |= ϕ

where ϕ is a sentence, that is ϕ ∈ Σ, and A is a structure, that is A ∈ S. As with any binary
relation, there is an underlying Galois connection. The Problem Set attached to this lecture
develops the properties of general Galois connections for those who meet this notion for the
first time here.
The polarities of this particular Galois connection are the following

ThK = {ϕ | A |= ϕ for all A ∈ K}
Mod Γ = {A | A |= ϕ for all ϕ ∈ Γ}

for any class K ⊆ S and any set Γ ⊆ Σ.
For any set Γ of sentences we refer to Mod Γ as the class of all models of Γ or as the

elementary class axiomatized by Γ. We refer to ThK as the elementary theory of K.
In case K = {A}, we write Th A and refer to it as the elementary theory of A. In general,
an elementary theory is a set of elementary sentences true in some class K of structures.
Likewise, an elementary class is the class of all models of some set Γ of sentences.
As with every Galois connection, the polarities give rise to closure operations:

Mod ThK which is the smallest elementary class including K

Th Mod Γ which is the smallest elementary theory including Γ

These closure operations provoke the question of finding convenient descriptions. For the
first, one would like some means of combining the structures in K to obtain all the structures
in the (usually) richer class Mod ThK. Ideally, one could aspire to means of combination
of some loosely algebraic kind that avoids any reference to the syntax. For the second, one
would like some means of manipulating the sentences in Γ to obtain all the sentences in the
(usually) richer set Th Mod Γ. Ideally, one would aspire to means of manipulation that take
place entirely at the syntactic level and avoid any reference to structures.
The project of finding a reasonable and convenient description of Mod ThK quite clearly

belongs to model theory, whereas a description of Th Mod Γ turns out to belong to proof
theory, another branch of mathematical logic. Nevertheless, let us take a look at Th Mod Γ.
We have

ϕ ∈ Th Mod Γ if and only if ϕ is true in every model of Γ.

12
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Put only a slightly different way, any structure that makes all the sentences of Γ true necessarily
makes ϕ true as well. For this reason, say that ϕ is a logical consequence of Γ provided
ϕ ∈ Th Mod Γ. To denote this, widening the use of |=, we write Γ |= ϕ.
The notion of logical consequence just introduced is a semantical notion because it relies on

the notion of a sentences (syntactical objects) being true in structures (objects of ordinary
mathematical practice). A starting point for proof theory is the invention of a purely syntacti-
cal notion of provable so that “provable from” is exactly the same as “is a logical consequence
of”. Roughly speaking, proofs given in ordinary mathematical practice are certain strings of
sentences (in English or some other natural language), each sentence in the string either be-
longing to our assumptions (that is belonging to Γ) or which follows from ealier sentences in
the string by some rule of logical inference. So one of the tasks of proof theory is to cast this
in our formal language, instead of the natural language, and to devise such rules of inference
that will be sound and adequate for this task. But there is a lot more to proof theory than
that. Kurt Gödel, in his 1929 Ph.D. thesis, succeeded in carrying out this task for countable
elementary languages and the great bulk of proof theory has been developed since then, much
in the last thirty years. Anatol̆ıi Mal’cev, working on his own Ph.D. in 1936, was able to
remove the countability restriction. Without giving the details, let us write Γ ` ϕ to mean
that ϕ is provable from Γ. What Gödel proved in for countable languages and Mal’cev proved
(based on Gödel’s work) in general was
The Completeness Theorem. Fix a signature. Let Γ be any set of sentences of the signature
and let ϕ be any sentence of the signature. Then

Γ |= ϕ if and only if Γ ` ϕ.

In our development of elementary model theory, we will have little occasion to use the
apparatus of formal proofs, so we will not give a precise definition of ` nor a proof of the
Completeness Theorem. Rather, we will rely on the semantical notion of logical consequence.
But the Completeness Theorem has corollary that is crucial to the development of model
theory.

Corollary. Fix a signature. Let Γ by any set of sentences of the signature and let ϕ be any
sentence of the signature. If Γ |= ϕ, then ∆ |= ϕ for some finite ∆ ⊆ Γ.

This corollary should at least be plausible. It turns out that any formal proof of ϕ from
Γ will be a certain finite string of sentences. Such a finite string can only invoke finitely
many of the assumptions, that is the sentences of Γ. So ϕ must be provable from the finite
many assumptions that are used. The corollary above is essentially a reformulation of the
Compactness Theorem, a crucial result in elementary model theory that is the focus of the
next lecture. We will give a proof of the Compactness Theorem that does not depend on the
Completeness Theorem.
Now let us look at the other closure operator arising from the Galois connection, Mod ThK.

Here K is a class of structures, all of the same signature, and Mod ThK is the smallest
elementary class that includes K. Suppose, for example, that K has just one structure: 〈Q,≤〉,
the ordered set of rational numbers. What other structures A must belong to the larger class
Mod ThK? Certainly, all the properties of 〈Q,≤〉 that can expressed as elementary sentences,
must be true in A as well. And, since the failure of a sentence in 〈Q,≤〉 entails that the
negation of the sentence is true, the converse must also hold. That is A ∈ Mod Th〈Q,≤〉
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if and only if the same sentences are true in A as in 〈Q,≤〉. After only a little reflection,
the diligent graduate students should see that A must be a partially ordered, even a linearly
ordered set. Moreover, the ordering has to be dense—between any two distinct elements there
must be a third element. Finally, the ordering are no greatest element and no least element.
At this point, it is difficult to cook up an elementary property of 〈Q,≤〉 that does not follow
from these. Could this be the whole story? We will be able to find out the answer later.
In the reasoning just above, we found that if A ∈ Mod Th〈Q,≤〉 then Th A = Th〈Q,≤〉, that

is the same sentences were true in A and in 〈Q,≤〉. This notion is important more generally.
We say that two structures A and B of the same signature are elementarily equivalent
provided Th A = Th B. We denote this by A ≡ B. The reasoning above gives us at least

Fact. Let A be a structure. Then Mod Th A = {B | A ≡ B}.

More generally, we see

Fact. Let K be a class of structures of the same signature. If A ∈ K and A ≡ B, then
B ∈ Mod ThK.

So any attempt to understand the closure operator Mod Th would seem to involve a closer
understanding of ≡; that is, of elementary equivalence. This is actually a challenging un-
dertaking. In the work of Fraïssé, Ehrenfeucht, Kochen, Keisler, and Shelah one can find
good characrterizations of elementary equivalence (and consequently, descriptions of the clo-
sure operator Mod Th. This is one of the many topics that couldn’t be accommodated in one
semester.
Here is a theorem that is sometimes useful.

Theorem on Finite Structures. Let A and B be structures of the same signature. If A is
finite and A ≡ B, then A ∼= B.

Proof. Let us say that A = {a0, a1, . . . , an−1} and that A has n distinct elements. Further we
suppose, for the sake of contradiction, that A ≡ B but that A and B are not isomorphic.
There is an elementary sentence, call it λk, that asserts that there are at least k distinct

elements. Here is λ3.

∃x0∃x1∃x2
[
¬x0 ≈ x1 ∧ ¬x0 ≈ x2 ∧ ¬x1 ≈ x2

]
In general, λk has the same form but there will be

(
k
2

)
conjuncts. Likewise, there is an

elementary sentence, call it βk, that asserts that there are at most k elements. Here is β3.

∀x0∀x1∀x2∀x3
[
x0 ≈ x1 ∨ x0 ≈ x2 ∨ x0 ≈ x3 ∨ x1 ≈ x2 ∨ x1 ≈ x3 ∨ x2 ≈ x3

]
In general, βk is like β3 but with

(
k+1

2

)
disjuncts.

Since A ≡ B, we find that B must have exactly n elements, just like A. Now there are n!
one-to-one maps from A onto B and none of them is an isomorphism. So for each of these
finitely many maps there must be either an operation symbol or a relation symbols so that
the map in question does not preserve the basic operation or relation it denotes in A upon
passage to B. So for each of our n! maps pick such a disruptive operation or relation symbol.
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Now the idea is to write out a very long sentence true in A that describes exactly how these
finitely many disruptive operation and relation symbols work out. We will arrange matters so
that the element ai will be associated with the variable xi for each i < n.
Let θ(x0, x1, . . . , xn−1) be a formula asserting that the n variables are all distinct.
Suppose Q is a disruptive operation symbol and, for simplicity, let its rank be 3. If

QA(ai, ai, ak) = a`,

we will want the formula ϕQ(xi, xj, xk, x`), which is

Qxixkxk ≈ x`.

Suppose R is a disruptive relation symbol and, for simplicity, let its rank be 3. If (ai, aj, ak) ∈
RA, we will want the formula ψ(xi, xj, xk), which is

Rxixjxk.

On the other hand, if (ai, aj, ak) /∈ RA, we will want the formula µ(xi, xj, xk), which is

¬Rxixjxk.

Now let γ(x0, x1, . . . , xn−1) be the conjunction of θ(x0, . . . , xn−1) with all the formulas ac-
quired as described above from the disruptive operation and relation symbols. Finally, let σ
be the sentence ∃x0∃x0 . . . ∃xn−1γ(x0, . . . , xn−1).
By the construction of σ, we see that σ is true in A. So it must be true in B. Let
b0, b1, . . . , bn−1 be the elements that the variables x0, x1, . . . , xn−1 stand for in B. Let f : A→ B
be defined via f(ai) = bi for all i < n. Then f is a one-to-one map from A onto B and the
truth of σ in B asserts that none of the disruptive operation and relation symbols actually
disrupt f . This is the contradiction we were seeking.

Elementary theories of the form Th A has an interesting property noted above. Namely,
given an elementary sentence ϕ exactly one of ϕ and ¬ϕ belonged to Th A. An elementary
theory T with this property is said to be a complete theory. Most elementary theories are
not complete. For instance, the elementary theory of rings fails to be complete—for example,
the commutative law for multiplication does not belong to the theory nor does its negation.
This is another way to say that some rings are commutative and some rings are not. The
question left open a little above was whether the elementary theory of dense linear ordering
without end points is a complete theory.

1.2 A Short Sampler of Elementary Classes

We conclude this lecture with a collection of examples of elementary classes. In each case we
present a set of elementary sentences to axiomatize the class. The corresponding elementary
theory is the set of all logical consequences of the set of sentences.
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The Elementary Theory of Infinite Sets
In this example the signature is empty: in provides no relation or operation symbols. What
we want is, for each postive natural number n, a sentence σn that asserts that there are at
least n elements. Here is σ4:

∃x0, x1, x2, x3 [¬x0 ≈ x1 ∧ ¬x0 ≈ x2 ∧ ¬x0 ≈ x3 ∧ ¬x1 ≈ x2 ∧ ¬x1 ≈ x3 ∧ ¬x2 ≈ x3] .

In general, σn asserts the existence of n elements no two of which are equal. The number of
disjuncts in σn will be

(
n
2

)
.

Let Σ = {σn | n is a positive natural number}. Then Mod Σ is the class of infinite sets.
It is also easy to write down a sentence that asserts that there are no more than n elements.

We leave this task to the eager graduate students. On the other hand, there is no set Γ of
sentences so that Mod Γ is the class of all finite sets. This is a conseqence of the Compactness
Theorem, which we take up in the next lecture.

The Elementary Theory of Graphs
We understand a graph to be a set of vertices endowed with an adjacency relation. So our
signature this time with supple one binary relation symbol E. Here i s the list of sentences
that captures the class of graphs:

(a) ∀x [¬Exx]

(b) ∀x, y [Exy → Eyx]

The sentence (a) asserts that no vertex is adjacent to itself—that is there are no loops. The
sentence listed in (a) is also said to assert that E is irreflexive.
The sentence (b) asserts that the relation E is symmetric.
The sentences (a) and (b) together allow us to identify adjacencies are two-element sets of

vertices.
In a like manner, the class of all ordered sets (sometimes called partially ordered sets), the

class of sets endowed this an equivalence relation, and other similar classes can be described
by sets of sentences.

The Elementary Theory of Dense Linear Orders
Again the signature supplies us this a single nonlogical symbol, a two-place relation symbol
≤, which by tradition we use in the infix notation.
The class of dense linear orders is axiomatized by the following list of sentences:

(a) ∀x [x ≤ x]

(b) ∀x, y, x [x ≤ y ∧ y ≤ z → x ≤ z]

(c) ∀x, y [x ≤ y ∧ y ≤ x→ x = y]

(d) ∀x, y [x ≤ y ∨ y ≤ x]

(e) ∀x, y∃z [(x ≤ y ∧ ¬x ≈ y)→ (x ≤ z ∧ ¬x ≈ z ∧ z ≈ y ∧ z ≤ y)]
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The models of the sentences (a),(b), and (c) are just the ordered sets and the models of (a),
(b), (c), and (d) are the linearly ordered sets. There are lots of different dense linear orders. As
an example consider the real number in [0, 3]. Through out all the irrational number between
1 and 2. The result is a dense linear order, using the usual order on the real numbers.

The Elementary Theory of Real Closed Fields
The paradigmatic example of a real closed field is 〈R,+, ·,−, 0, 1,≤〉, namely the ordered field
of real numbers. The signature this time provides two 2-place operation symbols, one 1-place
operation symbol, two constant symbols, and one two place relation symbols. A real closed
field is an ordered field in which every positive element has a square root and every polynomial
of odd degree has a root. As we have all seen the elementary sentences that axiomatize the
class of fields, I won’t write them out here again. For the ordering we need the sentences from
the example above that assert that the ordering is linear. In addition we need the following
two sentences:

∀x, y, z [x ≤ y → x+ z ≤ y + z]
∀x, y, z [x ≤ y ∧ 0 ≤ z → x · z ≤ y · z]

That every positive element has a square root is expressed by

∀x∃y [0 ≤ x→ x ≈ y · y] .

The sentence πn below expresses that every polynomial of degree n has a root:

∀z0, . . . , zn−1∃x
[
z0 + z1x+ z2x

2 + · · ·+ zn−1x
n−1 + xn ≈ 0

]
So gather into the set Σ all the field axioms, the axioms of linear orders, the two sentences that
say that the ordering is compatible in the expected way with + and ·, and all the sentences πn
when n is odd. Then Mod Σ is the class of all real closed fields. While it is by no means easy,
it turns out that the elementary theory of real closed fields is a complete theory—that is that
any real closed field in elementarily equivalent to the ordered field of real numbers. Alfred
Tarski had this conclusion in hand as early as 1930, although it did not appear in print until
1948.

The Elementary Theory of Sets
The theory of sets might more appropriately be called the theory of membership. For this
theory we take a signature that provides only one nonlogical symbol, a two-place relation
symbol ∈. Zermelo-Fraenkel set theory, with choice (denoted by ZFC for short) has the
following elementary sentences as axioms:

(a) ∀x, y [x ≈ y ↔ ∀z(z ∈ x↔ z ∈ y)]

(b) ∃x∀y(¬y ∈ x)

(c) ∀x, y∃z∀u [u ∈ z ↔ (u ≈ x ∨ u ≈ y)]

(d) ∀x∃y∀z [z ∈ y ↔ ∃u(u ∈ x ∧ z ∈ u)]



1.2 A Short Sampler of Elementary Classes 18

(e) ∀x∃y∀z [z ∈ y ↔ ∀u(u ∈ z → u ∈ x)]

(f) ∃x [∃y(y ∈ x) ∧ ∀y (y ∈ x→ ∃z(y ∈ z ∧ z ∈ x))]

(g) ∀x [∃y(y ∈ x)→ ∃y (y ∈ x ∧ ¬∃z(z ∈ y ∧ z ∈ x))]

(h) ∀u∀v̄ [∀x∃!y(ϕ(x, y, u, v̄))→ ∃y∀z [z ∈ y ↔ ∃x (x ∈ u ∧ ϕ(x, y, u, v̄))]]
Here ∃! expresses “there is exactly one”. We leave it to the delight of the graduate
students invent a proper expansion of the this abbreviation.

(i) ∀x∃y [y “is a function with domain x” ∧ ∀z((z ∈ x ∧ ∃u(u ∈ z))→ y(z) ∈ z)]

Each of these sentences assert some attribute of membership. For example, (a) asserts that
two sets are the same if and only if they have the same members, while (e) asserts that the
collection of all subsets of a x is also a set (we call it the power set). Notice that (h) is not
actually one sentence but a whole infinite schema of sentences, each depending on the choice
of the formula ϕ. This axiom asserts, intuitively, that if the formula ϕ defines a function, then
the image of a set (here associated with u) with respect to this definable function is itself a set.
The statement (h) is called the Axiom of Replacement. It is well worth the effort to decode
into ordinary mathematical English what each of these sentences asserts. Try, for example,
to see why (f) should be called the Axiom of Infinity. The statement (i) is the famous Axiom
of Choice. I have left it is the capable hands of the graduate students to replace the part in
quotations with an actual formula of a our signature.
This system of axioms arose in stages. In the last decades of the nineteenth century the

effort to put analysis on a firm foundation led to the development of an informal theory of
sets (or membership), principally at the hands of Georg Cantor. In 1899, Ernst Zermelo
and Bertrand Russell independently noted that this informal theory led to a contradiction.
There ensued decades of effort to secure the foundations of mathematics. The axiom system
given above is one of the consequences of this effort. The largest part of the axioms for ZFC
were worked out by Zermelo by 1908, although notably missing was the axiom (g), called
the Axiom of Foundation or the Axiom of Regularity, and Zermelo used a weaker version
of the Replacement Axiom that is known as the Axiom of Comprehension. The Axiom of
Replacement was advanced by Abraham Fraenkel and independently by Thoralf Skolem in
1922. John von Neumann introduced the Axiom of Foundation (alias Axiom of Regularity) in
1925.
One might ask how successful ZFC is in capturing our intuitions about membership. The

report, almost a century later is mixed but very positive. The most notable shortcoming
of ZFC is that it provides not direct way to handle objects like the class of all groups. So
ZFC has some cousins like the Gödel-Bernays-von Neumann theory of classes and the related
Morse-Kelley theory of classes. Nevertheless, ZFC has proven adequate for the development
of almost any kind of mathematics. But is it free of contradiction? After all, the construction
of a systematic foundation for mathematics free of contradiction was the motivation for this
elementary theory. Here the report is mixed, and necessarily so. We have no proof that
it is free of contradiction. Instead, we have the extraordinary theorem of Kurt Gödel, that
asserts, loosely speaking, that any comprehensive formal system in which proofs can be tested
mechanically cannot prove its own consistency, unless it is inconsistent. We know, at least, the
very nonobvious facts that, what some regard as the most questionable of the axioms, namely
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the Axiom of Choice and the Axiom of Foundation, cannot be a source of an inconsistency:
If ZFC is inconsistent, then so is ZFC −{(h), (i)}. You might find it reassuring that the
enormous range and depth of mathematical work over the past century has uncovered no
inconsistencies. Of course, reassurance is not proof.

The Elementary Theory of Peano Arithmetic
We would like to write down a list of axioms for the elementary theory of 〈N,+, ·, 0, 1〉, the
structure consisting of the natural numbers endowed with ordinary addition and multiplica-
tion, and with the numbers 0 and 1 given the status of named elements. In the last decades
of the nineteenth century this task was taken on by Charles Saunders Peirce and Richard
Dedekind and brought to completion by Giuseppe Peano in 1889. What Peano did was pro-
vide an axiomatization for the structure 〈N, S, 0〉 where S denotes the successor operation.
Here is a version of Peano’s axioms:

∀y[¬Sy ≈ 0]
∀x, y[Sx ≈ Sy → x ≈ y]
For all sets K [0 ∈ K ∧ ∀x(x ∈ K → Sx ∈ K)→ ∀x(x ∈ K)]

One can prove that any two models of these axioms must be isomorphic. One can also give
recursive definitions of + and · and prove, on the basis of these axioms that they have all the
expected properties. The trouble is, as you see, the third axiom has a variable K that ranges
over subsets rather than just elements. So this axiom system is not elementary. Also, the
definitions of + and · are not given by elementary formulas.
One could simple take Th〈N,+, ·, 0, 1〉 as a set of axioms, but without at least a way to

list the elements of this set such a solution is not very helpful. It turns out, as shown that
Alonzo Church in 1936, that there is no way the mechanically list the sentences belonging to
this theory. This result lies outside the scope of our course. As a consequence, the best we
can hope for is listable set of sentences that axiomatizes a substantial and interesting part of
Th〈N,+, ·, S, 0〉. One such list is called elementary Peano Arithmetic. Here is a version:

∀y[¬Sy ≈ 0]
∀x, y[Sx ≈ Sy → x ≈ y]
∀x [x+ 0 ≈ x]
∀x, y [S(x+ y) ≈ x+ Sy]
∀x[x · 0 ≈ 0]
∀x, y(x · Sy ≈ x · y + x)
∀ȳ [(ϕ(0, ȳ) ∧ ∀x(ϕ(x, ȳ)→ ϕ(Sx, ȳ)))→ ∀xϕ(x, ȳ)]
where ϕ can be any formula in which x does not occur as a bound variable.

This list of axioms retains Peano’s minimalist approach. Rather than taking, for example,
the commutative law for + as an axiom, one (that is, the eager graduate student) is expected
to deduce it from the given axioms. In place of Peano’s nonelementary induction axiom, we
have taken all its elementary instances. Like the Axiom of Replacement in ZFC, our induction
axiom is actually a schema of infinitely many sentences, each depending on a different choice
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of ϕ. Roughly speaking, we have asserted here that if P is any property describable by an
elementary formula and if

• 0 has P , and

• if x has P , then Sx has P ,

then every element as property P .

1.3 Problem Set 1

Problem Set on Galois Connections
8 September 2011

In Problem 4 to Problem 8 below, let A and B be two classes and let R be a binary relation
with R ⊆ A×B. For X ⊆ A and Y ⊆ B put

X→ = {b | x R b for all x ∈ X}
Y ← = {a | a R y for all y ∈ Y }

Problem 4.
Prove that if W ⊆ X ⊆ A, then X→ ⊆ W→. (Likewise if V ⊆ Y ⊆ B, then Y ← ⊆ V ←.)

Problem 5.
Prove that if X ⊆ A, then X ⊆ X→←. (Likewise if Y ⊆ B, then Y ⊆ Y ←→.)

Problem 6.
Prove that X→←→ = X→ for all X ⊆ A (and likewise Y ←→← = Y ← for all Y ⊆ B).

Problem 7.
Prove that the collection of subclasses of A of the form Y ← is closed under the formation of
arbitrary intersections. (As is the collection of subclasses of B of the form X→.) We call
classes of the form Y ← and the form X→ closed.

Problem 8.
Let A = B = {q | 0 < q < 1 and q is rational}. Let R be the usual ordering on this set.
Identify the system of closed sets. How are they ordered with respect to inclusion?



LECTURE 2
The Compactness Theorem

The Compactness Theorem, stated and proved in this Lecture, has a central position in model
theory. Indeed, it is such a familiar tool among the practitioners of model theory that it is
common to see the phrase “By a compactness argument, we see that . . . .” without any further
explanation. This is an indication that there are so many applications of the Compactness
Theorem in model theory that many of them become routine. This theorem also has many
applications in other parts of mathematics.

2.1 The Compactness Theorem

The Compactness Theorem. Let Γ be a set of sentences. If every finite subset of Γ has a
model, then Γ has a model.

Proof. A set of sentences is said to be finitely consistent provided each of its finite subsets
has a model.
We suppose that Γ is finitely consistent.
Looking ahead to a successful conclusion of our proof, we find a structure A that is a model

of Γ. Our ambition is to arrange matters so that every element of A will be named by a
constant symbol. What can we say about the elementary theory Th A of A? It is evident
that it will have each of the following properties:

(a) Γ ⊆ Th A.

(b) Th A is finitely consistent.

(c) Either ϕ ∈ Th A or ¬ϕ ∈ Th A, for every sentence ϕ.

(d) For every formula ψ(x) with one free variable, there is a constant symbol d such that
A |= ∃xψ(x)→ ψ(d).

The last item on this list reflects our ambition that every element of A be named by a constant
symbol.
Our proof will have two parts. In the first part, we will build an elementary theory T with

all the properties listed above. In the second part we will construct a model of T .
The first stumbling block is that there might not be enough constant symbols in our signature

to name all the elements we plan to name. Indeed, there might not be any constant symbols
at all. We get over this block by expanding the signature with a whole flock of new constant
symbols.
Let κ be the cardinality of the set of formulas of our original signature. We expand that

signature by adjoining a list of κ new constant symbols:

c0, c1, c2, . . . , cα, . . . ,where α ∈ κ.

21
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Now constraints (c) and (d) listed above have to be made to hold. Each of these constraints
has κ cases. Our idea is to construct T in κ stages and at appropriate stages in the construction
to fulfill parts of constraints (c) and (d).
In our expanded signature there are still κ sentences as well as κ formulas. We list all the

sentences:
ϕ0, ϕ1, . . . , ϕα, . . .

and all the formulas with one free variable

ψ0, ψ1, . . . , ψα, . . .

For each ordinal β ∈ κ ∪ {κ} we will define Tβ as follows:

T0 = Γ
Tα+1 = T ′α ∪ {∃xψα → ψα(d)}

where x is the variable free in ψ and d is the first constant symbol not occurring in T ′α

and where T ′α =

Tα ∪ {ϕα} if this set is finitely consistent and
Tα ∪ {¬ϕα} otherwise

Tβ =
⋃
α∈β

Tα, when β is a limit ordinal.

Notice that in the middle case β = α + 1. This is the case when β is a successor ordinal.
Finally, we put T = Tκ. It should be clear that the constraints (a), (c), and (d) have been

fulfilled. We have to verify condition (b). So we prove by transfinite induction that both T ′β
and Tβ are finitely consistent whenever β ∈ κ ∪ {κ}.

Base Step: β = 0. We know that T0 = Γ and that Γ is finitley consistent. We need to
show that T ′β is also finitely consistent. We have

T ′0 =

T0 ∪ {ϕ0} if this set is finitely consistent and
T0 ∪ {¬ϕ0} otherwise.

Under the top alternative there is nothing left to prove. So suppose the bottom alternative
applies. This means T0 ∪{ϕ0} is not finitely consistent. So pick a finite subset Λ ⊆ T0 so that
Λ ∪ {ϕ0} has no model. To prove that T0 ∪ {¬ϕ} is finitely consistent pick an arbitrary finite
subset ∆ ⊆ T0. We have to show that

∆ ∪ {¬ϕ} has a model.

Now ∆ ∪ Λ is a finite subset of T0 so it has a model B. Since Λ ∪ {ϕ} has no model, we
conclude that B is not a model of ϕ. This means that B |= ¬ϕ. Therefore

B |= ∆ ∪ {¬ϕ} has a model

as desired.
Inductive Steps: There are two subcases depending on whether β is a nonzero limit ordinal

or a successor ordinal.
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Suppose first that β is a limit ordinal. Then Tβ = ⋃
α∈β Tα. Let ∆ be a finite subset of Tβ.

Since nonzero limit ordinals are infinite, we see that ∆ ⊆ Tα for some α ∈ β. Appealing to
the induction hypothesis, we see that ∆ has a model, and so Tβ is finitely consistent.
What about T ′β? Well, the argument used in the Base Step goes through if we replace 0

everywhere in it by β.
Next suppose that β is the successor of an ordinal, say α. That is, β = α + 1. So Tβ =
T ′α∪{∃xψα → ψ(d)}, where d is a constant symbol not occurring in T ′α. Since α is smaller than
β, we know, by the induction hypothesis, that T ′α is finitely consistent. Let ∆ be any finite
subset of T ′α. Let B be a model of ∆. We need to show that ∆∪{∃xψα → ψα(d)} has a model.
We can obtain such a model by making, if needed, a small adjustment to B. In the event
that the hypothesis ∃xψα fails in B, then the implication ∃xψα → ψ(d) holds in B and no
adjustment is needed. In the event that ∃xψ holds in B, then there is an element b ∈ B that
witnesses this existential assertion. We adjust B to obtain B′ by changing only the element
denoted by the constant symbol d. We put dB′ = b, otherwise B and B′ are exactly the same.
Evidently, B′ |= ∃xψα → ψα(d). We see that B′ |= ∆ has well since the constant symbol d
occurs in no sentence belonging to ∆. In this way we see that Tβ is finitely consistent. We
leave the argument that T ′β is finitely consistent in the eager hands of the graduate students.
So the proof by transfinite induction is finished. Putting β = κ we see that T is finitely

consistent.
At this point we have a set T is sentences that has all the attributes (a), (b), (c), and (d)

that we desire of the elementary theory Th A′ of the structure A′ we hope to build. Let C be
the set of constant symbols in our expanded signature. Our intention is to devise a model A′
of T in which every element is named by a constant symbol. We could use C as the universe
of A′ except that T may compel several constant symbols to name the same element. (The
annoying ′ is there to remind us that we are building a model for a richer signature than the
signature of our original set Γ of sentences.) So we define an equivalence relation ∼ on C by

c ∼ d if and only if c ≈ d ∈ T.

The fact that ∼ is actually an equivalence relation follows since all the following sentences
must belong to T (since they are true in every structure—their negations cannot belong to
any finitely consistent set).

c ≈ c for each constant symbol c
c ≈ d→ d ≈ c for all constant symbols c and d

[c ≈ d ∧ d ≈ e]→ c ≈ e for all constant symbols c, d, and e.

We take A = C/ ∼, that is the elements of A are the equivalence classes modulo ∼. To
make this set A into a structure A′ we have to impose on it basic operations and relations.
Here is how. Let Q be any operation symbol and take r to be its rank. Likewise, let R be any
relation symbol and let r be its rank. Then put

QA′(c0/ ∼, . . . , cr−1/ ∼) = e/ ∼ if and only if Qc0 . . . cr−1 ≈ e ∈ T
(c0/ ∼, . . . , cr−1/ ∼) ∈ RA′ if and only if Rc0 . . . cr−1 ∈ T.

The trouble with definitions of this sort is that equivalence class may have more than one
element, but the definition worked by picking representatives from equivalence classes. To
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secure the definition above we have to show that it is immaterial how the representatives are
chosen. We deal only with the case of operation symbols and leave the case of relation symbols
for the entertainment of the graduate students. So suppose ci ∼ c′i for all i < r. This means
that ci ≈ c′i ∈ T for all i < r. Notice that ∃xQc0 . . . cr−1 ≈ x is a sentence that is true in every
structure. So its negation cannot belong to any finitely consistent set, like T . That means
that this existential assertion actually belongs to T . But then by attribute (d), there must be
a constant symbol e so that Qc0 . . . cr−1 ≈ e ∈ T . But we also know that the implication

(c0 ≈ c′0 ∧ · · · ∧ cr−1 ≈ c′r−1)→ Qc0 . . . cr−1 ≈ Qc′0 . . . c
′
r−1

must hold in every structure. As we have seen, this means that this implication belongs to T .
But the finite set

{c0 ≈ c′0, . . . , cr−1 ≈ c′r−1}
∪ {(c0 ≈ c′0 ∧ · · · ∧ cr−1 ≈ c′r−1)→ Qc0 . . . cr−1 ≈ Qc′0 . . . c

′
r−1}

∪ {¬Qc0 . . . cr−1 ≈ Qc′0 . . . c
′
r−1}

has no model. This means that Qc0 . . . cr−1 ≈ Qc′0 . . . c
′
r−1 belongs to T . Had we also

Qc′0 . . . c
′
r−1 ≈ e′ ∈ T , then we could conclude that e ≈ e′ ∈ T as well, so that e ∼ e′.

In this way we see that our definition of QA′ is sound.
We have in hand a structure A′. The next step is to show for all sentences ϕ that

A′ |= ϕ if and only if ϕ ∈ T.

We prove this by induction on the complexity of the sentence ϕ.
Base Steps: ϕ is atomic.
There are two cases. Either ϕ is s ≈ t for some terms s and t that have no variables, or else
ϕ is Rt0 . . . tr−1 where R is a relation symbol, r is the rank of R, and t0, . . . , tr−1 are terms
that have no variables. To handle these two cases, it helps to realize that for any term t with
free variables say y0, . . . , yr−1, given any constant symbols d0, . . . , dr−1 there will be a constant
symbol e so that

t(d0, . . . , dr−1) ≈ e ∈ T.
This can be proved by induction on the complexity of the term t using propertis (b) and (d)
of the set T . (I can almost hear the eager graduate students working their pencils on this.)
By reasoning similar to what we saw just above, we find that it is enough to consider just the
cases where ϕ is Qc0 . . . cr−1 ≈ e and where ϕ is Rc0 . . . cr−1. But we have defined QA′ and
RA′ just so the base step of the induction works in these cases.
Inductive Steps: There are three cases
Case: ϕ is θ ∨ ψ.
Just observe

A′ |= ϕ if and only if A′ |= θ ∨ ψ
if and only if A′ |= θ or A′ |= ψ

if and only if θ ∈ T or ψ ∈ T
if and only if θ ∨ ψ ∈ T
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The equivalence linking the third and fourth steps above results from an appeal to the induc-
tion hypothesis. The equivalence of the last two deserves a bit a thought, since it depends on
the finite consistency of T and on attribute (c).
Case: ϕ is ¬ψ.
Just observe

A′ |= ϕ if and only if A′ |= ¬ψ
if and only if A′ |= ψ fails
if and only if ψ /∈ T
if and only if ¬ψ ∈ T

The last step depends on attribute (c) and the finite consistency of T .
Case: ϕ is ∃xψ.
Just observe

A′ |= ϕ if and only if A′ |= ∃xψ
if and only if A′ |= ψ(d) for some constant symbol d
if and only if ψ(d) ∈ T for some constant symbol d
if and only if ∃xψ ∈ T

To defend the equivalence between the second and third step we appeal to the fact that every
element of A is named by a constant. The equivalence of the third and fourth step follows by
the induction hypothesis. Once again, the last step depends on attribute (c) and the finite
consistency of T , but attribute (d) is also required. We give one of the details—the details for
the upward implication. Suppose that ∃xψ ∈ T . By (d) we know that ∃xψ → ψ(d) ∈ T for
some constant symbols d. On the other hand, the set

{∃xψ,∃xψ → ψ(d),¬ψ(d)}

has no models. This means that it is not a subset of T by the finite consistency of T . Hence,
¬ψ(d) cannot belong to T . By attribute (c), we obtain ψ(d) ∈ T , as desired.
So we know in particular that A′ |= T . Since Γ ⊆ T , we find that A′ is a model of Γ. We

are almost done. The flaw in A′ is that it is a structure for a richer signature than the one
we started with. We obtain A from A′ simply by ignoring the new constant symbols. So we
throw away the names from our signature, being careful to keep in the structure the elements
that were named.

The Compactness Theorem and the proof of it given above have some immediate corollaries.

Corollary 2.1.1. Let Γ be any set of elementary sentences and ϕ be any elementary sentence.
If ϕ is a logical consequence of Γ, then ϕ is a logical consequence of some finite subset of Γ.

Corollary 2.1.2. Let fix a signature. Let κ be the cardinality of the set of all formulas of the
signature and let Γ be a set of sentences of the signature. If Γ has a model, then Γ has a model
of cardinality no larger than κ.



2.2 A Sampler of Applications of the Compactness Theorem 26

There are some things to learn from this proof. First, it shows how to use transfinite recursion
to build a structure satisfying an infinite list of constraints. While this proof, which appeared
in the literature in 1949, is not the first construction that does this, it may be the first one
that you have seen. Second, it is possible to abstract from this proof those features that
make the proof as a whole hang together. This means other proofs that build structures with
different kinds of features can be patterned after this one. It is even possible to formulate
general theorems, whose proofs are recognizable variants of the one just given and which have
the Compactness Theorem, as well as other theorems, as an easy corollary.
The Compactness Theorem has an interesting history. Kurt Gödel was a 23 year old grad-

uate student in 1929 in Vienna working on his Ph.D. dissertation under the supervision of
Hans Hahn (of Hahn-Banach fame) when he drew the Compactness Theorem for countable
signatures as a corollary of the Completeness Theorem that was the central result of his dis-
sertation and which he published in 1930. From Gödel’s writings at the time, it is fairly clear
that he did not realize how important this corollary would become. Another graduate student,
the 26 year old Anatol̆ıi Mal’cev working at Moscow State on his Ph.D. under the direction
of Andrei Kolmogorov, saw how to prove the Compactness Theorem for arbitrary signatures
and also found many applications of it in traditional branches of algebra, like group theory.
Mal’cev published the first of his findings in 1936. The proofs found by Gödel and Mal’cev
relied heavily on the work in 1920 of another graduate student, Thoralf Skolem who was then
working on his Ph.D. in Oslo under the supervision of the great number theorist Axel Thue.
The proof given above, as Paul Erdős would say “the proof that belongs in the Book”, was
discovered by Leon Henkin in 1947. Henkin was 27 at the time and working toward is Ph.D.
at Princeton under the supervision of Alonzo Church.

2.2 A Sampler of Applications of the Compactness Theorem

There are a number of striking statements that are immediate consequences of the Compact-
ness Theorem. We conclude this lecture with a selection of these.

Theorem 2.2.1. Any set of elementary sentence that has arbitrarily large finite models must
also have infinite models of arbitrarily larger cardinality.

Proof. Let Γ be any set of elementary sentences that has arbitrarily large finite models. Let κ
be any infinite cardinal. Expand the signature of Γ by adjoining a list c0, c1, . . . , cα, . . . where
α ∈ κ of distinct new constant symbols. Observe that, since Γ has arbitrarily large finite
models, that every finite subset of

Γ ∪ {¬cα ≈ cβ | α, β ∈ κ and α 6= β}

has a model. By the Compactness Theorem the whole set displayed above has a model. In this
model, the new constant symbols name distinct elements, so that model must have cardinality
at least κ. Of course, this model is in the expanded signature, but the reduct of the model
obtained by ignoring the new constant symbols is also a model of Γ with the same universe.

This result can be tightened of obtain the conclusion that such a set of sentences must have
models of every cardinality that is at least as large of the cardinality of the set of formulas of
the signature. It is also evident that the hypothesis of having arbitrarily large finite models
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can be replaced by the hypothesis of having an infinite model. Later we shall see sharper,
more powerful results like this one. This theorem is due to Leon Henkin and, independently,
to Abraham Robinson, and come from their Ph.D. dissertations.
This theorem points up a feature of our elementary languages: they are unable to distinguish

between infinite cardinalities, after some point. It is always possible to write down a set of
sentences that has only infinite models. Likewise, one can easily express the fact that any
model of the set has exactly n elements, for any single positive integer n. But no set of
elementary sentences, for example, can axiomatize the class of finite groups.

Theorem 2.2.2. Let R = 〈R,+, ·,−, 0, 1,≤〉 be the ordered field of real numbers. Let T be
the elementary theory of R. Then T has a model R∗ that extends R and has infinitesmal
elements, that is elements ε so that 0 < ε < 1

n
holds for all positive integers n.

Proof. We have to provide a structure satisfying three constraints:

• it must be a model of T ,

• it must have an element that is larger than any integer, and

• R must be a substructure.

To succeed, we express each of these constraints as sets of elementary sentences, in the hope
that the Compactness Theorem will provide us with a model of the union of these sets of
sentences.
The first constraint is already expressed as a set of sentences.
For the second, let us add a new constant symbol ∞ to our signature as a name for the

desired element. Then the set

Γ = {0 ≤ ∞, 1 ≤ ∞, 1 + 1 ≤ ∞, (1 + 1) + 1 ≤ ∞, . . . }

of sentences expresses that ∞ is larger than any integer.
For the third, let us add a new constant cr to name each real number r. Let us gather into

a set ∆ all the sentences that tell how the basic operations and relations of our structure R
work. For example, we put into ∆ all sentences of the form c7 + c3 ≈ c10 (this sentence reflects
that 7+3 = 10), all sentences similar to these to say how multiplication behaves, all sentences
like ce ≤ cπ to reflect how the ordering works, as well as all sentences like ¬c100 ≈ c2.
Now consider T ∪ Γ ∪∆. Were we able to ignore Γ, then R could be made into a model of

this set by simply declaring that cr should name r, for each real number r. But we are unable
to ignore Γ. With the help of the Compactness Theorem, we only have to pay attention to
arbitrary finite subsets of Γ.
Consider a finite subset of Γ. This finite subset asserts that∞ must name an element larger

that some specific natural number. So we can make a model of any finite subset of T ∪ Γ∪∆
that expands R by letting ∞ name a sufficiently large real number and by letting each cr
name the real number r.
We find that every finite subset of T ∪ Γ ∪ ∆ has a model. So the whole set has a model.

The reduct, call it R∗, of this model of T ∪ Γ∪∆ to the signature of R has all the properties
we desire. (In R∗ the element named by ∞ is positive and n ≤ ∞ holds for every integer n.
One of the sentences in T asserts that if 0 < x < y, then 0 < 1

y
< 1

x
. So the element 1

∞ is the
promised infinitesmal.)
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A stronger version of this theorem, where the notion of substructure is replaced by the notion
of elementary substructure—which we will take up in a few weeks—was Abraham Robinson’s
starting point for the development of nonstandard analysis.
Here is another application of the Compactness Theorem due to Abraham Robinson. This

result can be found in his 1949 Ph.D. dissertation written at the University of London under
the direction of Paul Dienes.
Robinson’s Principle. Let Γ be any set of sentences in the signature of fields that includes
the field axioms. Any sentence true in all models of Γ of characteristic 0 is true in all models
of Γ of characteristic p for all large enough prime numbers p.

Proof. We prove the contrapositive. So suppose that the sentence σ is a fails in some models
of Γ of characteristic p for arbitrarily large primes p. This means that every finite subset of

Γ ∪ {¬(1 + 1 ≈ 0),¬(1 + 1 + 1 ≈ 0), . . .¬(1 + · · ·+ 1︸ ︷︷ ︸
n−times

≈ 0)} ∪ {¬σ}

must have a model. By the Compactness Theorem the whole set above must have a model
K. But then K will be a field of characteristic 0 in which σ fails.

This Principle indicates that the Compactness Theorem creates a link between the finite and
the infinite. It is some times possible to use the Compactness Theorem to show that the truth
of a statement on one of these levels leads to the truth of related statements on the other level.
As a last application of the Compactness Theorem we turn to algebraic geometry. Our proof

relies on a theorem from 1949 of Alfred Tarski according to which any two algebraically closed
fields of the same characteristic have the same elementary theory. We will prove this theorem
later in the course. Tarski’s theorem is sometimes called the Lefschetz Principle, since Solomon
Lefschetz and André Weil had suggested earlier that any statement of algebraic geometry
that is true over C should be true over every algebraically closed field of characteristic 0.
Lefschetz had no proof of this, nor even any precise formulation of what a “statement of
algebraic geometry” might be, but he was able to provide interesting and useful instances of
this principle that could be proven. Variants of this result for formal languages more powerful
than the ones we have developed here have been discovered.
Putting Tarski’s theorem on algebraically closed fields together with Robinson’s Principle we

get
Robinson’s Principle for Algebraically Closed Fields. A sentence is true in alge-
braically closed fields of characteristic 0 if and only if it is true in algebraically closed fields of
characteristic p, for all large enough primes p.

Proof. Let Γ be the theory of algebraically closed fields. Suppose the sentence ϕ is true in an
algebraically closed field of characteristic 0. According to Tarski, ϕ is true in every algebraically
closed field of characteristic 0. By Robinson’s Principle, ϕ is true to all algebraically closed
fields of characteristic p, for all large enough primes p. For the converse, suppose ϕ is not true
in some algebraically closed field of characteristic 0. The ¬ϕ is true in some algebraically closed
field of characteristic 0. Again according to Tarski ¬ϕ is true in every algebraically closed
field of characteristic 0. By Robinson’s Principle ¬ϕ is true in every algebraically closed field
of characteristic p for all large enough primes p. Therefore ϕ is not true in any algebraically
closed field of prime characteristic, except for a finite set of primes.



2.2 A Sampler of Applications of the Compactness Theorem 29

An affine variety over the field C of complex numbers is just the set of all solutions to some
system of polynomial equations in, say n variables, where the coefficients of the polynomials
are complex numbers. So V is an affine variety provided

V = {(z0, . . . , zn−1) | z0, . . . , zn−1 ∈ C and pi(z0, . . . , zn−1) = 0 for all i ∈ I}

for some system 〈pi | i ∈ I〉 of polynomials with complex coefficients. It is a consequence of
Hilbert’s Finite Basis Theorem that I can be taken to be finite. Observe that V ⊆ Cn, giving
it a profoundly geometric character.
A map G : V → W between affine varieties V andW contained in Cn is called a polynomial

map provided there are polynomials g0, . . . , gn−1 with complex coefficients such that

G(z0, . . . , zn−1) = (g0(z0, . . . , zn−1), . . . , gn−1(z0, . . . , zn−1))

for all points (z0, . . . , zn−1) ∈ V .
The following theorem from 1968 is due to James Ax.

The Ax Polynomial Map Theorem. Let V be an affine variety and G : V → V be a
polynomial map. If G is one-to-one, then G is onto V .

Proof. Actually, we prove something stronger, namely that this result holds when the field
C of complex numbers is replaced by any algebraically closed field K. Consider any variety
V ⊆ Kn and any polynomial map G : V → V that is one-to-one.
First consider the case when K is the algebraic closure of the field Zp with p elements, where
p is a prime number. K has characteristic p. Any finite set of elements of K belong to a finite
extension of Zp, since each element of K is algebraic over Zp. But finite extensions of finite
fields are finite (they are certain finite dimensional vectors spaces over the finite field. . . ). We
want to see that any point ā = (a0, . . . , an−1) ∈ V arises as an image under G of some point
in V . Let L be the smallest subfield of K that includes the elements a0, . . . , an−1. This field
is finite and we see that ā ∈ V ∩Ln. Now because G is a polynomial map we see that G must
send points of V ∩ Ln to points of V ∩ Ln. The restriction of G to V ∩ Ln is a one-to-one
function from the finite set V ∩ Ln into itself. The finiteness entails that this restriction of
G is also onto V ∩ Ln. So ā must have a preimage under G, as desired. Hence, the theorem
holds if the underlying field is the algebraic closure of some Zp.
We would like to take two further steps. First, we would like to say that the theorem holds

for any algebraically closed field of prime characteristic. Second, we would like to transfer
this knowledge from the case of prime characteristic to the case of algebraically closed fields
of characteristic 0.
Now according to the theorem of Tarski mentioned above any two algebraically closed fields

of the same characteristic have the same elementary theories. So if we could find some way to
express our theorem with a set of elementary sentences, then we could complete the first of
the remaining two steps. For the second step, we can just apply Abraham Robinson’s Transfer
Principle, with Γ a set of sentences axiomatizing the class of algebraically closed fields.
Consider a particular variety V over the field K and a particular polynomial map G : V → V .

Let p0, . . . , pk−1 be polynomials in the n variables x0, . . . , xn−1 that determine this variety and
g0, . . . , gn−1 be the polynomials that determine G. These polynomials have coefficients drawn
from K. Since we envision talking about varieties over arbitrary algebraically closed fields,
this use of elements of a particular field is inconvenient. Replace each coefficient by a distinct
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new variable. Since we have only finitely many polynomials and each has only finitely many
coefficients, we end up with a finite list y0, . . . , y`−1 of variables associated with coefficients. To
make for easier reading, we let x̄ abbreviate x0, . . . , xn−1 and ȳ abbreviate y0, . . . , y`−1. Now
adjust each pi to make pi(ȳ, x̄) by systematically replacing each coefficient by the associated
yj. We can handle the polynomials gi that specify the polynomial map G in the same way.

Let ϕ(ȳ, x̄) be the formula
p0(ȳ, x̄) ≈ 0 ∧ · · · ∧ pk−1(ȳ, x̄) ≈ 0

If we assign the coefficients in K to the yi’s, then the n-tuples assigning values in K to the
variables x0, . . . , xn−1 that satisfy ϕ in K are exactly to members of the affine variety V . Of
course, assigning different values from K to the yi’s also results in an affine variety, although
it might differ from V . Also observe, that following the same procedure over a different field
will also result in an affine variety over that field.

Let ψ(ȳ, x̄, x̄′) be the formula
ϕ(ȳ, x̄) ∧ ϕ(ȳ, x̄′) ∧ g0(ȳ, x̄) ≈ g0(ȳ, x̄′) ∧ · · · ∧ gn−1(ȳ, x̄) ≈ gn−1(ȳ, x̄′)

Loosely speaking, ψ expresses that the n-tuple assigned to x̄ and x̄′ belong to the variety and
that the polynomial map gives them the same value.

Let θ(ȳ) be the formula
∀x̄∀x̄′

[
ψ(ȳ, x̄, x̄′)→ (x0 ≈ x′0 ∧ · · · ∧ xn−1 ≈ x′n−1)

]
This formula is intended to express that the polynomial map is one-to-one.

Let δ(ȳ) be the formula
∀x̄
[
ϕ(ȳ, x̄)→ ∃x̄′[ϕ(ȳ, x̄′) ∧ g0(ȳ, x̄′) ≈ x0 ∧ · · · ∧ gn−1(ȳ, x̄′) ≈ xn−1]

]
This formula is intended to express that the polynomial map is onto.
So let σ be the sentence ∀ȳ

[
θ(ȳ)→ δ(ȳ)

]
. The sentence σ depends on the form and number

of the polynomials pi and gj that determine the variety V and the polynomial map G, although
the specific coefficient of those polynomials has been eliminated in favor of the variables ȳ. The
truth of σ for the algebraically closed field K is equivalent to the statement of the theorem,
but restricted to those affine varieties and those polynomial maps of the right form.
We know that our theorem holds over algebraically closed fields of prime characteristic.

Suppose, for the sake of contradiction, that it fails over an algebraically closed field K of
characteristic 0. Pick a variety V and a polynomial map G that witnesses this failure. Let
sigma be the sentence, constructed as above, for this V and G. Then we see that K |= ¬σ.
By Robinson’s Transfer Principle we have a prime p so that ¬σ holds in all algebraically
closed fields of characteristic p. On the other hand, we have proven that σ must be true in
all algebraically closed fields of prime characteristic. This is our contradiction that establishes
the theorem.
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The proof of the theorem above highlights the central role that is played by discerning
whether a notion can be expressed in an elementary fashion. The length of this proof just re-
flects an expository elaboration of this point. A practicing model theorist might have rendered
the proof as follows:

One-to-one polynomial maps on an affine variety over a finite field must be onto. It
follows that the same must hold over the algebraic closure of any finite prime field.
Since our theorem can be expressed by a schema of elementary sentences, it must
hold over every algebraically closed field of prime characteristic. By Robinson’s
Transfer Principle, it must hold over every algebraically closed field of character-
istic 0. In particular, it holds over the field of complex numbers.

2.3 Problem Set 2

Problem Set About the Compactness Theorem
Due 22 September 2011

Problem 9.
Let L be the language for group theory with operation symbols ·,−1 , and 1. Let T be a set
of L-sentences which includes all the group axioms (so every model of T will be a group).
Suppose that for each n, there is a model of T which has no elements, other than 1, of order
smaller than n. Prove that there is a model of T such that 1 is the only element of finite order.

Problem 10.
Suppose that G is a group which has elements of arbitrarily large finite order. Prove that G
is elementarily equivalent to a group with an element of infinite order.

Problem 11.
Let 〈N,+, ·, 0, 1,≤〉 be the familiar structure consisting of the natural numbers equipped with
addition, multiplication, the two distinguished elements 0 and 1, and the usual order relation.
Let T consist of all the sentences true in 〈N,+, ·, 0, 1,≤〉. Prove T has a model M with an
element ω so that all the following are true in M:

0 ≤ ω, 1 ≤ ω, 2 ≤ ω, . . . .

Problem 12.
Let L be the language of rings. Find a set Σ of L-sentences such that Mod Σ is the class of
algebraically closed fields. Then prove that there is no finite set of L-sentences which will
serve the same purpose.

Problem 13.
Let L be the language of ordered sets. Prove that there is no set Σ of L-sentences such that
Mod Σ is the class of all well-ordered sets.



LECTURE 3

Putting Structures Together with
Ultraproducts

The Henkin-style proof we gave for the Compactness Theorem has the key feature of a good
proof, it goes beyond demonstration to illuminate the theorem. However, the structure
that emerged in the course of that proof was made from syntactical elements. After all, the
Compactness Theorem asserts that if each finite subset of a set Γ of sentences has a model,
then Γ should have a model. What could be more natural than to start with a system of
structures, each a model of some finite subset of Γ, and fabricate in some loosely algebraic
fashion a model of all of Γ from them?
In this lecture we will describe how this might be done. Along the way—perhaps more

importantly, since we already have such a nice proof of the Compactness Theorem—we will
introduce a useful method of producing structures with useful elementary properties.
The basic plan is to take a system 〈Ai | i ∈ I〉 of structures, all of the same signature, and

form their direct product ∏
i∈I

Ai.

After that we will identify a suitable notion of largeness and define an equivalence relation on
the direct product by setting

ā ∼ ā′ if and only if the set {i | ai = a′i} is a large subset of I

for all tuples ā and ā′ in the direct product. We will be able to demonstrate that ∼ is, in
fact, a congruence relation and this will allow us the form the quotient structure of the direct
product modulo this congruence relation.
The details of how to define the direct product and how to form quotient structure will

surprise no one who has seen these notions in algebra, say in group theory. But what a notion
of largeness might be may be new. We begin with it.

3.1 Filters and Ultrafilters

Let I be any nonempty set. By a filter on I we mean a collection F of subsets of I satisfying
the following constraints:

(a) I ∈ F,

(b) If X ∈ F and X ⊆ Y ⊆ I, then Y ∈ F, and

(c) If X, Y ∈ F, then X ∩ Y ∈ F.
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Any filter is one of our candidates for a notion of largeness of subsets of I. Perhaps, constraint
(c) seems worth a few words of explanation. On might consider that a subset of I is large when
its complement in I is negligible. Then (c) is the assertion that the union of two negligible
sets is negligible.
The collection of all subsets of I is evidently a filter. It is called the improper filter on I.

Every other filter on I is said to be a proper filter. There is also the trivial filter {I}. Let
Z be a subset of I. The principal filter based on Z is the collection {X | Z ⊆ X ⊆ I}.
Suppose that I is infinite (as is nearly always the case below). The Fréchet filter is the
collection {X | X ⊆ I and I \ X is finite}. When I is infinite the Fréchet filter on I is not
principal. Filters arose from the topological investigation of convergence. The Fréchet filter
was used by Maurice Fréchet, who was also one of the originators of the topological notion of
compactness.
An informative example of a filter is to let I be the unit interval and take F to be the collect

of all subsets of the unit interval that have Lebesgue measure 1.
An ultrafilter on I is a maximal proper filter on I. It follows easily from Zorn’s Lemma that

every proper filter can be extended to an ultrafilter. This was first proven in 1930 by Alfred
Tarski, some years prior to Zorn’s work. The hard-working graduate students will also prove
that a filter F is an ultrafilter on the nonempty set I if and only if for all X ⊆ I exactly one
of X and I \X belongs to F. Those same graduate students can find out why an ultrafilter
U is principal if and only if there is an element a ∈ I so that U is just the collection of all
subsets of I that have a as an element.
Again let I be a nonempty set. It is convenient to know when a collection C of subsets of I

can be extended to an ultrafilter. As the empty set cannot belong to any proper filter and as
filters are closed under taking intersections of finitely many sets in the filter, it is necessary that
C have the finite intersection property—that is, the intersection on any finite nonempty
subcollection of C should be nonempty. This condition is also sufficient. For let

F = {X |
⋂

D ⊆ X ⊆ I for some D ⊆ C with D finite}.

It is easy to check that F is a proper filter and this proper filter can be extended to an
ultrafilter.

3.2 Direct Products and Reduced Products

Fix a signature.
Let 〈Ai | i ∈ I〉 be a system of structures of our signature. We form the direct product of this

system by taking the universe of the direct product to be the direct product of the universes
and imposing the basic operations on this universe coordinatewise. Here are the details.
The set ∏I Ai is the set of all functions ā : I → ⋃

I Ai such that ā(i) ∈ Ai for all i ∈ I. We
construe ā as an I-tuple 〈ai | i ∈ I〉. We take A = ∏

I Ai to be the universe of the structure
A = ∏

I Ai. To complete the specification of A for each operation symbol Q and for each
relation symbol R (we let r be the rank of either) we define

QA(ā0, . . . , ār−1) = 〈QAi (ā0(i), . . . , ār−1(i)) | i ∈ I〉
(ā0, . . . , ār−1) ∈ RA if and only if (ā0(i), . . . , ār−1(i)) ∈ RAi for all i ∈ I
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Now let F be a filter on I. Define the relation ∼F on ∏I Ai by

ā ∼F ā
′ if and only if {i | ā(i) = ā′(i)} ∈ F

for all ā, ā′ ∈ ∏I Ai. That is, two I-tuples are related if and only if they agree on a large set
of coordinates—where the large sets are the sets belonging to the filter.
The binary relation ∼F is evidently reflexive and symmetric. That it is also transitive relies

on
{i | ā(i) = ā′(i)} ∩ {i | ā′(i) = ā′′(i)} ⊆ {i | ā(i) = ā′′(i)}

and the closure of filters under the formation of finite intersections and supersets.
Furthermore, the relation ∼F is also a congruence relation on the structure A = ∏

I Ai. This
means that for all operation symbols Q and all ā0, ā

′
0, . . . , ār−1, ā

′
r−1, where r is the rank of Q,

If āj ∼F ā
′
j for all j < r, then QA(ā0, . . . , ār−1) = QA(ā′0, . . . , ā′r−1).

The verification of this, left in the hands of eager graduate students, resembles the proof of
transitivity given just above, and it relies on the fact that our operation symbols have finite
rank.
In order to simplify notation we will denote the congruence class of ā by ā/F. So

ā/F = {ā′ | ā′ ∈ A and ā ∼F ā
′}

= {ā′ | ā′ ∈ A and {i | ā(i) = ā′(i)} ∈ F}.

We use A/F to denote the set of all these congruence classes, that is A/F is the partition
associated with ∼F. We take B = A/F to the universe of a structure B. To complete the
specification of B for each operation symbol Q and each relation symbol R (we let r be the
rank of either) we define

QB(ā0/F, . . . , ār−1/F) = QA(ā0, . . . , ār−1)/F
(ā0/F, . . . , ār−1/F) ∈ RB if and only if {i | i ∈ I and (ā0(i), . . . , ār−1(i)) ∈ RAi} ∈ F

These definitions rely on selecting representative elements from the various congruences classes.
To see that our definitions are definite, we have to see that any particular choice of represen-
tatives is immaterial. The part of this task concerning operation symbols works just like
similar tasks for defining quotient groups and quotient rings: the additional properties that
distinguish congruence relations from the wider class of equivalence relations are exactly what
is needed. We leave the details to the graduate students. Here is how to carry out the task
with the r-ary relation symbol R.
Suppose āj ∼F ā

′
j for all j < r. What we need to verify is

{i | i ∈ I and (ā0(i), . . . , ār−1(i)) ∈ RAi} ∈ F

if and only if
{i | i ∈ I and (ā′0(i), . . . , ā′r−1(i)) ∈ RAi} ∈ F.

Due to the symmetry of this situation, it is enough to establish one direction of this if-and-
only-if assertion. Let us consider the downward direction. In this case all the following sets
belong to the filter F:

{i | āj(i) = ā′j(i)} for all j < r

{i | i ∈ I and (ā0(i), . . . , ār−1(i)) ∈ RAi}
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As this is a finite list (the rank of the relation symbol R being finite) we see that the intersection
of these sets also belongs to F. To wit

{i | i ∈ I and (ā0(i), . . . , ār−1(i)) ∈ RAi} ∩
⋂
j<r

{i | āj(i) = ā′j(i)} ∈ F.

But it is easy to check that the set displayed above is a subset of

{i | i ∈ I and (ā′0(i), . . . , ā′r−1(i)) ∈ RAi}.

Because filters are closed under the formation of supersets, we draw the desired conclusion
that

{i | i ∈ I and (ā′0(i), . . . , ā′r−1(i)) ∈ RAi} ∈ F.

So we see that the definiton of the structure B is sound. We denote this structure by∏
I

Ai/F

and refer to it as the reduced product of the system 〈Ai | i ∈ I〉 modulo the filter F. The
quotient map η that send each ā to its congruence class ā/F is a homomorphism, making the
reduced product a rather special kind of homomorphic image of the direct product. In the
event that F happens to be an ultrafilter we say that B is an ultraproduct.

3.3 The Fundamental Theorem for Ultraproducts

It turns out that the satisfaction of elementary formulas in ultraproducts in closely linked to
their satisfaction in the factor structures. In 1955, Jerzy Łoś published the following theorem.
The Fundamental Theorem for Ultraproducts. Let 〈Ai | i ∈ I〉 be a nonempty system
of structures, all of the same signature. Let U be a ultrafilter on I and let 〈āj | j ∈ N〉 be an
ω-tuple of elements of ∏I Ai. Then for any elementary formula ϕ

〈āj/U | j ∈ N〉 satisfies ϕ in
∏
I

Ai/U

if and only if
{i | 〈āj(i) | j ∈ N〉 satisfies ϕ in Ai} ∈ U.

Proof. Before launching into the proof proper, we develop a sharper view of how terms behave
in ultraproducts. Let B = ∏

I Ai/U.
Contention. For every term t and any ω-tuple 〈ā0, ā1, . . . 〉 of elements of the direct product∏
I Ai and any b̄ ∈ ∏I Ai, we have

tB(ā0/U, . . . ) = b̄/U if and only if {i | tAi(ā0(i), . . . ) = b̄(i)} ∈ U.

This contention can be proved by induction on the complexity of the term t. We safely leave
this in the hands of the worthy graduate students. We note that the contention holds even if
U is merely a filter, rather than an ultrafilter.
We prove the Fundamental Theorem by induction on the complexity of the formula ϕ.



3.3 The Fundamental Theorem for Ultraproducts 36

Base Steps:
There are two kinds of base step depending on whether ϕ is of the form s ≈ t or of the form
Rt0, . . . , tr−1. These two cases are similar, so we restrict our attention to the latter. For each
j < r pick b̄J ∈

∏
I Ai so that tBj (ā0/U, . . . ) = b̄j/U. Then

〈ā0/U, . . . 〉 satisfies ϕ in B if and only if 〈ā0/U, . . . 〉 satisfies Rt0 . . . tr−1 in B
if and only if (b̄0/U, . . . , b̄r−1/U) ∈ RB

if and only if {i | (b̄0(i), . . . , b̄r−1(i) ∈ RAi} ∈ U

if and only if {i | (tAi
0 (a0(i), . . . ), . . . , tAi

r−1(a0(i), . . . )) ∈ RAi} ∈ U

if and only if {i | 〈a0(i), . . . 〉 satisfies Rt0 . . . tr−1 in Ai} ∈ U

if and only if {i | 〈a0(i), . . . 〉 satisfies ϕ in Ai} ∈ U

Only the fourth of these if-and-only-if assertions merits a further word. We know that for
each j < r the set {i | tAi

j (a0(i), . . . ) = b(i)} belongs to the ultrafilter. Let K the intersection
of these finitely many sets. So we see that K ∈ U. But then

K ∪ {i | (b̄0(i), . . . , b̄r−1(i) ∈ RAi} ⊆ {i | (tAi
0 (a0(i), . . . ), . . . , tAi

r−1(a0(i), . . . )) ∈ RAi}, and
K ∪ {i | (tAi

0 (a0(i), . . . ), . . . , tAi
r−1(a0(i), . . . )) ∈ RAi} ⊆ {i | (b̄0(i), . . . , b̄r−1(i) ∈ RAi}

Therefore, if one of the two sets involved in the fourth if-and-only-if belongs to U then so must
the other.
Inductive Steps:
The inductive hypothesis is that the theorem holds for formulas less complex that ϕ. There
are three cases to consider, depending on the structure of ϕ.

Case: ϕ is ¬ψ
In this case we have

〈ā0/U, . . . 〉 satisfies ϕ in B if and only if 〈ā0/U, . . . 〉 satisfies ¬ψ in B
if and only if 〈ā0/U, . . . 〉 does not satisfy ψ in B
if and only if {i | 〈a0(i), . . . 〉 satisfies ψ in Ai} /∈ U

if and only if {i | 〈a0(i), . . . 〉 does not satisfy ψ in Ai} ∈ U

if and only if {i | 〈a0(i), . . . 〉 satisfies ¬ψ in Ai} ∈ U

if and only if {i | 〈a0(i), . . . 〉 satisfies ϕ in Ai} ∈ U

The third if-and-only-if assertion invokes the induction hypothesis. The downward direction
of the fourth if-and-only-if assertion follows since U is an emphultrafilter—for every subset of
I either it or its complement must belong to the ultrafilter.
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Case:ϕ is ψ ∨ θ
In this case we have

〈ā0/U, . . . 〉 satisfies ϕ in B if and only if 〈ā0/U, . . . 〉 satisfies ψ ∨ θ in B
if and only if 〈ā0/U, . . . 〉 satisfies ψ in B

or 〈ā0/U, . . . 〉 satisfies θ in B
if and only if {i | 〈ā0(i), . . . 〉 satisfies ψ in Ai} ∈ U

or {i | 〈ā0(i), . . . 〉 satisfies θ in Ai} ∈ U

if and only if {i | 〈ā0(i), . . . 〉 satisfies ψ in Ai}∪
{i | 〈ā0(i), . . . 〉 satisfies θ in Ai} ∈ U

if and only if {i | 〈ā0(i), . . . 〉 satisfies ψ or it satisfies θ in Ai} ∈ U

if and only if {i | 〈ā0(i), . . . 〉 satisfies ψ ∨ θ in Ai} ∈ U

if and only if {i | 〈a0(i), . . . 〉 satisfies ϕ in Ai} ∈ U

Here, again, it is the fourth if-and-only-if assertion that merits further explanation. What is
needed is to see

X ∈ U or Y ∈ U if and only if X ∪ Y ∈ U.

The left-to-right direction holds for any filter since filters are closed under the formation
of supersets. For the reverse direction, suppose X ∪ Y ∈ U but that Y /∈ U. Since U is an
ultrafilter, we have I \Y ∈ U. It follows that (X∪Y )∩(I \Y ) ∈ U. But (X∪Y )∩(I \Y ) ⊆ X.
So we conclude that X ∈ U, as desired.

Case: ϕ is ∃xψ
It is harmless, but convenient, to suppose that x = x0. In this case we have

〈ā0/U, ā1/U, . . . 〉 satisfies ϕ in B if and only if 〈ā0/U, ā1/U, . . . 〉 satisfies ∃x0ψ in B
if and only if 〈ā′0/U, ā1/U, . . . 〉 satisfies ψ in B

for some ā′0 ∈
∏
I

Ai

if and only if {i | 〈ā′0(i), ā1(i), . . . 〉 satisfies ψ in Ai} ∈ U

for some ā′0 ∈
∏
I

Ai

if and only if {i | 〈a0(i), . . . 〉 satisfies ϕ in Ai} ∈ U

To see the downward direction of the last if-and-only-if assertion, just observe that

If 〈ā′0(i), ā1(i), . . . 〉 satisfies ψ in Ai, then 〈ā0(i), ā1(i), . . . 〉 satisfies ∃x0ψ in Ai.

This means

{i | 〈ā′0(i), ā1(i), . . . 〉 satisfies ψ in Ai} ⊆ {i | 〈a0(i), . . . 〉 satisfies ϕ in Ai}.

So if the first set in this inclusion belongs to the ultrafilter, then so does the second. The
upward direction follows directly from the definition of satisfaction in the case of existential
formulas.
This completes all cases of the induction step. So the Fundamental Theorem is established.
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Corollary 3.3.1. Let 〈Ai | i ∈ I〉 be a nonempty system of structures, all of the same
signature. Let U be a ultrafilter on I. Then for any elementary sentence ϕ∏

I

Ai/U |= ϕ if and only if {i | Ai |= ϕ} ∈ U.

This corollary is almost as useful as the Fundamental Theorem for Ultraproducts.

3.4 An Ultraproduct Proof of the Compactness Theorem

The Compactness Theorem. If every finite subset of a set of elementary sentences as a
model, then the whole set has a model.

Proof. Let Γ be a set of elementary sentences. Let I be the set of all finite subsets of Γ. For
each i ∈ I pick a model Ai of the set i. For each sentence ϕ ∈ Γ let Eϕ = {i | ϕ ∈ i} and put
C = {Eϕ | ϕ ∈ Γ}. Then C is a collection of subsets of I.
We contend that C has the finite intersection property. To see this, let ϕ0, . . . , ϕn−1 ∈ Γ.

Then
{ϕ0, . . . , ϕn−1} ∈ Eϕ0 ∩ · · · ∩ Eϕn−1

revealing that the intersection above is nonempty.
Let U be an ultrafilter extending C.
For each ϕ ∈ Γ we have that Ai |= ϕ for all i ∈ Eϕ. This means that

Eϕ ⊆ {i | Ai |= ϕ}.

But Eϕ ∈ C ⊆ U and so it follows that

{i | Ai |= ϕ} ∈ U.

In view of the corollary to the Fundamental Theorem for Ultraproducts, we conclude that∏
I

Ai/U |= ϕ,

for every ϕ ∈ Γ. That is ∏
I

Ai/U |= Γ.

This proof has a certain appeal that Henkin’s proof, for example, lacks. This proof actually
explains how to devise a model of the whole set Γ of sentences from the models of each of
its finite subsets. Soon after Łos’s Fundamental Theorem appeared, Alfred Tarski realized
how to construct such a proof, when the sentences involved in Γ where Horn sentences. Horn
sentences, named after Alfred Horn, have a certain syntactic form and where known to be
preserved under the formation of direct products. On this basis, Tarski suggested to his
former student Anne Morel and his then current student Thomas Frayne that a proof of the
Compactness Theorem, in its full generality, could be constructed along the same lines. Frayne
and Morel discovered the proof above and announced their result in 1958—the proof itself was
published in 1962 in a paper written jointly by Frayne, Morel, and Dana Scott, which included
other significant results concerning reduced products.
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3.5 Problem Set 3

Second Problem Set About the Compactness Theorem
Due Tuesday 18 October 2011

Problem 14.
Let L be a signature and K be a class of L-structures. We say that K is axiomatizable
provided K = Mod Σ for some set Σ and L-sentences. K is finitely axiomatizable provided
there is a finite such Σ. Prove that K is finitely axiomatizable if and only if both K and
{A | A is an L-structure and A /∈ K} are axiomatizable.

Problem 15.
Show that the class of fields of finite characteristic is not axiomatizable.

Problem 16.
Show that the class of fields of characteristic 0 is not finitely axiomatizable.

Problem 17.
Let ϕ be any sentence in the signature of fields. Prove that if ϕ is true in every field of
characteristic 0, then there is a natural number n so that ϕ is true in every field of characteristic
p for all primes p > n.

Problem 18.
Let L be a signature and for each natural number n suppose that Tn is a set of L-sentences
closed with respect to logical consequence. Further, suppose that T0 ⊂ T1 ⊂ T2 ⊂ . . . is
strictly increasing. Let T = ⋃

n∈ω Tn. Prove that

(a) T has a model.

(b) T is closed under logical consequence.

(c) T is not finitely axiomatizable.



LECTURE 4
Elementary Embeddings

4.1 The Downward Löwenheim-Skolem-Tarski Theorem

One of the lessons of twentieth century mathematics has been that a significant advance in
understanding a domain of mathematics can often be obtained by developing the theory of
those maps between the objects of interest which arise naturally from the fundamental notions
of the domain. So the advance of group theory was greatly helped by the understanding of
homomorphisms between groups and the development of topology grew substantially with the
understanding of continuous functions. Model theory, like other branches of of mathematics,
profits from understanding the maps which arise from its fundamental notions.
Suppose that A and B are structures of the same signature and that f : A → B. We call

such a function an elementary map provided for all assignment ā ∈ Aω and all formulas ϕ

If A |= ϕ[ā], then B |= ϕ[f(ā)].

Here, of course we mean by f(ā) the assignment 〈f(ā(0)), f(ā(1)), . . . 〉. Because one of the
formulas ϕ is ¬x0 ≈ x1, we see that every elementary map is one-to-one. Moreover, if Q is an
operation symbol, say of rank 3, then taking ϕ to be the formula Qx0x1x2 ≈ x3 we find

If QA(a, b, c) = d, then QB(h(a), h(b), h(c)) = h(d),

for all a, b, c, d ∈ A. So we see that h preserves all the basic operations. Likewise, if R is a
relation symbol, say of rank 3, then taking ϕ to the formula Rx0x1x2 we find

If (a, b, c) ∈ RA, then (h(a), h(b), h(c)) ∈ RB.

for all a, b, c ∈ A. But also, letting ϕ be ¬Rx0x1x2, we find

If (a, b, c) /∈ RA, then (h(a), h(b), h(c)) /∈ RB,

for all a, b, c ∈ A. That is

(a, b, c) ∈ RA if and only if (h(a), h(b), h(c)) ∈ RB

for all a, b, c ∈ A. Of course the same sort of thing holds for ranks other than 3. What this
means is that every elementary map is really an embedding and that A will be isomorphic
to a substructure of B via the map. For this reason elementary maps are called elementary
embeddings. Generally speaking, elementary embeddings impose a much stronger connection
between A and B than an ordinary embedding would. For one thing, in the event that there
is an elementary embedding of A into B, it will follow that any sentence true in one of these
structures, must be true in the other—that is, A ≡ B.

40
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In practice, the most frequently encountered case of elementary embeddings occurs when
A is actually a substructure of B and the map involved is the inclusion map (sending each
element of A to itself). Usually, the inclusion map is not an elementary embedding. When it
is, we say that A is an elementary substructure of B and write A 4 B. We also say that
B is an elementary extension of A.
The ordered set 〈Z,≤〉 of integers is a substructure of the ordered set 〈Q,≤〉 of rationals, but

is not an elementary substructure. For one thing, the formula ∀z[x ≤ z ≤ y → (x ≈ z∨z ≈ y)]
is satisfied in 〈Z,≤〉 by putting x = 0 and y = 1, but this fails in 〈Q,≤〉.
On the other hand, the ordered set of rationals properly between 0 and 1 is an elementary

substructure of the ordered set of all rationals. To see this will take a bit of work.
We develop first a better understanding of elementary substructures, in general, and some

of the significant results that grow out of that understanding.
In 1915, Leopold Löwenheim published the following theorem, generally regarded as the

earliest result belonging model theory proper.
Löwenheim’s Theorem. Every elementary sentence that has a model must have a countable
model.
Since a sentence contains only finitely many symbols we can always construe it to be as-

sociated with a finite signature. So we see that Löwenheim’s Theorem is a consequence of
Henkin’s proof of the Compactness Theorem—a proof found 33 years later. Löwenheim’s
proof is rather elaborate and the paper itself is difficult to read (primarily because the elegant
expository equipment for expressing ideas and results in model theory was not available to
Löwenheim). Thoralf Skolem, beginning in 1920 and revisiting the matter at least three more
times over the ensuing decade, devised first a more transparent proof, filled some of the gaps
in Löwenheim’s reasoning and eventually obtaining the following generalization.
The Löwenheim-Skolem Theorem, Version I. If Γ is a set of sentence of a countable
signature and A is a model of Γ, then A has a countable substructure B that is also a model
of Γ.
A slightly different statement easily seen as equivalent to this is

The Löwenheim-Skolem Theorem, Version II. Let A be an infinite structure of countable
signature. A has a countable substructure B such that A and B are elementarily equivalent.
Skolem’s method of proof, called the method of Skolem functions, has found many applica-

tions and we will see it later. Another method is at hand.
In 1928, Alfred Tarski had some form of the notion of elementary substructure in hand, and

was able to obtain strong extensions to this result as well as a result that asserted the existence
of (elementary) extensions of large cardinalities. With the Second World War intervening,
Tarski did not put these results into final form until 1952. They finally appeared in print in
1958 in a joint paper of Tarski and Robert Vaught.
The Downward Löwenheim-Skolem-Tarski Theorem. Let A be a structure, let X ⊆ A,
and let κ be the cardinality of the set of formulas of the signature. Let λ be a cardinal so that

|X|+ κ ≤ λ ≤ |A|.

Then A has an elementary substructure B of cardinality λ such that X ⊆ B.
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Proof. Let B0 ⊆ A so that X ⊆ B0 and |B0| = λ. Now B0 is probably far from being
a substructure of A, much less being an elementary substructure of A. It is likely to be
deficient in elements, but at least it is the right size. So we aim to repair its deficiencies
by adding to it certain well-chosen elements of A. Our construction will proceed through
denumerably many stages, at each stage adding elements to correct deficiencies arising from
elements available at earlier stages.
To help to chose these elements we begin by well-ordering A. When we refer to the least

element satisfying some property we mean it in reference to this well-ordering.
The basic deficiency that we must remedy arises because of some formula ϕ(x, y0, . . . , yn−1)

and some n-tuple 〈b0, . . . , bn−1〉 of elements we have already put into the structure we are
building so that

A |= ∃xϕ(x, y0, . . . , yn−1)[b0, . . . , bn−1].

If we are to succeed this very same formula must be satisfied in the structure we are building
by the very same n-tuple appearing above. We will call the least element b ∈ A such that
A |= ϕ(x, y0 . . . , yn−1)[b, b0, . . . , bn−1] the principal remedy for the deficiency posed by the
formula ∃xϕ(x, y0, . . . , yn−1) and the tuple 〈b0, . . . , bn−1〉.
Then define, for each natural number k,

Bk+1 := Bk ∪ {b | b is the principal remedy for some formula and some tuple from Bk}.

Let B = ⋃
k∈ω Bk.

First let us note that in the process of adding all those principal remedies, B did not become
too larger. We proceed by induction. At the base step of the induction, we find B0 which has
cardinality λ. As our inductive hypothesis we assert that Bk has cardinality λ. Now at stage
k + 1, the number of formulas that might require remedies is no larger than κ ≤ λ, since κ is
the cardinality of the set of all formulas. Also at stage k + 1, each formula needing remedy
has only finitely many (say n) free variables. The number of n-tuples of elements of Bk is also
bounded above by λ. So the number of remedies added at stage k+1 is no more than λ. Since
B0 ⊆ Bk+1 we see that the cardinality of Bk+1 is λ, as desired. Since λ is an infinite cardinal
and B is the union of a countable collection of sets, each of cardinality λ, we conclude that
|B| = λ.
Now we contend that B is closed under all the basic operations of A. Let Q be any operation

symbol and, for convenience, suppose its rank is 3. Let b0, b1, b2 ∈ B. Pick k large enough so
that b0, b1, b2 ∈ Bk. Now ϕ be the formula Qy0y1y2 ≈ x. Plainly

A |= ∃xϕ[b0, b1, b2].

So we put in Bk+1 ⊆ B a principal remedy b. That is

QA(b0, b1, b2) = b ∈ B,

demonstrating that B is closed under QA.
Now let B be the substructure of A with universe B.

Contention. B is an elementary substructure of A.
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To establish this contention what we must show is that for any formula θ and any n-tuple b̄
of elements of B, where n is the number of free variables of θ we have

B |= θ[b̄] if and only if A |= θ[b̄].

We prove this equivalence by induction on the complexity of θ.
Base Step: θ is atomic
This holds since B is a substructure of A.
Inductive Step: θ is ¬ϕ

B |= θ[b̄] if and only if B |= ¬ϕ[b̄] by the definition of θ
if and only if B 2 ϕ[b̄] by the definition of satisfaction
if and only if A 2 ϕ[b̄] by the inductive hypothesis
if and only if A |= ¬ϕ[b̄] by the definiton of satisfaction
if and only if A |= θ[b̄] by the definition of θ.

Inductive Step: θ is ϕ ∨ ψ
The proof in this case resembles the one above and depends only of the inductive hypothesis
and the definition of satisfaction.
Inductive Step: θ is ∃xϕ

B |= θ[b̄] if and only if B |= ∃xϕ[b̄] by the definition of θ
if and only if B |= ϕ[d, b̄] for some d ∈ B by the definition of satisfaction
if and only if A |= ϕ[d, b̄] for some d ∈ B by the inductive hypothesis
implies A |= ∃xϕ[b̄] by the definite of satisfaction,

since B ⊆ A

implies A |= ϕ[d, b̄] for some d ∈ B since every formula like this has
a remedy in B

4.2 Necessary and Sufficient Conditions for Elementary Embeddings

It is interesting to note that it is only in the very last step of the proof of the concluding
contention of the proof we just gave for the Downward Löwenheim-Skolem-Tarski Theorem
that the full weight of the construction of B by stages came into play. In fact, this concluding
contention a can be reframed as a criteria for the notion of elementary substructure.
The Tarski’s Criterion for Elementary Substructures. Let A be a structure and let B
be a substructure of A. The following are equivalent:

• B is an elementary substructure of A.

• For any formula ϕ(x, y0, . . . , yn−1) and any n-tuple b̄ of elements of B, if A |= ∃xϕ[b̄],
then there is d ∈ B so that A |= ϕ[d, b̄].
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The argument we gave for the contention inside the proof of the Downward Löwenheim-
Skolem-Tarski Theorem, in fact, is a proof of this Criterion. As early as 1928, Tarski had
some version of this proof but the conclusion he drew at that time was
The Downward Löwenheim-Skolem-Tarski Theorem (Weak Version). Let A be a
structure and let κ be the cardinality of the set of formulas of the signature. Let λ be a
cardinal so that

|X|+ κ ≤ λ ≤ |A|.

Then A has an substructure B of cardinality λ such that X ⊆ B and A ≡ B.
Thoralf Skolem’s proof of Version II can be easily adapted to prove the full Downward

Löwenheim-Skolem-Tarski Theorem. It took a long time for the significance of the notion of
elementary maps or of elementary substructures to emerge.
We want other characterizations of the elementary substructure relation. Let B be a struc-

ture. The diagram language of B is obtained by expanding the signature of B by adding a
new constant symbol cb for each element of b ∈ B. We expand the structure B to the structure
〈B, b〉b∈B by letting each new constant cb denote the corresponding element b. When the struc-
ture A is an extension of B we expand A to 〈A, b〉b∈B is the same way. The elementary theory
Th〈B, b〉b∈B is called the elementary diagram of B. We can make this work using only a
subset of B. To simplify notation, when b0, . . . , bn−1 ∈ B we use 〈B, b0, . . . , bn−1〉 to denote
the expansion of B by n-new constant symbols that name the elements b0, . . . , bn−1. Of course,
〈A, b0, . . . , bn−1〉 has the obvious meaning, when A is an extension of B. Also, to keep the
notation from proliferating, for a formula ϕ with free variables from the list y0, . . . , yn−1, we
use ϕ(b0, . . . , bn−1) to denote the formula obtained by substituting, the new constant symbol
cbi for each free occurrence of the variable yi in ϕ, for each i < n. A more fastidious notation
would use ϕ(cb0 , . . . , cbn−1) instead.
The Tarski-Vaught Criteria for Elementary Substructures. Let A be a structure and
let B be a substructure of A. The following are equivalent:

(a) B is an elementary substructure of A.

(b) 〈B, b0, . . . , bn−1〉 ≡ 〈A, b0, . . . , bn−1〉, for any finite sequence 〈b0, . . . , bn−1〉 of elements
of B.

(c) 〈B, b〉b∈B ≡ 〈A, b〉b∈B.

Proof.
(a) =⇒ (b)
Suppose B 4 A and let b0 . . . , bn−1 ∈ B. Every sentence of the expanded language is of
the form ϕ(b0, . . . , bn−1) where ϕ(y0, . . . , yn−1) is a formula of the original signature with free
variables among y0, . . . , yn−1. Since B 4 A we have that if B |= ϕ(y0, . . . , yn−1)[b0, . . . , bn−1],
then A |= ϕ(y0, . . . , yn−1)[b0, . . . , bn−1], and also that if B |= ¬ϕ(y0, . . . , yn−1)[b0, . . . , bn−1],
then A |= ¬ϕ(y0, . . . , yn−1)[b0, . . . , bn−1]. By invoking the definition of satisfaction we conclude

〈B, b0, . . . , bn−1〉 |= ϕ(b0, . . . , bn−1) if and only if 〈A, b0, . . . , bn−1〉 |= ϕ(b0, . . . , bn−1).

All sentences of the expanded language are addressed in this way, so we conclude that
〈B, b0, . . . , bn−1〉 ≡ 〈A, b0, . . . , bn−1〉.
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(b) =⇒ (c)
This implication is immediate since each sentence of the diagram language can only involve
finitely many of the new constants.
(c) =⇒ (a)
Let ϕ be any formula of the original signature, where the list y0, . . . , yn−1 includes all the
free variables of ϕ. Let b0, . . . , bn−1 be any elements of B such that B |= ϕ[b0, . . . , bn−1].
Then ϕ(b0, . . . , bn−1) is a sentence of the diagram language that holds in 〈B, b〉b∈B. Since
〈B, b〉b∈B ≡ 〈A, b〉n−1, we deduce that this sentence holds also in 〈A, b〉b∈B. But this means
A |= ϕ[b0, . . . , bn−1]. Consequently, B 4 A.

Here is a variant of the Tarski-Vaught Criteria, framed for elementary embeddings rather
than substructures.
The Elementary Diagram Lemma. Let A and B be structures of the same signature. The
following are equivalent:

(a) B can be elementarily embedded into A.

(b) A can be expanded to a model of the elementary diagram of B.

Finally, here is a useful sufficient condition for the elementary substructure relation.
Vaught’s Condition for Elementary Substructure. Let A be a structure and let B be a
substructure of A.
If

for every finite D ⊆ B and every a ∈ A, there is an automorphism α of A such
that α(d) = d for all d ∈ D and such that α(a) ∈ B.

then B is an elementary substructure of A.

Proof.

We apply Tarski’s Criterion. So let ϕ(x, y0, . . . , yn−1) be a formula and b0 . . . , bn−1 be el-
ements of B so that A |= ∃xϕ(x, y0, . . . , yn−1)[b0, . . . , bn−1]. Pick a ∈ A such that A |=
ϕ(x, y0, . . . , yn−1)[a, b0, . . . , bn−1]. Let α be an automorphism of A so that α(bi) = bi for all
i < n and also such that α(a) ∈ B. Since the satisfaction of arbitrary formulas is preserved
under isomorphisms (a delight for the graduate students who enjoy proofs by induction on the
complexity of formulas), we find A |= ϕ(x, y0, . . . , yn−1)[α(a), b0, . . . , bn−1]. Since α(a) ∈ B,
we find that Tarski’s Criterion is fulfilled. Hence, B 4 A.

Here another way to obtain elementary extensions.
Let I be a set and U be an ultrafilter on I. Let 〈Ai | i ∈ I〉 be a system of structures such

that A = Ai for all i ∈ A. That is, all the structures in the system are the same. In this case,
we say that ultraproduct ∏I Ai/U is an ultrapower of A and we denote it by AI/U. The
map δ : A→ AI/U defined by

δ(a) = 〈a | i ∈ I〉/U,

for all a ∈ A is called the natural or diagonal embedding of A into the ultrapower. The
following result is a corollary of Łos’s Fundamental Theorem for Ultraproducts.
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Corollary: The Natural Embedding into Ultrapowers is Elementary. Let I be a
nonempty set and let U be an ultrafilter on I. Let A be a structure. The natural embedding of
A into the ultrapower AI/U is an elementary embedding.

Proof. Let ϕ be any formula. Let n be the number of free variables of ϕ and let a0, . . . , an−1
be any n-tuple of elements of A. By the underlying definitions and the Fundamental Theorem
for Ultraproducts

A |= ϕ[a0, . . . , an−1] if and only if {i | i ∈ I and A |= ϕ[a0, . . . , an−1]} ∈ U

if and only if AI/U |= ϕ[δ(a0), . . . , δ(an−1)].

But this means the natural embedding is an elementary embedding.

4.3 The Upward Löwenheim-Skolem-Tarski Theorem

The first theorem in our Sampler of Applications of the Compactness Theorem in Lecture 2.2
above asserted that any set of sentences that either had arbitrarily large finite models or else
an infinite model, must also have models of every cardinality at least as large as the cardinality
of the set of formulas of the signature. This, of course, suggests that there is an upward as
well as a downward “Löwenhiem-Skolem-Tarski” theorem. Here it is.
The Upward Löwenheim-Skolem-Tarski Theorem. Let A be an infinite structure and
let κ be the cardinality of the set of formulas of the signature. Let λ be a cardinal so that

|A|+ κ ≤ λ.

Then A has a proper elementary extension B of cardinality λ.

Proof. Let ∆ be the elementary diagram of A. Expand the diagram language by adjoining λ
new constant symbols dα for each ordinal α < λ. Let Γ be the set of sentences that assert that
the dα’s denote distinct elements and that they are also distinct from the elements denoted
by the constant symbols used to expand from the original signature to the signature of the
diagram language. Because A is infinite we see that A can be expanded to a model of any
finite subset of ∆ ∪ Γ. By the Compactness Theorem, ∆ ∪ Γ has a model B∗ of cardinality
no larger than λ. Since Γ holds in this model, we find that B∗ has cardinality exactly λ. If
we know reduce back to the original signature we find a structure B′ that has a substructure
A′ (with universe the set of elements named by the new constant symbols from the diagram
language) isomorphic to A. Notice that the elementary diagram of A′ and of A are the
same. By the Tarski-Vaught Criteria, we see that A′ 4 B′ and that B′ must be a proper
extension of A′, since the dα’s name elements that lie outside of A′. If is an exercise left to
the graduate students be find some set-theoretic reasons for why the primes can be erased to
get the conclusion that A 4 B, where B is a proper extension of A and has cardinality λ.

Alfred Tarski had, already in 1928, some version of this upward theorem. With both the
notion of elementary substructure and the method of elementary chains (one of the topics
in the next sequence of lectures) in hand, Tarski devised a proof without the help of the
Compactness Theorem. Having other research programs to pursue, Tarski set these results
aside. When he returned to this topic at mid-century, after the intervention of World War II,
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which isolated Tarski in the United States (where is was visiting when the Nazi’s invaded
Warsaw), he could no longer recall his proof. It seems probable that the lost proof depended
on proving

Every infinite structure has a proper elementary extension.

without the help of the Compactness Theorem, as the remainder of the proof can be accom-
plished easily with the help of Tarski’s Elementary Chain Theorem—this theorem will be
discussed in the next lecture. It would be interesting, at least from a historical viewpoint, to
know such a proof.
The Upward-Löwenheim-Skolem-Tarski Theorem was actually proved by Tarski and Vaught,
but it is traditional to give this theorem the name I used. Some authors even refer to this
theorem as the Upward Löwenheim-Skolem Theorem. It has, certainly, rather distant but
identifiable connections to Löwenheim’s 1915 result. Thoralf Skolem, perhaps, would have
regarded the attachment of his name as ironic since he was no champion of the uncountable.
Let us take another look at the ordered set 〈Q,≤〉. It is easy to list some properties of this

structure that are elementary on their faces:

(a) The ordering is a linear ordering.

(b) There is no first element.

(c) There is no last element.

(d) For any two distinct elements there must be a third element properly between the two.

It is easy to find other properties expressible by elementary sentences that are true in 〈Q,≤〉,
but these all seem to be consequences of the sentences listed above. We called the set of all
elementary sentences that are consequences of these listed sentences the theory of dense
linear orderings without endpoints.
In 1895, Georg Cantor published the remarkable fact that any two countable dense linear

orderings without endpoints are isomorphic. We offer here a proof, by tradition referred to as
Cantor’s Back-and-Forth Method, that is actually due to E. V. A. Huntington in 1904.
Cantor’s Theorem on Countable Dense Linear Orders. Any two countable dense linear
orders without endpoints are isomorphic.

Proof. Let 〈A,≤〉 and 〈B,v〉 be countable dense linearly ordered sets. We start by listing the
elements of A : a0, a1, . . . and B : b0, b1, . . . . Below, when we refer to the earliest element of
A or of B with a certain property, we mean it is the sense of these lists.
We will build the desired isomorphism F in countably many stages. Of course, our desired
F will be a subset of A×B. At the kth stage we will put the ordered pair (ck, dk) into the set
were are building.
Here is how we do it.

To begin

Put F0 = {(a0, b0)}, A0 = {a0}, and B0 = {b0}/
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To keep the notation uniform, we put c0 = a0 and d0 = b0. At stage k+ 1, when k is even

Fk+1 = Fk ∪ {(ck+1, dk+1)}, Ak+1 = Ak ∪ {ck+1}, and Bk+1 = Bk ∪ {dk+1},

where ck+1 is the earliest element of A not yet used and dk+1 is the earliest element of B so
that Fk ∪{(ck+1, dk+1)} is an isomorphism between the substructures with universes Ak+1 and
Bk+1.
At stage k + 1, when k is odd

Fk+1 = Fk ∪ {(ck+1, dk+1)}, Ak+1 = Ak ∪ {ck+1}, and Bk+1 = Bk ∪ {dk+1},

where dk+1 is the earliest element of B not yet used and ck+1 is the earliest element of A so
that Fk ∪{(ck+1, dk+1)} is an isomorphism between the substructures with universes Ak+1 and
Bk+1.
Then we let F = ⋃

k∈ω Fk, Aω = ⋃
k∈ω Ak, and Bω = ⋃

k∈ω Bk.
Of course, there is a little touchy point about this construction: at any given stage, beyond

Stage 0, how can we be sure to find the needed ordered pair (ck+1, dk+1)? The even and odd
cases pose logically symmetric difficulties, so let’s just look at one and say that k is even. Since
A is infinite (quick, why?) and up through stage k we have used just k + 1 elements of A,
there are plenty left and so we can have the desired ck+1. Now the k+ 1 elements c0, c1, . . . , ck
divide the set A into k+ 2 intervals. Likewise, d0, . . . , dk divides the set B into k+ 2 intervals.
Moreover, Fk induces a matching of the intervals of A with the intervals of B. Notice that
each of the individual intervals is infinite, by denseness and lack of endpoints. Now ck+1 lies
properly inside one of the intervals of A. The corresponding interval of B is nonempty. Let
dk+1 be the earliest element of B properly inside this corresponding interval.
It is easy to argue, to the delight of graduate students, that the union of a nested chain

of isomorphisms (like the Fk’s) will always be an isomorphism F . In our, F will be an
isomorphism from 〈Aω onto Bω. So our proof is done, once we show that A = Aω and
B = Bω. But a simple-minded induction shows that an ∈ A2n and for n > 1, that bn ∈ B2n−1.
This is the back-and-forth part of the argument: We use the even steps to ensure that we
gather up all the elements of A and the odd steps to ensure that we gather up all the elements
of B.

The proof given in words above is much more transparent as an animated drawing. Here is
just one frame of the animation.



4.3 The Upward Löwenheim-Skolem-Tarski Theorem 49

ck+1

dk+1

A B

Putting the next pair into the back-and-forth isomorphism

Here is one more interesting fact about the elementary theory of dense linear orderings
without endpoints.

Theorem 4.3.1. Let B be a substruture of 〈Q,≤〉 that is also a model of the theory of dense
linear orderings without endpoints. Then B is an elementary substructure of 〈Q,≤〉.

Proof. We invoke Vaught’s Condition. To do this, let b0, . . . , bn−1 be n distinct elements of B
and let a ∈ Q. The bi’s break Q into n + 1 open intervals. The element a must be in one of
the intervals or be one of the bi’s. Leaving aside, for the attention of the graduate students,
the case when a is actually one the bi’s, we consider the case when a is inside the interval I.
By denseness holding in B, there must be an element b ∈ B lying in the same interval with a.
We need an automorphism α of 〈Q,≤〉 that fixes all the elements not inside the interval I, but
when α is restricted to I we want it to take a to b. But we can just repeat the back-and-forth
construction to make α. So Vaught’s Condition gets us the conclusion that B 4 〈Q,≤〉.

Now let A be any dense linear order without endpoints. Since the theory of dense linear
orders without endpoints has no finite models, we see that A is infinite. By the Upward
Löwenheim-Skolem-Tarksi Theorem, A has an elementary extension A′ of an arbitrarily large
cardinality. Then by the Downward Löwenheim-Skolem-Tarski Theorem, A′ has a countable
elementary substructure B. According to Cantor, B is isomorphic with 〈Q,≤〉. So A ≡ 〈Q,≤〉.
It follows that the theory of dense linear orderings without endpoints is a complete elementary
theory.
This simple line of reasoning can apply to other elementary theories. To state it, we need

another notion. Let T be an elementary theory and κ be a cardinal. The theory T is κ-
categorical provided T has a model of cardinality κ and all models of T of cardinality κ are
isomorphic to each other. So Cantor proved that the theory of dense linear orderings without
endpoints is ω-categorical.
The Łoś-Vaught Test. Suppose that T is an elementary theory and κ is a cardinal at least
as large as the cardinality of the set of all formulas of the signature of T . If T has no finite
models and T is κ-categorical, then T is a complete theory.
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As an application of the Łoś-Vaught Test we can deduce a theorem of Tarski, provided we
are willing to import a bit of algebra. In 1910 Ernst Steinitz published an influential treatise
on algebraically closed fields. Among other things he introduced a cardinal invariant of alge-
braically closed fields, the transcendence degree, that is analogous to the notion of dimension
for vector spaces. Every field has a smallest subfield, called its prime field. This subfield is
isomorphic to Zp, in case the field is of prime characteristic p, and is otherwise isomorphic to
Q. One of the theorems of Steinitz is that any two algebraically closed fields of the same char-
acteristic and the same transcendence degree over their prime fields are isomorphic. From the
definitions involved (not given here) it follows that if the transcendence degree is uncountable,
then the transcendence degree is that same as the cardinality of the field. This gives
The Categoricity Theorem of Steinitz. The elementary theory of algebraically closed
fields of a given characteristic is κ-categorical for each uncountable cardinal κ.
It is an exercise and sometimes a Qualifying Examination problem to show that every al-

gebraically closed field in infinite. So from the Łoś-Vaught Test we deduce the following
theorem.
Tarski’s Completeness Theorem for Algebraically Closed Fields. The elementary
theory of algebraically closed fields of a given characteristic is complete.
Tarski’s proof of this theorem was achieved by the method of elimination of quantifiers,

which, while more involved, gives a deeper insight into the elementary theory of algebraically
closed fields.



LECTURE 5
Elementary Chains and Amalgamation of

Structures

5.1 Elementary Chains and Amalgamation

At this point, many of the basic concepts of of elementary model theory are in our hands. The
syntactical apparatus has been described, the key notions of satisfaction and truth have been
laid out, the first theorem rich in consequences, namely the Compactness Theorem, has been
established, the crucial idea of elementary embedding has been introduced and given several
characterizations. We have seen, in the Löwenheim-Skolem-Tarski Theorems how prevalent
models of arbitrary infinite cardinalities of an elementary theory turn out to be.
The purpose of this lecture in to put all these things into play to fill out the development of

model theory. In succeeding lectures we will be pushing the beyond these beginnings.
First, let us address the task of putting structures together to make larger more compli-

cated structures. Of course, we would like to know how the elementary properties of the less
complicated structure relates to the elementary properties of the more involved structures.
Let 〈Ai | i ∈ I〉 be a system of structures, all of the same signature. We say this system is

up-directed by 4 provided for all i, j ∈ I there is k ∈ I so that

Ai 4 Ak and Aj 4 Ak.

Of course, in a similar way we could make sense of what it means for the system to be up-
directed with respect to some other binary relation in place of 4. The substructure relation
and the relation of elementary embeddability are just two other interesting possibilities.
Let 〈Ai | i ∈ I〉 be up-directed by 4. There is a transparent way to arrive at a limiting

structure A of this system. Just let

A =
⋃
i∈I
Ai

QA =
⋃
i∈I
QAi for each operation symbol Q

RA =
⋃
i∈I
RAi for each relations symbol R

While it is evident that the union of a collection of r-place relations is itself an r-relation, we
might anticipate that the union of a collection of r-place operations could well fail to be an
operation, unless a certain amount of compatibility is present. The up-directed character of
the system ensures enough compatibility. Indeed, suppose Q is a 3-place operation symbol
and a, b, c ∈ A = ⋃

i∈I Ai. Using the fact that the system is up-directed, that must be a
k ∈ I so that a, b, c ∈ Ak. Let d = QAk(a, b, c). Suppose ` ∈ I so that a, b, c ∈ A` and that
e = QA`(a, b, c). Using the up-directedness again, pick m ∈ I so that Ak 4 Am and A` 4 Am.
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Then it follows that

d = QAk(a, b, c) = QAm(a, b, c) = QA`(a, b, c) = e.

This means QA really is a 3-place operation on A. A little reflection should convince you that
Ak is a substructure of A, for all k ∈ I. More is true.
Tarski’s Elementary Chain Theorem. Let 〈Ai | i ∈ I〉 be a system of structures, all of
the same signature, that is up-directed by 4 and let A be the limiting structure of this system.
Then Ak 4 A for all k ∈ I.

Proof. What we have to prove is that for every formula ϕ(ȳ) with, say, n free variables, for
all k ∈ I, and all n-tuples ā from Ak and all k ∈ I we have

Ak |= ϕ[ā] if and only if A |= ϕ[ā].

We do this by Sam’s technique,namely induction on the complexity of formulas. The proof
is, except at one crucial point, almost identical to the proof of Tarski’s Criterion. By now, we
are able to see that the only step that is troublesome is
Inductive Step: ϕ is ∃xθ(x, ȳ)
Even here the implication

Ak |= ϕ[ā] implies A |= ϕ[ā].
is entirely straightforward.
Here is the implication in the other direction.

A |= ϕ[ā] implies A |= ∃xθ(x, ȳ)[ā]
implies A |= θ(x, ȳ)[b, ā] for some b ∈ A
implies A |= θ(x, ȳ)[b, ā] for some b ∈ A` for some ` ∈ I
implies A |= θ(x, ȳ)[b, ā] for some b ∈ Am for some m ∈ I so that Ak 4 Am

implies Am |= θ(x, ȳ)[b, ā] for some b ∈ Am for some m ∈ I so that Ak 4 Am

implies Am |= ∃xθ(x, ȳ)[ā] for some m ∈ I so that Ak 4 Am

implies Am |= ϕ[ā] for some m ∈ I so that Ak 4 Am

implies Ak |= ϕ[ā]

The fourth implication in this sequence relies on the up-directedness, the fifth invokes the
induction hypothesis, and the last uses the elementary substructure relation.

Tarski’s Elementary Chain Theorem turns out to have a host of consequences. To use it,
we need a method for assembling elementary chains or more elaborate systems of structures
up-directed the elementary substructure relation. For this purpose theorems like the next
are well-suited. Roughly speaking, the next theorem specifies circumstances under which two
structures that have some common overlap can be seen as part of a single more comprehensive
structure—when this is possible the larger structure shows how to amalgamate the given
structures over their common part. Essentially a concept from category theory, amalgamation
can be framed by way of commutative diagrams. We have framed the next theorem using
elementary equivalence, elementary embeddings, and the elementary substructure relation.
The applications we have in mind actually use small variations of this theorem that, for
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example, might involves structures of several signatures or be concerned only elementary
formulas of a particular form—leading to looser notions of elementary equivalence, elementary
embeddings, and elementary substructure. The consequent adjustments to the statement and
proof of the next theorem will require almost no effort.
The Elementary Amalgamation Theorem. Let A and B be structures of the same sig-
nature and let ā and b̄ be I-tuples of distinct elements of A and B, respectively. Let D be the
substructure of A generated by the elements listed in the tuple ā. If 〈A, ā〉 ≡ 〈B, b̄〉, then there
is C and some elementary embedding g so that

• A 4 C,

• g : B→ C such that g(b̄) = ā, and

• There exists a unique embedding f so that f : D→ B where fā = b̄.

The situation described in this theorem is illustrated below.

D

A B

C

≥

4

f

←
↩
g

Proof. We are going to use the elementary diagrams of A and B, but in order to keep things in
good order we adopt the convention that the new constant symbols involved in these diagrams
shall satisfy the following constraints:

• The same new constant symbol is associate with both ai and bi for all i ∈ I.

• Apart from the constant symbols in the line above, the constant symbols associated with
the elements of A and B are entirely different.

Let ∆A be the elementary diagram of A and ∆B be the elementary diagram of B. Notice that
the structure D is fully described by sentences that belong to both Th〈A, ā〉 and Th〈B, b̄〉.
That justifies the bottom of the diagram. To simplify things, we assume that ā = b̄. We want
a model of ∆A ∪∆B. We’ll use the Compactness Theorem.
Suppose no such model exists. Then there is some finite subset Γ ⊆ ∆B so that ∆A ∪ Γ has

no model. Γ is a finite set of sentences true in 〈B, B〉. We can make the conjunction of those
sentences. Let ϕ be this conjunction; that is, ϕ(ā, d̄) is the conjunction of Γ, where d̄ lists
constant symbols for elements of B not listed in ā. Notice ϕ(ā, d̄) ∈ ∆B. So ∆A ∪ {ϕ(ā, d̄)}
has no model. Thus

∆A |= ¬ϕ(ā, d̄) and so ∆A |= ∀ȳ¬ϕ(ā, ȳ)

since ∆A places no constraints on the constant symbols listed in d̄. But ∀ȳ¬ϕ(ā, ȳ) is just
something written down in the language of 〈A, A〉. So it is true in 〈A, A〉. That is, it is true
in 〈A, ā〉. Since 〈A, ā〉 and 〈B, ā〉 are elementarily equivalent, it has to be true in 〈B, ā〉:

〈B, ā〉 |= ∀ȳ¬ϕ(ā, ȳ)
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But we know that
〈B, ā〉 |= ϕ(ā, d̄)

This is a contradiction. So our original supposition is wrong; hence there is a model of ∆A∪∆B.
Let C′ be a model of ∆A ∪∆B and let C be the reduct of C′ back to the original signature.
Now we know

• There is an elementary embedding g so that g : B→ C

• There is an elementary embedding h so that h : A→ C.

We can take h to be the inclusion map, so then A 4 C.

There is a kind of hidden assumption in the statement of this theorem. In the event that
I is empty, that is no elements are listed in ā and b̄, and that the signature provides no
constant symbols, then we find that the empty set would be the universe of D. But we have
insisted that all our structures have nonempty universes. So the formulation of the Elementary
Amalgamation Theorem excludes this possibility. Nevertheless, the proof still works. What it
proves is
The Elementary Joint Embedding Theorem. Let A and B be structures of the same
signature. If A ≡ B, then there is C and some elementary embedding g so that

• A 4 C,

• g : B→ C.

5.2 Multiple Signatures: Joint Consistency, Interpolation, and
Definability

The next theorem has been extracted from a proof Abraham Robinson gave in the 1950’s for
his Joint Consistency Theorem. It is put here in a stand-alone form because it has become a
paradigm for other similar constructions and because some of the consequences of the Joint
Consistency Theorem are more readily seen as consequences of this theorem. While I gave it
another name, reflecting its proof rather than its statement, you should see this as a sort of
two signature amalgamation theorem.
Robinson’s Two Signature Chain Construction Theorem. Let L0, L1, and L2 be sig-
natures where L0 is the signature of symbols common to both L1 and L2. Let A be an L1-
structure and let B be an L2-structure. Let b̄ be a list of elements in both A and B. If
〈A �L0 , b̄〉 ≡ 〈B �L0 , b̄〉 , then there is some L1 ∪ L2-structure C so that A 4 C �L1 and there
is an L2-elementary embedding g so that

g : B ↪→ C �L2

where gb̄ = b̄.

Proof. The proof is almost fully displayed in this illustration:
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D

A0 A1 A2 Aω

B0 B1 B2 Bω

. . .

. . .

4

4

4

4

4

4

4

4

↪→
g0

↪→

f1 ↪→
g1≤ ↪→

f2 ↪→
g2

↪→

fω ↪→gω≤

To start, we take D to be the L0-substructure of A �L0 generated by the elements listed in the
tuple b̄. Notice that D is also an L0 substructure of B �L0 , since A �L0≡ B �L0 . We also put

A0 = A and B0 = B.

To get A1 and g0, we invoke a version of the Elementary Amalgamation Theorem. In this
version, we use L1 for the part involving A0 and L0∪B0 for the part involving B0. This means
that A0 4 A1 (in the appropriate, namely L1, sense) but that g0 is an elementary embedding
of 〈B0 �L0 , B0〉 into 〈A1 �L0 , g0(B0)〉.
To get B1 and f1, we invoke a version of the Elementary Amalgamation Theorem again. But
in this version we use L2 for the part involving B0 and L0 for the part involving A1.
We continue in this way, taking a step for each natural number and alternating the use of L1
and L2. In the course of this construction, we build the L1 elementary chain along the top
of our illustration and the L2 elementary chain along the bottom. The maps going up and
down across the middle are elementary embeddings for L0 enhanced by a growing supply of
new constant symbols.
A simple but important property of our illustration is that it is a commutative diagram in

the sense of category theory. That is that fk+1(gk(b)) = b for all k and all b ∈ Bk and likewise
that gk(fk(a)) = a for all k > 0 and all a ∈ Ak. The point is that these composite maps are
elementary embeddings with respect to L0 enhanced by enough new constants. For example,
the formula x ≈ a is satisfied in Ak by a so the formula x ≈ a must be satisfied in Ak by
gk(fk(a)). That is gk(fk(a)) = a.
At the limit, we just take unions, even for the functions. Ignoring all the new constants

symbols accumulated in this construction, we find that fω is an L0 isomorphism from Aω onto
Bω and that gω is its inverse. To make the desired structure C we use these isomorphisms to
impose on Aω all the L2 relations and operations not in L0. For example, if R is a 3-place
relation symbol of L2 and a, b, c ∈ Aω we put

(a, b, c) ∈ RC if and only if (fω(a), fω(b), fω(c)0 ∈ RBω .

In this way, gω will become an L2 elementary embedding of Bω into C �L2 and Aω = C �L1 .

Robinson’s Joint Consistency Theorem. Let L0, L1, and L2 be signatures where L0 is
the signature of symbols common to both L1 and L2. Let T be a complete L0 theory, let T1 be
an L1 theory with T0 ⊆ T1, and let T2 be an L2 theory with T0 ⊆ T2. If both T1 and T2 have
models, then T1 ∪ T2 has a model.

Proof. Let A |= T1 and let B |= T2. We will use Robinson’s Two Signature Chain Construction
Theorem. We take b̄ of that theorem to be the empty tuple. We see that A �L0 |= T and that
B �L0 |= T . Because T is a complete L0 theory, we deduce that A �L0≡ B �L0 . By the Chain
Construction Theorem there is an L1∪L2 structure C so that A 4 C �L1 and an L2-elementary
embedding g : B ↪→ C �L2 . But this means C |= T1 ∪ T2.
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The Two Signature Interpolation Theorem. Let L0, L1, and L2 be signatures where L0
is the signature of symbols common to both L1 and L2. Let T1 be an L1 theory and let T2 be
an L2 theory. If T1 ∪ T2 has no model, then there is an L0 sentence ϕ so that T1 |= ϕ and
T2 |= ¬ϕ.

Proof. Let Φ = T1 �L0 . By the Compactness Theorem, we only need to prove that Φ ∪ T2
has no model. Because T1 ∪ T2 has no models, there cannot be A |= T1 and B |= T2 so
that A �L0≡ B �L1 , for otherwise the Chain Construction Theorem would provide a model of
T1 ∪ T2.
Now suppose, for contradiction, that B |= Φ∪T2. We know that Th B �L0 ∪T1 has no model

A, as noted above. So by the Compactness Theorem there must be θ ∈ Th B �L0 so that
{θ} ∪ T1 has no model. But this means that T1 |= ¬θ and so that ¬θ ∈ Φ. In this way, we see
that B is a model of both θ and ¬θ, which cannot be.

Craig’s Interpolation Theorem. Let ψ and θ be sentences so that ψ |= θ. There is a
sentence ϕ such that ψ |= ϕ and ϕ |= θ and each relation symbol and each operation symbol
that occurs in ϕ occurs also in both ψ and θ.
This theorem, which illuminates the use of the word “interpolation”, is just an instance of the

Two Signature Interpolation Theorem in which T1 is the set of all the logical consequences of ψ
and T2 is the set of all logical consequences of ¬θ. William Craig gave the first demonstration
of this theorem by means of proof theory.
The Preservation of Symbols Theorem. Let L0 and L1 be signatures so that L0 ⊆ L1.
Let T be an L1 theory and let ϕ(ȳ) be an L1 formula. The following statements are equivalent.

(a) For any models A and B of T such that A �L0= B �L0 and all tuples ā of A we have

A |= ϕ[ā] if and only if B |= ϕ[ā]

(b) There is an L0 formula ψ(ȳ) so that

T |= ∀ȳ
(
ϕ(ȳ)↔ ψ(ȳ)

)
.

Proof. That (b) implies (a) is clear.
So let us suppose that (a) holds. Obtain L+

1 by adding to L1 a new constant symbol for each
entry in ȳ and take c̄ to be the tuple of these new constant symbols. L+

0 is obtained by adding
the same constant symbols of L0. Let Ψ(c̄) be the set of all logical consequences of T ∪{ϕ(c̄)}
that are L+

0 -sentences.
Contention. T ∪Ψ(c̄) |= ϕ(c̄).
Indeed, let A |= T∪Ψ(c̄). Consider the set T∪Th A �L+

0
∪{ϕ(c̄)}. This set must have a model

B, since otherwise we can invoke the Compactness Theorem to find a sentence γ(c̄) ∈ Th A �L+
0

such that T ∪{ϕ(c̄)} |= ¬γ(c̄)—this would put ¬γ(c̄) ∈ Ψ(c̄) and we would be confronted with
A |= γ(c̄) as well as A |= ¬γ(c̄). Now we have A �L+

0
≡ B �L+

0
. By the Chain Construction

Theorem there are L+
1 elementary extensions Aω of A and Bω of B that are L+

0 -isomorphic.
By a bit a set-theoretic fiddling, we can have that Aω �L+

0
= Bω �L+

0
. In this way we discover
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that Aω |= ϕ(c̄) by the condition in (a). But this means A |= ϕ(c̄). So the contention is
established.
By the Compactness Theorem there is a finite subset Ψ′(c̄) ⊆ Ψ(c̄) so that T ∪Ψ′(c̄) |= ϕ(c̄).

Let ψ(ā) be the conjunction of the finitely many sentences in Ψ′(c̄). Then we have

T ∪ {ϕ(c̄)} |= ψ(c̄) and T ∪ {ψ(c̄)} |= ϕ(c̄).

But this gives
T |= ϕ(c̄)→ ψ(c̄) and T |= ψ(c̄)→ ϕ(c̄).

This is the same as
T |= ϕ(c̄)↔ ψ(c̄).

But T makes no mention of the constant symbols listed in the tuple c̄ and so cannot constrain
them in any way. This gives

T |= ∀ȳ
(
ϕ(ȳ)↔ ψ(ȳ)

)
which is the desired conclusion (b).

What condition (a) in this theorem says about the formula ϕ is, roughly, that in models of
T whether ϕ is satified by a tuple depends only on how the symbols in L0 are interpreted in
the model. What condition (b) says is that ϕ is equivalent, in models of T to an L0-formula.
To see this more sharply, we turn to another key idea in model theory, that of definability.

Let us first consider the particular structure Z = 〈Z,+, ·,−, 0, 1〉, namely the ring of integers.
It is a famous theorem of Lagrange that every nonnegative integer can be expressed as the
sum of four squares. Another way to say this is

{a | a ∈ Z and a is nonnegative} = {a | Z |= ∃y0, . . . , y3(x ≈ y2
0 + · · ·+ y2

3)[a]}.

In this case we say that the formula ∃y0, . . . , y3(x ≈ y2
0 + · · ·+y2

3) defines the set of nonnegative
integers in the structure Z. The definable subsets of a structure are those that can be defined
by some formula. In an entirely similar way, we arrive at the notion of definable relations (of
whatever rank) and of definable operations.
Observe that given a formula, say with one free variable, then in any structure of the signature

involved that formula determines a definite subset. The formula provides an explicit definition
of the subset (relation, etc.) and we refer to such subsets (relations, etc.) as explicitly
definable.
Let us restrict our attention to the models of some elementary theory T that has among its

relation symbols the symbol R. Let L0 be some signature that is included in the signature L1
of T . We will say that T implicitly defines
R with respect to L0 provide whenever A |= T and B |= T so that A �L0= B �L0 , then
RA = RB.
Now let ϕ(ȳ) be the formula Ry0y1 . . . yn−1. In this instance, the Preservation of Symbols

Theorem asserts that T implicitly defines R with respect to L0 if and only if some L0-formula
explicitly defines R in all models of T . The same conclusion holds for relation symbols. In
this way, we have
Beth’s Definability Theorem. Let L0 be a signature contained in the signature L1. Let T
be an L1 theory. Any relation symbol or operation symbol of L1 is implicitly definable by T
with respect to L0 if and only if there is an L0-formula that defines it explicitly in every model
of T .
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Evert Beth published his definability theorem in 1953. Beth spent the year 1951-52 in
Berkeley as a research associate of Alfred Tarski. Abraham Robinson published his Joint
Consistency Theorem in 1956 and William Craig published his Interpolation Theorem in
1957, the same year that saw the publication of the Tarski-Vaught paper. Both Robinson and
Craig were motivated by Beth’s Definability Theorem, giving new proofs of it.
Our approach follows closely an 1997 exposition of Wilfrid Hodges.



LECTURE 6

Sentences Preserved under the Formation of
Substructures

6.1 Classes That Are Relativized Reducts of Elementary Classes

Suppose K is a class of structures of the same signature. Under what circumstances can we
be sure that K is an elementary class? We know some necessary features of such classes.
If they have infinite structures, or even arbitrarily large finite structures, then they must of
structures of all sufficiently large infinite cardinalities—it follows from the Upward Löwenheim-
Skolem-Tarski Theorem. Elementary classes must also be closed not only under isomorphism
but under the more generous relation of elementary equivalence. Elementary classes must be
closed under the ultraproduct construction as well. All these are necessary conditions.
What about sufficient conditions? This proves to be a difficult question, particularly if we

insist on necessary and sufficient conditions. We will touch on this question later, but for now
we want to present a useful sufficient condition.
The first step is to introduce a notion wider than that of elementary class.
Let us look first at an example. A group G has a faithful n-dimensional representation

provided G can be embedded into the group of n× n invertible matrices over some field. Let
Kn be the class of all groups with faithful n-dimensional representations. We would like to
know whether there is some set Γ of sentences in the signature of group theory that axiomatizes
this class K. The basic difficulty is that the definition we gave talks about the existence of
things like embeddings and some nice vector space over some field. . . none of the things are
elements of the groups at hand. But we can deal with them if we are willing to contend with
a richer signature. Here is what we could use:

• A one-place relation symbol G to name the universe of our group.

• A one-place relation symbol F to name the universe of a field.

• A one-place relation symbol V to name the universe of a vector space.

• Operation symbols to stand for the group operations on G.

• Operation symbols to stand for the ring operations on F .

• Operation symbols to stand for the vector space operations on V .

• A two-place operation symbol ? to stand for the action of the group on the vector space.

Now we would have to write down in detail a whole bunch of elementary sentences to try to
capture Kn. I will only indicate what has to be said and leave the engaging task of actually
writing out the elementary sentences to the graduate students.
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• “G is closed under the group operations”.

• “Under the group operations, G becomes a group” (This is basically a handful of equa-
tions.)

• “F is closed under the ring operations”.

• “Under the ring operations, F becomes a field”.

• “V is closed under the vector space operations.” (Careful about scalar multiplication!)

• “Under the vector space operations, V becomes a vector space over the field.”

• “The dimension of the vector space is n”. (Remember enough about linear indepen-
dence?)

• “For all g ∈ G it turns out that g ? v is a function from V to V ”.

• “For all g ∈ G the function g ? v is a linear operator on V ”.

• “The assignment g 7→ g ? v is a group embedding.”

Let Λ be the set of all these elementary sentences.
Now the idea is that G ∈ Kn if and only if there is some model M of Λ so that G is just

the “group part” of M. This not enough to say that Kn is an elementary class. On the
other hand, it is closely tied to one. Classes like Kn that admit such descriptions are known
as relativized reducts of elementary classes. That is, roughly speaking, K is such class
provided in some richer signature there is an elementary class L so that K consists precisely
of the “K” parts of structures belonging to L. More precisely a class K of structures of
signature L is a relativized reduct of an elementary class provided there is a signature
L+ expanding L and a one-place relation symbol U of L+ but not of L and a set Λ of L+

sentences such that

• The set Λ includes sentences that assert the U is nonempty and is closed under all the
operations symbolized in L.

• The class K consists precisely of those L-structures A obtained from L+-structures B
that are models of Λ by letting UB be the universe of A and for each operation or relation
symbol of L by letting its interpretation in A be the restriction of its interpretation in
B to UB.

In the last constraint above, we denote by BU the L-structure obtained from the L+-structure
B |= Λ. We call this the relativized reduct over U of B to L.

6.2 The Łoś-Tarski Theorem

In the mid-1950’s Jerzy Łoś and Alfred Tarski, working independently, found versions the
following theorem.
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The Łoś-Tarski Theorem. Let K be a class of structures, all of the same signature. If K is a
relativized reduct of an elementary class and K is closed under the formation of substructures,
then K is an elementary class that can be axiomatized by some set of universal sentences.

Proof. Let L be the signature of K and let Ψ be the set of all universal L-sentences true in
K. Let L+ be an expansion of L and let Λ be a set of L+-sentences that witness that K is a
relativized reduct of an elementary class. Further let U be the new one-place relation symbol
of L+ that names the universes of structures in K.
What we need is to prove that if A |= Ψ, then A ∈ K. So suppose A |= Ψ. Expand L+ by

adding new constant symbols ca to name the elements of a ∈ A. Let Σ be the set of atomic
and negated atomic sentences of the signature L expanded by the new constants that hold in
〈A, a〉a∈A. (Sets like Σ are referred to as diagrams. Elementary diagrams are richer sets of
sentences.) Observe that C |= Σ if and only if A is embeddable into C �L.
Claim. The set Σ ∪ {Uca | a ∈ A} ∪ Λ has a model.
Let us suppose our claim is false. Then there is a finite subset Φ ⊆ Σ and a finite F ⊆ A

so that Φ ∪ {Uca | a ∈ F} ∪ Λ that has no model. Let ϕ be the conjunction of the finitely
many sentences in Φ. Notice that no quantifiers occur in ϕ. By enlarging F if necessary we
can suppose that if ca occurs in ϕ then a ∈ F . Let F = {a0, a1, . . . , am−1}. So we see

Λ ∪ {Uca0 ∧ Uca1 ∧ · · · ∧ Ucam−1} |= ¬ϕ(ca0 , . . . , cam−1).

But then

Λ |= (Uca0 ∧ Uca1 ∧ · · · ∧ Ucam−1)→ ¬ϕ(ca0 , . . . , cam−1).

Since the new constants do not occur in Λ we have

Λ |= ∀ȳ
(
(Uy0 ∧ · · · ∧ Uym−1)→ ¬ϕ(y0, . . . , ym−1)

)
.

Now suppose B |= Λ. Then we see that B |= ∀ȳ
(
(Uy0 ∧ · · · ∧ Uym−1) → ¬ϕ(y0, . . . , ym−1)

)
.

But this means BU |= ∀ȳ¬ϕ(ȳ). Since every structure in K is some such BU , we find that
K |= ∀ȳ¬ϕ(ȳ). This means ∀ȳ¬ϕ(ȳ) ∈ Ψ. But A |= Ψ. This means

A |= ∀ȳ¬ϕ(ȳ), and
A |= ϕ(ȳ)[a0, . . . , am−1],

which is a contradiction. This establishes the claim.
So let B |= Σ∪{Uca | a ∈ A}∪Λ. Now B is a structure for the signature L+ expanded by the

extra constant symbols. Let B∗U be the relativized reduct of B to the signature L expanded
by the new constant symbols and let BU be the relativized reduct of B to L. Since B∗U |= Σ,
we see that A is isomorphic to a substructure of BU . Since BU ∈ K, we finally obtain A ∈ K.
This is what we wanted. It means that K = Mod Ψ.

A sentence ϕ is said to be preserved under the formation of substructures provided
that if A |= ϕ and B is a substructure of A, then B |= B.
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Corollary 6.2.1 (Sometimes also called the Łoś-Tarski Theorem). A sentence is preserved
under the formation of substructures if and only if it is logically equivalent for a universal
sentence.

Proof. It is pretty evident that universal sentences are preserved under the formation of sub-
structures. For the converse, suppose ϕ is preserved under substrutures. Let K = Modϕ.
This is an elementary class, so it is a relativized reduct of an elementary class. It is closed
under the formation of substrutures. By the Łos-Tarski Theorem it is axiomatized by some
set Ψ of universal sentences. This means, in particular, that Ψ |= ϕ. By the Compactness
Theorem there a finite Ψ′ ⊆ Ψ so that Ψ′ |= ϕ. Let ψ be the conjunction of the finitely many
universal sentences in Ψ′. Since a conjunction of universal sentences is logically equivalent to a
universal sentence, we may suppose that ψ is itself universal. Also notice ψ ∈ Ψ. Altogether,
this means ψ |= ϕ and ϕ |= ψ. So ϕ is logically equivalent to the universal sentence ψ.

Let us return to our example. Let n be a positive natural number and let Kn be class of
all groups that have faithful n-dimensional representations. We already convinced ourselves
that Kn is a relativized reduct of an elementary class. But it is easy to see that any subgroup
of a group with a faithful n-dimensional representation has itself a faithful n-dimensional
representation. This means that Kn is actually an elementary class that can be axiomatized
by a set of universal sentences.
Now a universal sentence has the form ∀ȳθ(ȳ) where no quantifiers occur in θ. Another

way to view this, in fact our official view, is as ¬∃ȳ¬θ(ȳ). That is, universal sentences are the
negations of existential sentences: they assert that there are no such elements that satisfy some
kind of quantifier-free condition. Roughly speaking, each universal sentence can be understood
to forbid some kind of finite configuration from occurring in any model of the sentence. So one
way to view the Łoś-Tarski theorem is as asserting that certain kinds of classes of structures
can be characterized by forbidding certain finite configurations, perhaps infinitely many such
configurations.

6.3 Characterizations of Universal Classes

Shortly after he had published his version of the Łoś-Tarski theorem, Łoś found the following
strengthening of it.
The Łoś-Tarski Theorem, Ultraproduct Form. Let K be a class of structures of the same
signature. The class K is the class of all models of some set of universal sentences if and only
if K is closed under the formation of ultraproducts and the formation of substructures.

Proof. We already know that any elementary class is closed under the formation of ultraprod-
ucts and that any class axiomatized by a set of universal sentences must be closed under the
formation of substructures. So we only concern ourselves with the converse. So we suppose
that K is closed with respect to the formation of ultraproducts and substructures.
Let Ψ be the set of all universal sentences true in K. All we need to do is show that if

A |= Ψ, then A ∈ K. So let A |= Ψ. Expand the signature by adding a new constant ca for
every element of a ∈ A. Let ΣA the diagram of A.
For each finite subset Θ(c̄) ⊆ ΣA we let θ(c̄) be its conjunction. Let ϕΘ be the sentence
∀ȳ¬θ(ȳ). We see A 2 ϕΘ. This means ϕΘ /∈ Ψ. So pick BΘ ∈ K so that BΘ |= ¬ϕΘ.
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Untangling things a bit, we find that ¬ϕΘ is just another way to write ∃ȳθ(ȳ). This means
that for each a ∈ A so that the new constant symbol ca occurs in Θ(c̄) we can pick bΘ(a) ∈ BΘ
so that expanding BΘ by letting the new constant symbols name these elements leads to a
model of Θ(c̄). Let us pick, arbitrarily, a default element ∞Θ ∈ BΘ. We can then extend bΘ
to be defined on A by setting bΘ(a) =∞Θ in case ca does not occur in Θ(c̄).
Let I = {Θ(c̄) | Θ(c̄) is a finite subset of ΣA}. For each Θ(c̄) ∈ I let

EΘ = {Φ(c̄) | Φ(c̄) ∈ I and Θ(c̄) ⊆ Φ(c̄)}.

Just as in the ultraproduct proof of the Compactness Theorem (see Lecture 3.4), the collection
C = {EΘ | Θ(c̄) ∈ I} has the finite intersection property. Let U be an ultrafilter on I that
extends C.
Put B = ∏

I BΘ/U. We see that B ∈ K, since K is closed under the formation of ultraprod-
ucts. It remains to prove that A can be embedded into B.
Define h : A→ ∏

I BΘ/U by

h(a) := 〈bΘ(a) | Θ(c̄) ∈ T 〉/U,

for all a ∈ A. The function h is our desired embedding. We need to show that it is one-to-one,
that it preserves the basic operations, and that it preserves the basic relations as well as the
failures of the basic relations. That is,

A |= (¬x0 ≈ x1)[a, d] implies B |= (¬x0 ≈ x1)[h(a), h(d)]
A |= (Qx0 . . . xr−1 ≈ xr)[a0, . . . , ar] implies B |= (Qx0 . . . xr−1 ≈ xr)[h(a0), . . . , h(ar)]

A |= (Rx0 . . . xr−1)[a0, . . . , ar−1] implies B |= (Rx0 . . . xr−1)[h(a0), . . . , h(ar−1)]
A |= (¬Rx0 . . . xr−1)[a0, . . . , ar−1] implies B |= (¬Rx0 . . . xr−1)[h(a0), . . . , h(ar−1)]

To say this another way, we need to show that h preserves the satisfaction of atomic formulas
and their negations.
So let σ(ȳ) be any atomic formula. Taking into account the Fundamental Theorem of Ultra-

products, what we need to show is that for any assignment ā from A,

A |= σ(x̄)[ā] implies {Θ(c̄) | BΘ |= σ(x̄)[bΘ(ā)]} ∈ U

and
A |= ¬σ(x̄)[ā] implies {Θ(c̄) | BΘ |= ¬σ(x̄)[bΘ(ā)]} ∈ U

Taking ā = 〈a0, a1, a2, . . . 〉, we see that A |= σ(x̄)[ā] means exactly the same as

σ(ca0 , ca1 , . . . ) ∈ ΣA

and that A |= ¬σ(ȳ)[ā] means ¬σ(ca0 , ca1 , . . . ) ∈ ΣA. But recall that

E{σ(ca0 ,ca1 ,... )} = {Θ(c̄) | Θ(c̄) ∈ I and σ(ca0 , ca1 , . . . ) ∈ Θ(c̄)} ∈ U.

and a similar statement holds with ¬σ(ca0 , ca1 , . . . ) in place of σ(ca0 , ca1 , . . . ).
We have taken particular care in the definition of bΘ so that if σ(ca0 , ca1 , . . . ) ∈ Θ(c̄), then

BΘ |= σ(x̄)[bΘ(ā)]. This means that

If σ(ca0 , ca1 , . . . ) ∈ ΣA, then E{σ(ca0 ,ca1 ,... )} ⊆ {Θ(c̄) | BΘ |= σ(x̄)[bΘ(ā)]}.

Of course, the same applies with ¬σ in place of σ. This completes the proof.
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It is a straightforward exercise to establish that every relativized reduct of an elementary class
is closed under the formation of ultraproducts. So the Łoś-Tarski Theorem is an immediate
consequence of this ultraproduct version. Also, the ultraproduct version characterizes the
elementary classes that can be axiomatized by sets of universal sentences. On the other hand,
the version with relativized reducts of elementary classes is, in most cases, easier to apply.
Here is another characterization of universal classes. We call a class K of structures locally

finite provided for all A ∈ K we have that every finitely generated substructure of A is finite.
The class K is uniformly locally finite provided there is a bounding function g : ω → ω
such that whenever A ∈ K and n is a natural number, then every substructure of A generated
by n or fewer elements has cardinality less than g(n).
Tarski’s Characterization of Uniformly Locally Finite Universal Classes. Let K be
a uniformly locally finite class of structures all of the same finite signature. The following are
equivalent:

(a) K is a universal class.

(b) K is closed under the formation of isomorphic images and under the formation of sub-
structures and the limit of any system of structures belonging to K that is up-directed
by the substructure relation must itself belong to K.

(c) K is closed under the formation of isomorphic images and under the formation of sub-
structures and for any structure A if every finitely generated substructure of A belongs
to K, then A ∈ K.

Proof. (a) implies (b)
Let K = Mod Γ, where Γ is a set of universal sentences . That K is closed with under the
formation of isomorphic images and substructures is evident. So let 〈Ai | i ∈ I〉 be a system
of structures, each belonging to K, that is up-directed by the substructure relation. Let A
be the limit of this system. To see that A ∈ K, let ϕ ∈ Γ be chosen aribitrarily. So ϕ is
∀ȳψ(ȳ), where no quantifiers occur in ψ. We need to see that A |= ϕ. To this end, let ā be any
assignment from A to the variables occurring in ψ. There are finitely many such variables, so
using the up-directedness, we can pick i ∈ I so that all the entries in ā belong to Ai. Since
ϕ ∈ Γ and Ai ∈ K, we see that Ai |= ψ(ȳ)[ā]. But this means that A |= ψ(ȳ)[ā] since ψ is
quantifier-free and Ai is a substructure of A. This means A |= ϕ. So A |= Γ, as desired.
(b) implies (c)
This follows immediately, since every structure is the limit of its up-directed system of finitely
generated substructures.
(c) implies (a)
Let Γ = {ϕ | ϕ is a universal sentence and K |= ϕ}. It only remains to prove that every model
of Γ belongs to K. So let A |= Γ. We will argue that every finitely generated substructure of
A belongs to K and then appeal to (c). We need the following contention.
Contention. The class Mod Γ is uniformly locally finite.

Proof of the contention. To see this, first observe that, up to isomorphism, for each n there
are only finitely many structures generated by n or fewer elements that are substructures
of structures belonging to K. This follows since K is uniformly locally finite and since the
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signature is finite. Let Fn be a set of distinct representatives of these isomorphism classes.
Consider such a substructure B ∈ Fn and let {b0, . . . , bn−1} be a generating set of B. Now B
has no more than g(n) elements, say c0, . . . , cg(n)−1, repeating elements on this list as needed.
For each j < g(n) pick a term tj(x0, . . . , xn−1) so that

tBj (b0, . . . , bn−1) = cj,

taking care to select the term xi to be associated with the element bi for all i < n. For each
operation symbol Q, let its rank be r, we put into the set Φ all equations of the form

Qtj0 . . . tjr−1 ≈ tjr

whenever QB(cj0 , . . . , cjr−1) = cjr . Also put into Φ all inequations ¬tj ≈ tk in the event that
cj 6= ck, for j, k < g(n). So Φ is a finite set of equations and inequations. Once an assignment
of elements of some algebra has been made to the variables x0, . . . , xn−1, what Φ does is assure
us that the set of values assigned to the representative terms is closed under the operations—as
a consequence, the substructure generated by the assigned elements can have no more than
g(n) elements. Let ϕB,b̄ denote the conjunction of the finite set Φ, where b̄ = 〈b0, . . . , bn−1〉.
Now let ψn denote

∀x0, x1, . . . , xn−1
∨

B∈Fn
b̄ from B

ϕB,b̄.

The sentence ψn asserts about a structure A that once any set of n or fewer elements of A is
selected, then the substructure generated by these elements is isomorphic, as far as the basic
operations are concerned, to one of the structures in Fn. Hence each ψn is true in K. Since
these sentences are universal, we conclude that ψn ∈ Γ for each n. This, in turn, entails that
Mod Γ also uniformly locally finite—the same bounding function will do. This finishes the
proof of the contention.

Returning to our proof that (c) implies (a), let A |= Γ. We argue that every finitely generated
substructure of A belongs to K.
So let B be a substructure of A generated by a finite set. Because Mod Γ is locally finite,

we know that B is finite. Expand the signature by adding a new constant symbol for each
element of B. Let δ(c̄) be the sentence resulting from forming the conjunction of the diagram
of B, which is finite since B is finite of finite signature. Observe that A |= ∃ȳδ(ȳ). This means
that A 2 ∀ȳ¬δ(ȳ). So ∀ȳ¬δ(ȳ) /∈ Γ. Since this sentence is universal, we can pick C ∈ K so
that C |= ¬∀ȳ¬δ(ȳ). This is the same as C |= ∃ȳδ(ȳ). So we see that C can be expanded
to a model of the diagram of B. This means that B is isomorphic to a substructure of C.
According to (c), this entails that B ∈ K, just as desired.



LECTURE 7
Denumerable Models of Complete Theories

7.1 Realizing and Omitting Types

Let a and b be distinct real numbers. Is there an elementary formula ϕ in the signature of
ordered rings that distinguishes a from b in the ring of real numbers? That is, we are asking
for a formula ϕ with one free variable so that

〈R,+, ·,−, 0, 1, <〉 |= ϕ(x)[a] and 〈R,+, ·,−, 0, 1, <〉 |= ¬ϕ(x)[b].

Another way to frame this is to ask whether the set {ϕ(x) | 〈R,+, ·,−, 0, 1, <〉 |= ϕ(x)[a]} and
the set {ϕ(x) | 〈R,+, ·,−, 0, 1, <〉 |= ϕ(x)[b]} are different. In this case, it is not so hard to
come up with such a formula. It does no harm to suppose that a < b. Then there must be
integers p and q, with q positive, so that a < p

q
< b. This is the same as aq < p < bq. Now, the

integers p and q can be represented by terms with no variables. (Recall −3 = −(1+1+1).) So
take ϕ(x) to be xq < p. This formula does the job. In fact, this is essentially the device invented
by Eudoxus, a contemporary of Plato, to rescue geometry from the challenge represented by
the irrationality of lengths like

√
2. The set

{ϕ(x) | 〈R,+, ·,−, 0, 1, <〉 |= ϕ(x)[a]}

consists of all those attributes of the real number a that can be expressed in our elementary
language. It this case, we have enough expressive power to completely determine a. Taking
a viewpoint from analysis, we see that that a is the greatest lower bound of all the rational
number properly larger than a.
Sets like Γ(x) = {ϕ(x) | 〈R,+, ·,−, 0, 1〉 |= ϕ(x)[a]} are called complete 1-types. This set of

formulas has the following properties:

(a) There is a structure A and an element a ∈ A so that for each ϕ(x) ∈ Γ(x) we have
A |= ϕ(x)[a], and

(b) Given any formula ψ(x) in at most 1 free variable either ψ(x) ∈ Γ or ¬ψ(x) ∈ Γ(x).

In our example, A = 〈R,+, ·,−, 0, 1, <〉. Any set of formulas of a given signature that has
the properties itemized above is called a complete 1-type. For any natural number n, the
notion of an complete n-type is like the notion of a complete 1-type, but the formulas are
permitted to have at most n-free variables. Γ is called an n-type provided it has property (a)
adjusted for n variables. Observe that any n-type is contained in a complete n-type.
Let Γ(x0, . . . , xn−1) be an n-type (or more generally, just a set of formulas with free variables

among x0, . . . , xn−1). Let A be a structure of the same signature. We say that A realizes
Γ(x0, . . . , xn−1) provided there are a0, . . . , an−1 ∈ A so that for all ϕ(x̄) ∈ Γ(x̄) we have
A |= ϕ(x̄)[ā]. On the other hand, we say that A omits Γ(x̄) if and only if A does not

66
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realize Γ(x̄). To tell it in a fabulous way, one can imagine writing in English a very detailed
description of a unicorn. This description amounts to an English language variant of a 1-type,
the type of unicorns. The world we live in probably omits this type, but in some more fabulous
world the type of unicorns may be realized.
Let T be an elementary theory. We say that Γ(x̄) is an n-type of T if Γ(x̄) is realized in

some model of T . It follows from the Compactness Theorem that Γ(x̄) is an n-type of T if
and only if every finite subset of Γ(x̄) is an n-type of T . There is one attribute that an n-type
can have that ensures that it is realized in every model of T : namely, if there is a formula
ϕ(x̄) so that

T ∪ {∃x̄ϕ(x̄)} has a model and
T |= ∀x̄

[
ϕ(x̄)→ γ(x̄)

]
for all γ(x̄) ∈ Γ(x̄).

Such a formula ϕ(x̄) is said to support Γ(x̄) over T or to be a generator of Γ(x̄) with respect
to T , or sometimes to isolate Γ(x̄) with respect to T . In the event that Γ(x̄) is a complete
n-type and T has a model, then ϕ(x̄) will belong to Γ(x̄). Realizing this one formula from the
n-type is enough to realize the whole n-type. For countable signatures there is a converse.
The Omitting Types Theorem. Let L be a countable signature. Let Φ0,Φ1, . . . be a count-
able list of types. Let T be a set of L-sentences so that each Φi is unsupported over T and so
that T has a model. Then T has a countable model which omits all the types Φ0, Φ1, Φ2, . . ..

Proof. As with the proof of the Compactness Theorem, we need to construct a structure
satisfying a list of constraints. Our proof will be a modification of Henkin’s proof of the
Compactness Theorem. We begin by expanding the signature with a countably infinite list
c0, c1, c2, . . . of new constant symbols. These symbols will name the elements of the structure
we are going to assemble. As with the proof of the Compactness Theorem we will build a
theory in our expanded signature that will turn out to be complete (this is one constraint
we will have the fulfill) and have enough witnesses of existential sentences (this is a second
constraint). But we have a countably infinite list of other constraints, namely for each natural
number m we have to ensure that Φm is not realized.
Our construction will proceed by stages, one stage for each natural number. We will arrange

matters in such a way that we have the opportunity to satisfy each of our constraints infinitely
often. To this end, we partition the set of natural numbers into a countably infinite collection
of countably infinite pieces. Let us call one piece C for “completeness”, one piece E for
“existential”, and label the rest as F0, F1, F2, . . . to correspond with the types Φ0,Φ1,Φ2, . . . .
Our construction starts with T0 being the empty set. At stage i of the construction we

will produce a finite set Ti+1 of sentences so that, among other things, Tj ⊆ Ti for all j < i
and so that T ∪ Ti+1 has a model. After all the stages have been completed we will form
Tω = T ∪⋃i∈ω Ti. At that point we will produce a countable structure A just as we did in the
proof of the Compactness Theorem.
We contract out this construction to countably many experts, each specialized in one of our

constraints. Before our construction can get underway, each expert must do some preliminary
work.
The Preliminary Work of the Completion Expert
She must arrange all the sentences of our expanded signature in a list θ0, θ1, θ2, . . . .
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The Preliminary Work of the Existential Expert
She must arrange all the formulas with one free variable in a list ψ0, ψ1, ψ2, . . . taking care
that each such formula appears on her list infinitely often.
The Preliminary Work of each Type Omitting Expert
Let us suppose that Φm is an n-type. The expert in charge of omitting Φm must arrange all
the n-tuples of distinct new constant symbols in a list c̄0, c̄1, c̄2, . . . .

What happens at stage i of the construction is that Ti is placed into the hands of one of the
experts according to whether i belongs to her block of our partition of the natural numbers.
So, for example, if i ∈ C, then the construction passes into the hands of the completion expert,
whereas if i ∈ Fm, then it passes into the hands of the expert in charge of omitting Φm. In
this way, each expert gets her hands on the construction infinitely often.
Here is what each expert does, each time the construction comes to her.

The Action of the Completion Expert
The completion expert takes the earliest sentence θ on her list that she has not yet marked
off. If T ∪ Ti ∪ {θ} has a model then she sets Ti+1 = Ti ∪ {θ} and marks off θ on her list.
Otherwise, she puts Ti+1 = Ti ∪{¬θ} and marks off θ from her list. At the end of her work at
this stage, she knows that T ∪ Ti+1 has a model.
The Action of the Existential Expert
The existential expert takes the earliest formula ψ(y) on her list that she has not yet marked
off. She puts Ti+1 = Ti ∪ {∃yψ(y) → ψ(c)}, where c a new constant symbol that does not
occur in Ti. She then marks off that one occurrence of ψ(y) on her list. At the end of her
work at this stage, she knows that T ∪ Ti+1 has a model and that at some future stage she
will be dealing with the same formula ψ(y) again.
The Action of an Type Omitting Expert
When the work comes to the expert in charge of omitting Φm, she takes the earliest n-tuple c̄
from her list that she has not already marked off. Some or all of the constant symbols in c̄ may
occur in the finite set Ti. In addition, there may be others of the new constant symbols that
occur in Ti. Let d̄ be a finite tuple listing these other new constant symbols. Let τ(c̄, d̄) be the
conjunction of Ti. Now T ∪ {∃x̄∃ȳτ(x̄, ȳ)} has a model. But our expert knows that Φm is not
supported over T . This means that there is ϕ(x̄) ∈ Φm so that T 2 ∀x̄[∃ȳτ(x̄, ȳ)→ ϕ(x̄)]. By
logical equivalence, this is the same as T 2 ∀x̄∀ȳ

[
τ(x̄, ȳ)→ ϕ(x̄). The new constant symbols

listed in c̄ and d̄ do not occur in T . This means that T 2 τ(c̄, d̄)→ ϕ(c̄) or what is the same
T ∪ {τ(c̄, d̄)} 2 ϕ(c̄). So the expert in charge on omitting Φm puts Ti+1 = Ti ∪ {¬ϕ(c̄)}. She
then marks off c̄ from her list. At the end of her work at this stage, she knows that T ∪ Ti+1
has a model and that in any model of it the tuple of elements named by c̄ cannot realize the
type Φm.
So we now have Tω. We see that it has the following properties

(a) T ⊆ Tω.

(b) Tω is a complete theory in the expanded signature, due to the diligent work of the
completion expert.
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(c) Sentences of the form ∃xψ(x)→ ψ(d) belong to Tω for all formulas ψ of one free variable
and for infinitely many new constatnt symbols d, due the diligent work of the existential
expert.

(d) For each appropriate natural number n, each n-tuple c̄ of distinct new constant symbols
and each m there is ϕ(x̄) ∈ Φm so that ¬ϕ(c̄) ∈ Tω, due to the diligent work of the type
omitting experts.

Now we construct the structure A′ exactly as we did in the proof of the Compactness The-
orem. The elements of A′ are equivalence classes of the new constant symbols. In this way
every element of A′ is named by a constant symbol, indeed by infinitely many distinct constant
symbols since we made the existential expert work harder than she had to in the proof of the
Compactness Theorem. We also see that A′ is countable.
Just as in the proof of the Compactness Theorem we find

A′ |= γ if and only if γ ∈ Tω

for all sentences γ of our expanded language. Obtain A as the reduct of A′ resulting from
ignoring the new constant symbols. We see that A is a countable model of T . To see that
it omits the type Φm of formulas on n free variables, let ā be any n-tuple of elements of A.
Because the existential expert worked hard enough to ensure that every element of A is named
by infinitely many of the new constant symbols, there is an n-tuple c̄ of distinct new constant
symbols so that c̄ is a tuple of names for ā in A′. The type omitting expert has inserted into
Tω a sentence ¬ϕ(c̄) so that ϕ(x̄) ∈ Φm. It follows that A′ |= ¬ϕ(c̄). But this is the same as
A |= ¬ϕ(x̄)[ā]. So we see that Φm cannot be realized by ā. Since ā was chosen arbtrarily, we
find that Φm cannot be realized by any n-tuple from A. So A omits Φm, as desired.

The Omitting Types Theorem has its roots in the independent work of Leon Henkin and
Steven Orey in the early 1950’s on ω-logic. This line of work was advanced further by Andrzej
Grzegorczyk, Andrzej Mostowski, and Czeslaw Ryll-Nardzewski, where a more explicit version
of the theorem can be found. The form of the theorem we have used is apparently due to
Andrzej Ehrenfeucht around 1955—Ehrenfeucht never published his version.

7.2 Meager Structures

Given a structure A and an n-type Γ(x̄) it might be that Γ(x̄) is omitted by A but is realized
in some other model of The Th A. We can obtain a deeper understanding of the structure A
by investigating which types are realized in A. Some structures are meager in this regard—
the only types they realize are the supported types, which must be realized in every model
of Th A. We consider such meager structures in this section, while to next section deals with
structures that realizes as many types as possible.
We say a structure A is atomic provided that every complete type that is realized in A is

supported with respect to Th A.
The Uniqueness Theorem for Countable Atomic Structures. Let A and B be count-
able atomic structures of the same signature. If A ≡ B, then A ∼= B.
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Proof. We have already observed much earlier in these notes that A ≡ B implies A ∼= B,
when A (and therefore B) is finite. So here we consider only the case that A and B are
countably infinite. Let a0, a1, a2, . . . and b0, b1, b2, . . . be lists of the the elements of A and B
respectively.
We use a back-and-forth construction to make the desired isomorphism, which will be a set
{(ek, dk) | k ∈ ω} of ordered pairs. We do this in stages. At the even stages we let ek be the
next element of A [so of course e0 = a0] and go forth to B to find a proper element dk. At the
odd stages we let dk be the next element of B and go back to A to find an appropriate ek.
Expand the signature by adding new constant symbols c0, c1, . . . .
So at stage k we have already (e0, d0), . . . , (ek−1, dk−1) such that

〈A, e0, . . . , ek−1〉 ≡ 〈B, d0, . . . , dk−1〉.

Let us suppose that k is odd. Pick dk to be the earliest element on the list of elements of B
that does not occur among d0, . . . , dk−1. Let Γ(x0, . . . , xk) be the complete k + 1 type of all
formulas realized by 〈d0, . . . , dk〉. Because B is atomic, there is a formula θ(x0, . . . , xk) that
supports Γ(x0, . . . , xk) over Th B. Now

〈B, d0, . . . , dk−1〉 |= ∃xkθ(c0, . . . , ck−1, xk).

Since 〈A, e0, . . . , ek−1〉 ≡ 〈B, d0, . . . , dk−1〉, we see

〈A, e0, . . . , ek−1〉 |= ∃xkθ(c0, . . . , ck−1, xk).

So pick ek ∈ A so that A |= θ(x0, . . . , xk)[e0, . . . , ek]. Since θ(x0, . . . , xk) supports Γ(x0, . . . , xk)
over Th A = Th B, we see that 〈e0, . . . , ek〉 realizes Γ(x0, . . . , xk). It follows that

〈A, e0, . . . , ek〉 ≡ 〈B, d0, . . . , dk〉.

So after countably steps we have f = {(ek, dk) | k ∈ ω} where e0, e1, . . . lists all the elements
of A and d0, d1, . . . list all the elements of B. Moreover, since

〈A, e0, e1, . . . 〉 ≡ 〈B, d0, d1 . . . 〉,

we conclude that f is an isomorphism.

Under what circumstances will a (complete) theory T have a countable atomic model? Con-
sider first the kinds of formulas that can support an n-type over T . We call a formula θ(x̄)
complete with respect to T provided

• θ(x̄) is realized in some model of T , and

• for every formula ϕ(x̄) of the signature either

T |= ∀x̄[θ(x̄)→ ϕ(x̄)] or T |= ∀x̄[θ(x̄)→ ¬ϕ(x̄)].

The complete formulas are the ones that can support types over T . Further, let us say a
formula ϕ(x̄) is completeable with respect to T provided

T |= ∀x̄[θ(x̄)→ ϕ(x̄)]

for some formula θ(x̄) that is complete with respect to T .
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The Existence Theorem for Atomic Models of Complete Theories. Let T be a com-
plete theory of a countable signature. T has a countable atomic model if and only if every ϕ(x̄)
that is realized in some model of T is completeable with respect to T .

Proof. First suppose that T has a countable atomic model A and that ϕ(x̄) is realized in some
model of T . Then ∃x̄ϕ(x̄) is true in some model of T . Because T is complete, we see that
∃x̄ϕ(x̄) ∈ T and so A |= ∃x̄ϕ(x̄). So pick an n-tuple ā of elements of A that realizes ϕ(x̄). Let
Γ(x̄) be the complete n-type realized by ā in A. Since A is atomic, there is a formula θ(x̄)
that supports Γ(x̄). So θ(x̄) is complete with respect to T and T |= ∀x̄[θ(x̄) → ϕ(x̄)] since
ϕ(x̄) ∈ Γ(x̄). This means ϕ(x̄) is completeable with respect to T .
For the converse, for each n take x̄ = 〈x0, . . . , xn−1〉 and let

Γn = {¬θ(x̄) | θ(x̄) is a complete formula with respect to T }.

Contention. Γn is unsupported with respect to T .
Let ϕ(x̄) be any formula that is realized in some model of T . Then ϕ(x̄) is completeable. So

let θ(x̄) be complete with respect to T so that

T |= ∀x̄[θ(x̄)→ ϕ(x̄)]/

We see that θ(x̄) ∧ ϕ(x̄) is realized in some model of T—indeed, in any model in which θ(x̄)
is realized. But this means that T 2 ∀x̄[ϕ(x̄) → ¬θ(x̄)]. So ϕ(x̄) cannot support Γn over T .
This establishes the contention.
So by the Omitting Types Theorem, T has a countable model A that omits each Γn. Consider

any n-tuple ā of elements of A. Since ā cannot realize Γn, we can pick ¬θx̄) ∈ Γn so that
A |= θ(x̄)[ā]. Now θ(x̄) is complete with respect to T . So it must support a complete n-
type and that n-type must be the complete n-type of all formulas realized by ā in A. This
means that every complete type realized in A is supported. This means that A is atomic, as
desired.

There is another condition that ensures the existence of a countable atomic model.
Let T be an elementary theory and let n be a natural number. We denote that set of all

complete n-type of T by Sn(T ). For any cardinal κ we let µ(κ, T ) denote the number of
models of T of cardinality κ, counted up to isomorphism. For countable signatures, |Sn(T )| ≤
ℵ0 · µ(ℵ0, T ), since each complete n-type of T is the type of some n-tuple of elements of some
model B |= T . By the Downward-Löwenheim-Skolem-Tarski Theorem, we can assume that B
is countable. So there are only countably many n-tuples of elements of B and only µ(ℵ0, T )
many choices of B.
Second Existence Theorem for Atomic Models. Let T be a complete theory in a count-
able signature. If |Sn(T )| < 2ℵ0 for all n, then T has a countable atomic model.

Corollary 7.2.1. Let T be a complete theory in a countable signature. If µ(ℵ0, T ) < 2ℵ0, then
T has a countable atomic model.

Proof. We prove the contrapostive of the theorem. That is, we assume that T has no countable
atomic model, and deduce that the number of complete n-type is 2ℵ0 , for some n.
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Since T has no countable atomic model by the Existence Theorem for Atomic Models, we
have a formula ϕ(x0, . . . , xn−1) that is realized in some model of T and that is not completeable.
So we can pick a formula σ0(x̄) so that

T 2 ∀x̄[ϕ(x̄)→ σ0(barx)] and T 2 ∀x̄[ϕ(x̄)→ ¬σ0(x̄)].

This is equivalent to

ϕ(x̄) ∧ σ0(x̄) is realized in some model of T , and
ϕ(x̄) ∧ ¬σ)(x̄) is realized in some model of T

Take ϕ0(x̄) to be ϕ(x̄) ∧ σ0(x̄) and take ϕ1(x̄) to be ϕ(x̄) ∧ ¬σ0(x̄). So we have

T |= ∀x̄[ϕ0(x̄)→ ϕ(x̄) and T |= ∀x̄[ϕ1(x̄)→ ϕ(x̄),

and ϕ0(x̄)∧ϕ1(x̄) is not realized in any structure. Moreover, we see that both ϕ0(x̄) and ϕ1(x̄)
are not completeable.
Now we can repeat this process using ϕ0(x̄) in place of ϕ(x̄) to find further formulas ϕ00(x̄)

and ϕ01(x̄) so that

T |= ∀x̄[ϕ00(x̄)→ ϕ0(x̄) and T |= ∀x̄[ϕ01(x̄)→ ϕ0(x̄),

and ϕ00(x̄) ∧ ϕ01(x̄) is not realized in any structure. Moreover, we see that both ϕ00(x̄) and
ϕ01(x̄) are not completeable.
Of course, in the same way we can repeat our process with ϕ1(x̄) in place of ϕ(x̄) to obtain

formulas ϕ10(x̄) and ϕ11(x̄) with entirely similar properties.
What we build in this way is a tree of formulas. The first three stages are illustrated below.

ϕ(x̄)

ϕ0(x̄)

ϕ1(x̄)

ϕ00(x̄)

ϕ01(x̄)

ϕ10(x̄)

ϕ11(x̄)

The entire construction through denumerably many stages produces a binary tree of formulas.
This tree has 2ℵ0 branches (think of the real numbers between 0 and 1 represented in binary
notation). Each branch gives us a countably infinite set of formulas and this set of formulas is
realized in some model of T . This follows, by way of the Compactness Theorem, from the fact
that each finite subset is realized. So each branch is contained in a complete n-type. On the
other hand, distinct branches are incompatible: No structure can realize all the formulas on
two different branches. So the complete n-types of different branches must be different. This
means that there are 2ℵ0 complete n-types. So |Sn(T )| = 2ℵ0 , as desired.

An atomic structure A is meager in the sense that the only n-types that are realized in A
are the supported n-types, which must be realized in all models of Th A. There is another
way to view the smallness of atomic structures. Let T be an elementary theory. A model
A |= T is said to be elementarily prime with respect to T provided A |= T and A can
be elementarily embedded into every model of T .
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The Countable Atomic Equals Prime Theorem. Let T be a complete theory of countable
signature. For any structure A, the following are equivalent.

(a) A is an elementarily prime model of T .

(b) A is an countable atomic model of T .

Proof. Consider first the case when A is finite. Since T is complete, we know that T = Th A.
So we know that, up to isomorphism, A is the only model of T . We leave it in the hands of the
hungry graduate students to prove that every finite structure is both atomic and elementarily
prime.
Now let us suppose that A is an elementarily prime model of T . According to the Downward

Löwemheim-Skolem-Tarski Theorem, A is countable. We have to show that every complete
type realized in A is supported. So let Γ(x̄) be an complete n-type that is not supported with
respect to T = Th A. By the Omitting Types Theorem there is a countable model B of T
that omits Γ(x̄). Since A is elementarily prime we can suppose without harm that A 4 B.
Let ā be an arbitrary n-tuple of elements of A. Since ā cannot realize Γ(x̄) in B, we can pick
γ(x̄) ∈ Γ(x̄) so that B |= ¬γ(x̄)[ā]. But since A 4 B, se have that A |= ¬γ(x̄)[ā]. So ā does
not realize Γ(x̄) over A. As ā was an arbitrary n-tuple from A, we see that A omits Γ(x̄). But
Γ(x̄) was an arbitrary complete n-type unsupported with respect to T , so A is a countable
atomic model of T .
For the converse, we use the “forth” part of the “back-and-forth” construction from the proof

of the Uniqueness Theorem for Countable Atomic Structures. Let A be a countable atomic
model of T and let B be any model of T . The key observation here, as in that proof, is that
the type of any n-tuple over A is supported and that supported types are realized in every
model of T . We leave the details to the industry of the graduate students.

7.3 Countably Saturated Structures

The meager models of a complete theory were the ones that realized only the complete types
that had to be realized in any model of the theory. In contrast, the countably saturated models
will realize has many complete types are possible.
Recall that for any structure A and any subsetD ⊆ A, we used 〈A, D〉 to denote the structure

obtained by expanding A by taking each element of the setD as a new distinguished element—
so the signature has been expanded by adding new constant symbols to name the elements
of D. We will say that A is ω-saturated if and only if for every finite D ⊆ A and every
type Γ(x̄) in the expanded signature that is realized in some model of Th〈A, D〉 is realized in
〈A, D〉. The structure A is countably saturated provided it is countable and ω-saturated.
Happily, this notion simplifies, as the following theorem asserts.

Theorem 7.3.1. Let A be a structure such that for all finite D ⊆ A, we have that all 1-types
types Γ(x) of the expanded signature that are realized in some model of Th〈A, D〉 are realized
in 〈A, D〉. Then A is ω-saturated.

Proof. We have to prove for every positive natural number n that for all finite D ⊆ A and all
n-types Γ(x̄) that are realized in some model are already realized in 〈mathbfA,D〉. We do
this by induction on n.
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The hypothesis of the theorem gives us the base step.
So let D ⊆ A be finite and let Γ(x0, . . . , xn−1, xn) be an n+ 1-type realized in some model of

Th〈A, D〉. It is harmless to suppose that Γ(x0, . . . , xn) is closed under finite conjunctions. Let
Γ′(x0, . . . , xn−1) = {∃xnγ(x0, . . . , xn−1, xn) | γ(x0, . . . , xn) ∈ Γ}. Observe that Γ′(x0, . . . , xn−1)
is an n-type realized in some model of Th〈A, D〉. By the inductive hypothesis, there is an
n-tuple 〈a0, . . . , an−1〉 of elements of A that realize Γ′(x0, . . . , xn−1) in 〈A, D〉. Let D′ =
D ∪ {a0, . . . , an−1}. Let c0, . . . , cn−1 be the new constant symbols naming a0, . . . , an−1. The
set Γ(c0, . . . , cn−1, xn) is realized in some model of 〈A, D′〉. But this is a 1-type and must
be realized in 〈A, D′〉. So pick an ∈ A that realizes this 1-type. Then 〈a0, . . . , an〉 realizes
Γ(x0, . . . , xn) in 〈A, D〉.

Even though the notions of countable atomic structures and of countably saturated structures
are complementary, the basic facts about them are similar.
The Uniqueness Theorem for Countably Saturated Structures. Let A and B be
structures of the same signature. If A and B are countably saturated and A ≡ B, then
A ∼= B.

Proof. Once again we employ a back-and-forth construction. Let a0, a1, a2, . . . be a listing of
the elements of A and b0, b1, b2, . . . be a listing of the elements of B. We expand the signature
by countably many new constant symbols c0, c1, c2, dots.
Our construction, which proceeds through countably many stages, produces a list of pairs

(d0, e0), (d1, e1), (d2, e2), . . . so that

{(dk, ek) | k ∈ ω}

is the desired isomorphism. At the beginning of stage k we have in hand (d0, e0), . . . , (dk−1, ek−1)
and we know 〈A, d0, . . . , dk−1〉 ≡ 〈B, e0, . . . , ek−1〉. In particular, at stage 0 our list of pairs is
empty and we know A ≡ B. What happens at stage k is that we find a way to add a pair to
our list that extends our elementary equivalence.
Here is what we do at the stages when k is even. We let ek be the earliest element on our list

of elements of B that has not appeared among e0, . . . , ek−1. Let Γ(x) be the complete 1-type
of ek over 〈B, e0, . . . , ek−1〉. Because Th〈A, d0, . . . , dk−1〉 = Th〈B, e0, . . . , ek−1〉, we see that
Γ(x) is a 1-type that is realized in some model of Th〈A, d0, . . . , dk−1〉. Since A is ω-saturated,
Γ(x) is realized in 〈A, d0, . . . , dk−1〉. Pick dk ∈ A that realizes Γ(x). So we can add (dk, ek) to
our list knowing that 〈A, d0, . . . , dk〉 ≡ 〈B, e0, . . . , ek〉.
At the stages where k is odd, we reverse field and pick the next element from A and use its

complete 1-type to find an appropriate element of B.
So at the end of the construction, we have 〈A, d0, d1, d2, . . . 〉 ≡ 〈B, e0, e1, e2, . . . 〉. This entails

that our list of pairs is the desired isomorphism.

The Existence Theorem for Countably Saturated Models. Let T be a complete theory
of countable signature. T has a countably saturated model if and only if |Sn(T )| is countable
for every natural number n.

Proof. First suppose that A is a countably saturated model of T . Then every complete n-type
that is realized in any model of T (that is, any arbitrary element of Sn(T )), must be realized
in A. Since A is countable, the number of n-tuples of elements of A must also be countable.
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But the Sn(T ) must be countable, since distinct complete n-types cannot be realized by the
same n-tuple.
For the converse, we want to give two proofs. The first will, like the proof of the Omitting

Types Theorem, be a variation on Henkin’s proof of the Compactness Theorem. The second
proof uses the Compactness Theorem and Tarski’s Elementary Chain Theorem.
We begin the first proof by expanding the signature with a countably infinite list c0, c1, c2, . . .

of new constant symbols. For each finite subset D of these new constant symbols, the complete
1-types of T in the signature expanded by D is in one-to-one correspondence with the complete
|D| + 1-types in the original signature. Since there are countably many finite subsets of new
constant symbols, there are only countable many complete 1-types of T over these finite
expansions of the original signature. Let Γ0(x),Γ1(x),Γ2(x), . . . be a list of all these 1-types.
We need to build a countable model A (with the original signature) of T so that for any

finitely many a0, . . . , am−1 ∈ A and any complete 1-type Γ(c0, . . . , cm−1, x), if Γ(c0, . . . , cm−1, x)
is realized in any model of Th〈A, a0, . . . , am−1〉, then it is realized in 〈A, a0, . . . , am−1〉. As
A |= T , we see that Γ(c0, . . . , cm−1, x) is one of the types listed in the previous paragraph.
To pull off this construction, we hire a team of experts: A Completion Expert, an Existential

Expert, and an Expert Type Realizer. Each of these experts has to get her hands on the
construction infinitely often. Together they build an increasing sequence T = T0 ⊆ T1 ⊆
T2 ⊆ . . . of sets of sentences in our expanded signature, where Tk+1 is obtained from Tk
by adding some set of sentences using at most finitely many new constant symbols. As we
already understand what the Completion Expert and the Existential Expert do, I will only
describe the activities of the Expert Realizer. Once Tk comes into her hands, she takes the
next complete type Γ(x) from her list. If there is a model of Tk in which Γ(x) is realized, our
expert sets Tk+1 = Tk ∪Γ(d), where d is the first new constant symbol not occurring in Tk. If,
on the other hand, Γ(x) is not realized in any model of Tk, then she makes Tk+1 = Tk.
At the end of this construction, we take Tω = ⋃

k∈ω Tk. As in Henkin’s proof of the Com-
pactness Theorem, Tω will have countable model 〈A, a0, a1, . . . 〉. We have to see that A is
ω-saturated. So let ai0 , . . . , aim−1 be finite list of elements of A. Let Σ(x) be a complete 1-type
over 〈A, ai1 , . . . , aim−1〉. As A |= T , we can pick k the type Σ(x) = Γk(x). So our Expert
Realizer must have included Γk(d) in Tω, for some constant symbol d. Therefore Σ(x) must
be realized in 〈A, a0, a1, . . . 〉 by the element named by d. This means that A is countably
saturated. This completes the first proof.
For the second proof, let A be a countable model of T . To get the flavor of what we intend,

let Γ(x) be a complete 1-type over T . Let B be a model of T in which Γ(x) is realized. By the
Downward Löwenheim-Skolem-Tarski Theorem, we may as well suppose that B is countable.
By the Elementary Joint Embedding Theorem there is a structure C into which both A and
B can be embedded, since T is a complete theory. Since B 4 C, an element of B that realizes
Γ(x) over B must also realize Γ(x) over C. An examination of the proof of the Elementary
Joint Embedding Theorem shows that C can be taken to be countable. So we see that C is
at least a bit more saturated than A—at least we know that Γ(x) is realized in C. We have
to enhance this just a little. In the first place, we have to worry about realizing 1-types in
expansions of our signature by finitely many new constants to name elements of A and we
have to manage this for not just a single 1-type but for countable list, in fact the sublist of
the list Γ0(x),Γ1(x), . . . that we used in the first proof that work over A.
Consider the case of a complete 1-type Γk(x) = Γk(c0, . . . , cm−1, x) so that there is a finite
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list a0, . . . , am−1 ∈ A so that Γk(x) is realized in some model of Th〈A, a0, . . . , am−1〉. By the
observations above let 〈Ck, a0, . . . , am−1〉 be a countable structure that realizes Γk(x) where
A 4 Ck. We can at least do that with the Elementary Joint Embedding Theorem. Just to
define Ck for all k, in the event that the case above does not apply to Γk(x), take Ck = A.
We can even arrange matters so that the sets Ck \ A are pairwise disjoint.
Now expand the original signature by a new constant symbol for each element of each of

the countably many countable sets. Let ∆ be the union of the elementary diagrams of the
Ck written in this expanded signature. Every finite subset of ∆ has a model, by the obvi-
ous inductive extension of the Elementary Amalgamation Theorem. So by the Compactness
Theorem, ∆ has a countable model. Let A1 be the reduct of this model back to the original
signature. So A 4 Ck 4 A1 for all k. This means that any 1-type that uses parameters from
A that should be realized is, in fact, realized in A1. This would make A1 ω-saturated, except
that in building A1 we added more elements and so there are more m-tuples of elements of
A1 to contend with. So repeat this step infinitely often to obtain an elementary chain

A 4 A1 4 A2 4 . . .Ak 4 Ak+1 4 . . .

of countable structures so that every 1-type with parameters from Ak is realized in an ap-
propriate expansion of Ak+1. Let Aω be the union of this elementary chain. By Tarski’s
Elementary Chain Theorem we see that Aω is a countable elementary extension of A and of
each Ak. To see that Aω is ω-saturated let a0, . . . , am−1 ∈ Aω and let Γ(c0, . . . , cm−1, x) be a
1-type realized in some model of Th〈Aω, a0, . . . , am−1〉. But notice a0, . . . , am−1 ∈ Ak for some
k. But then Th〈Aω, a0, . . . , am−1〉 = Th〈Ak, a0, . . . , am−1〉. Thus Γ(c0, . . . , cm−1, x) is realized
in some model of Th〈Ak, a0, . . . , am−1〉 and so it must be realized over 〈Ak+1, a0, . . . , am−1〉
and hence over 〈Aω, a0, . . . , am−1〉. So Aω is countably saturated, as desired. The completes
the second proof.

Just as with the Second Existence Theorem for Countable Atomic Models, we can draw the
next corollary from the Existence Theorem for Countably Saturated Models.

Corollary 7.3.2. Let T be a complete theory in a countable signature. If µ(ℵ0, T ) is countable,
then T has a countably saturated model.

7.4 The Number of Denumerable Models of a Complete Theory

The elementary theory of dense linear orders without endpoints has, up to isomorphism, only
one denumerable (=countably infinite) model. The elementary theory of nontrivial vector
spaces over the rationals has a countable infinity of such models (one for each countable
dimension, except dimension 0). On the other hand, the theory of discrete linear orderings
without endpoints has 2ℵ0 pairwise nonisomorphic denumerable models. [The discrete linear
orderings without endpoints are those where every element has both an immediate predecessor
and an immediate successor.] Each of these is a complete theory of countable signature. So
we have examples of theories T so that µ(ℵ0, T ) = 1,ℵ0, and 2ℵ0 . What other values can
µ(ℵ0, T ) have, under the constraint that T is a complete theory of countable signature? What
kind of properties of T must hold under the constraint that µ(ℵ0, T ) has a particular value?
Our next objective is to characterize those complete theories of countable signature that are
ω-categorical. These are the theories where µ(ℵ0, T ) = 1.
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The ω-Categoricity Theorem. Let T be a complete theory with an infinite model in a
countable signature. The following are equivalent:

(a) T is ω-categorical;

(b) T has a countable model that is both ω-saturated and atomic;

(c) For each natural number n, every complete n-type of T contains a complete formula;

(d) |Sn(T )| is finite for all n;

(e) For each natural number n there are only finitely many T -equivalence classes of formulas
ϕ(x0, . . . , xn−1);

(f) All models of T are atomic.

Proof. We will prove (a) =⇒ (b) =⇒ (c) =⇒ (d) =⇒ (e) =⇒ (f) =⇒ (a).
(a) implies (b)
By the Corollary to the Second Existence Theorem for Countable Atomic Models we know that
T has a countable atomic model. By the Corollary to the Existence Theorem for Countably
Saturated Models, we know that T has a countably saturated model. Since T cannot have
finite models, these countable models of T must have cardinality ω. Since T is ω-categorical,
they must be isomorphic. So T has a countable model that is both ω-saturated and atomic.
(b) implies (c)
Let A be a countable model of T that is both ω-saturated and atomic. Let n be a natural
number of Γ(x0, . . . , xn−1) be a complete n-type of T . This means that Γ(x0, . . . , xn−1) is
realized in some model of T = Th A. Because A is ω-saturated, this type must be realized
in A. But A is atomic, so only supported types are realized in A. Thus there must be a
complete formula that supports Γ(x0, . . . , xn−1). Since this type is complete, the complete
formula must belong to Γ(x0, . . . , xn−1).
(c) implies (d)
Let n be a natural number and and let x̄ = 〈x0 . . . , xn−1. Let

Λ(x̄) = {¬θ(x̄) | θ(x̄) is a complete formula with respect to T}.

Since every complete n-type contains a complete formula, we see that Λ(x̄) is not included
in any complete n-type of T . This means that Λ(x̄) cannot be realized in any model of T .
By the Compactness Theorem, so some finite subset {¬θ0(x̄), . . . , θm−1(x̄)} of Λ(x̄) cannot be
realized in any model of T . Let Γ(x̄) be any complete n-type of T . Pick B |= T and b̄ an
n-tuple from B so that Γ(x̄) is the complete n-type realized by b̄ over B. Then there must be
k < m so that B |= θk(x̄)[b̄]. This means that Γ(x̄) must be the complete n-type determined
by θk(x̄) with respect to T . So T can have at most m complete n-types.
(d) implies (e)
Let n be a natural number and and let x̄ = 〈x0 . . . , xn−1. Recall that the formulas ϕ(x̄) and
ψ(x̄) are T -equivalent provided

T |= ∀x̄[ϕ(x̄)↔ ψ(x̄)].
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Another way to say this is that for any model B of T and any n-tuple b̄ from B, we have that
ϕ(x̄) belongs to the n-type realized by b̄ if and only if ψ(x̄) belongs to the n-type realized by
b̄. That is, the formulas ϕ(x̄) and ψ(x̄) are T -equivalent if and only if they belong to the same
complete n-types of T . Since T has only finitely many complete n-types, there can be only
finitely many T -equivalence classes of formulas whose free variables come from x̄.
(e) implies (f)
Let n be a natural number and Γ be a complete n-type of T . Up to T -equivalence, there are
only finitely many formulas in Γ; here is a list of them θ0, . . . , θm−1. Let ϕ = θ0∧θ1,∧ · · ·∧θm−1.
Since Γ is a complete n-type, we see that ϕ ∈ Γ and also that ϕ is a complete formula with
respect to T . So every n-type of T is supported. It follows that every model of T is atomic.
(f) implies (a)
By the Uniqueness Theorem for Countable Atomic Models, we know that any two countable
atomic models of a complete theory must be isomorphic. Since all models of T are atomic, we
find that all countable models are isomorphic. That is, T is ω-categorical.

So what can be said about complete theories T so that µ(ℵ0, T ) = 2?
Vaught’s Two Countable Models Theorem. There is no complete theory T of countable
signature that has, up to isomorphism, precisely two countable models.

Proof. Let T be a complete theory of countable signature with at least two nonisomorphic
countable models but no more than countably many. We want to show that T must have at
least three pairwise nonisomorphic countable model. Now T must have a countably saturated
model B and a countable atomic model A. Since T is not ω-categorical, by the ω-Categoricity
Theorem we know that T cannot have a countable model that is both ω-saturated and atomic.
This means that A 6∼= B. In particular, A is not countably saturated and B is not atomic.
So for some natural number n there must be a complete n-type Γ(x0, . . . , xn−1) realized in B
that contains no complete formula. Suppose b0, . . . , bn−1 ∈ B so that 〈b0, . . . , bn−1〉 realizes
Γ(x0, . . . , xn−1). Now the expanded structure 〈B, b0, . . . , bn−1〉 is still ω-saturated. So there
must be a countable structure D and elements d0, . . . , dn−1 ∈ D so that 〈B, b0, . . . , bn−1〉 ≡
〈D, d0, . . . , dn−1〉 and 〈D, d0, . . . , dn−1〉 is atomic.
Of course, D is a countable model of T . We claim that it is isomorphic to neither A nor to

B.
To see this, notice that 〈d0, . . . , dn−1〉 realizes Γ(x0, . . . , xn−1) over D. That is D realizes an

unsupported n-type. So D is not atomic and, in particular, A 6∼= D.
We also contend that D is not ω-saturated (and hence not isomorphic to B). Indeed, let
T ′ = Th〈B, b0, . . . , bn−1〉. Notice that T ′ is a complete theory of countable signature. We
know that 〈D, d0, . . . , dn−1〉 is a countable atomic model of T ′. If we were able to argue that
T ′ is not ω-categorical, then by the ω-Categoricity Theorem no countable atomic model of T ′
can be ω-saturated. This would do it. So does T ′ really fail to be ω-categorical?
Well, since T is not ω-categorical, for somem there are infinitely many pairwise T -inequivalent

formulas with free variables all drawn from x0, x1, . . . , xm−1. Let’s make a list of such formulas:
ϕ0(x̄), ϕ1(x̄), . . . . So we know

T 2 ∀x̄[ϕi(x̄)↔ ϕj(x̄)],
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whenever i 6= j. But any model of T has an elementary extension that can be expanded to a
model of T ′, according to the Elementary Joint Embedding Theorem. As a consequence

T ′ 2 ∀x̄[ϕi(x̄)↔ ϕj(x̄)],

whenever i 6= j. So there are infinitely many pairwise T ′-inequivalent formulas. By the ω-
Categoricity Theorem we conclude that T ′ fails to be ω-categorical. So 〈D, d0, . . . , dn−1〉 is not
ω-saturated. Therefore, D is not ω-saturated. So D 6∼= B, and T has at least three pairwise
nonisomorphic countable models, namely the atomic model A, the ω-saturated model B, and
the model D that is neither atomic nor ω-saturated.

The ω-Categoricity Theorem, in its enhanced form including Problem 19 and Problem 20
below, is due variously to the following people: Robert Vaught, Lars Svenonius, Erwin Engeler,
and Czeslaw Ryll-Nardzewski. The balance of the results, including the notions of atomic and
saturated models, can be found in Robert Vaught’s 1954 Ph.D. dissertation written under the
direction of Alfred Tarski.

7.5 Problem Set 4

Problem Set About Infinite Models of Complete Theories
1 December 2011

Suppose A is a structure. The group Aut A of all automorphisms of A partitions A into
orbits. [Elements a, b ∈ A belong to the same orbit if and only if there is an automorphism
f such that f(a) = b.] Notice that the same applies the n-tuples from A: the group Aut A
partitions An into orbits.

Problem 19.
Let T be a complete theory of countable signature that has infinite models. Prove that T is
ω-categorical if and only if Aut A partitions An into only finitely many orbits for every natural
number n, for every countable A |= T .

Problem 20.
Let T be a complete theory of countable signature that has infinite models. Prove that T is
ω-categorical if and only if Aut A partitions An into only finitely many orbits for every natural
number n, for some countable A |= T .

Problem 21.
Let T be an elementary theory in a countable signature and suppose that T is κ-categorical
for some infinite cardinal κ. Let K = {A | A |= T and A is infinite}. Prove that K is is an
elementary class and that ThK is complete.
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Problem 22.
Consider a signature provided with one 2-place relation symbol≤ and a countable list c0, c1, c2, . . .
of constant symbols. Let T be the theory asserting that ≤ is a dense linear order without
endpoints and ci < ci+1 for each i ∈ ω. Prove that T is a complete theory and find out (with
proofs), up to isomorphism, how many countable models T has.



LECTURE 8
Categoricity in Uncountable Cardinalities

8.1 Morley’s Categoricity Theorem

In 1954 Jerzy Łoś published the conjecture that an elementary theory of countable signature
that is categorical in some uncountable cardinal should be categorical in all uncountable
cardinals. So the elementary theory of algebraically closed fields of a given characteristic
would offer a paradigm. This conjecture was confirmed by Michael Morley in his 1962 PhD
dissertation written under the direction of Saunders MacLane at the University of Chicago.
I also note that Morley was a visiting graduate student in Berkeley and worked closely with
Robert Vaught. Morley’s original proof used in an essential way the ideas from the previous
chapter, but also developed model-theoretic extensions of older ideas that had emerged in the
study of algebraically closed fields, beginning with the 1910 treatise of Ernst Steinitz. The
proof given here has an involved heritage. After Morley’s original proof was in hand, William
Marsh found a rather simple proof of a special case. John Baldwin and Alistair Lachlan
put the ideas of Marsh together with some ideas of H. Jerome Keisler, to give a new proof
of Morley’s Theorem. C. C. Chang and Keisler worked out an exposition along the lines
of the Baldwin-Lachlan proof in their magnificent 1973 monograph Model Theory. Finally,
Peter Hinman, in his 2005 text Fundamentals of Mathematical Logic reworked this proof. The
proof given here takes advantage of all these earlier expositions. This line of reasoning has
the advantages of being direct and relying principally on methods closely connected to those
developed in these lecture notes. It has the disadvantages of avoiding the methods with more
explicit heritage in the theory of algebraically closed fields. In particular, Morley’s original
proof provided a powerful analysis of the complexity of formulas that became the starting
point of many deep investigations over the ensuing decades. Morley’s Theorem, it seems to
me, is a theorem were it makes sense to know more than one proof.
Morley’s Categoricity Theorem, [1962]. Let T be an elementary theory of countable
signature. If T is categorical in some uncountable cardinality, then T is categorical in every
uncountable cardinal.
We’ll prove the following two theorems, which when combined, will give us Morley’s Theorem.

Downward Morley Theorem. If T is categorical in some uncountable cardinal, then T is
ℵ1-categorical.
Upward Morley Theorem. If T is ℵ1-categorical, then T is κ-categorical for all uncountable
cardinals κ.
To prove these, we need some new concepts.
T is κ-stable means if A |= T and C ⊆ A with |C| = κ, then the number of 1-types is itself

equal to κ. That is, |S1(Th〈A, c〉c∈C)| = κ.
A is modest means if C ⊆ A and C is countable, then at most countably many types of
〈A, c〉c∈C are realized in 〈A, c〉c∈C .

81
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Stability says you have a small number of types. Modesty says only countably many of those
types are realized.

B is modest over A provided A 4 B and for all countable C ⊆ A, every type of 〈B, c〉c∈C
which is realized in 〈B, c〉c∈C is already realized in 〈A, c〉c∈C . We also say that B is a modest
extension of A.
First Modesty Theorem. Let T be a theory in a countable signature which has infinite
models and let κ be an infinite cardinal. Then T has a modest model of cardinality κ.
The Categoricity Implies Stability Corollary. Let T be a theory of countable signature
and κ be an uncountable cardinal. If T is κ-categorical, then T is ω-stable.

Proof of the Corollary. Suppose T is not ω-stable. Then there is some model A |= T and some
C ⊆ A with |C| = ℵ0 and so that |S1(Th〈A, c〉c∈C)| > ℵ0. By the Downward (or Upward)
Löwenheim-Skolem-Tarski Theorem, we can assume that |A| = ℵ1. Add ℵ1 constant symbols.
Pick ℵ1 many complete 1-types over 〈A, c〉c∈C . Let ∆ be the set of sentences saying that the
constants realize the 1-types. Then ∆ ∪ Th(〈A, c〉c∈C) has a model. It must have a model
〈B+, c〉c∈C of cardinality κ. Now too many types are realized in this model for B to be modest.
So T cannot be κ-categorical.

Second Modesty Theorem. Let T be an ω-stable theory of countable signature. Let A be
an uncountable model of T and let κ ≥ |A|. Then A has a modest extension of cardinality κ.
The Characterization Theorem for Categoricity of ω-Stable Theories. Let T be an
ω-stable complete theory of countable signature and let κ be an infinite cardinal. Then T is
κ-categorical if and only if T has a model of cardinality κ and all models of T of cardinality κ
are saturated.

Proof of the Downward Morley Theorem. Say κ is uncountable and T is κ-categorical.
So T is ω-stable. We will show that every model A |= T of cardinality ℵ1 is saturated.
Pick C ⊆ A with C countable. We need to show that every 1-type of 〈A, c〉c∈C is realized in
〉A, c〉c∈C . By the Second Modesty Theorem, there is a modest extension 〈B, c〉c∈C of 〈A, c〉c∈C
of cardinality κ. So every 1-type of 〈B, c〉c∈C is realized in 〈B, c〉c∈C because B is saturated.
So every 1-type of 〈A, c〉c∈C is realized in 〈B, c〉c∈C because B is saturated. So it is realized
in 〈A, c〉c∈C because 〈B, c〉c∈C is a modest extension of 〈A, c〉c∈C .

We still need to prove the Upward Morley Theorem. First we need a definition and a theorem.
Let θ(x) be a formula in one free variable, x, and A is a structure. Define

θA(x) = {a | a ∈ A and A |= θ(x)}.

Keisler’s Two Cardinal Theorem. Let A be an structure of countable signature and θ(x)
be a formula of the signature. Suppose that

|A| > |θA(x)| ≥ ℵ0.

Then there are structures B and C so that

(a) B 4 A and B is countable;

(b) B 4 C and |C| = ℵ1;
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(c) θB(x) = θC(x)

Proof of the Upward Morley Theorem. Without loss of generality, T is complete. We’ll
prove that if κ is an uncountable cardinal, and T has a model A of cardinality κ which is not
saturated, then T has a model C of cardinality ℵ1 which is not saturated.

A fails to be saturated means that we can pick D ⊆ A with |D| < |A| and a complete 1-type
Γ(x) over 〈A, d〉d∈D that is not realized in 〈A, d〉d∈D. We’ll use the Keisler’s Two Cardinal
Theorem.
We’ll do this by expanding the language so we can talk about types and talk about the

parameters that occur in the formulas.
Observe: |Γ(x)| < |A|.
We’ll pull out a subset of A to index the formulas in Γ(x). Let UA∗ be a subset of A with

cardinality the same as Γ(x). That is, |UA∗| = |Γ(x)| and UA∗ ⊆ A. So we have a one-one
correspond a 7→ γa(x) between UA∗ and Γ(x). So

Γ(x) =
{
γa(x) : a ∈ UA∗

}
.

Add to the signature the following relation symbols:

• U - a one-place relation symbol;

• R - a two-place relation symbol;

• S - a two-place relation symbol.

Expand A to A∗ = 〈A, UA∗ , RA∗ , SA∗〉. We’ve already described UA∗ . Now we’ll describe
RA∗ and SA∗ :

SA∗ =
{

(a, b) | a ∈ UA∗ and A |= γa(b)
}

and

RA∗ =
{

(a, d) | a ∈ UA∗ , d ∈ D, and the parameter d occurs in γa(x)
}

By Keisler’s Two Cardinal Theorem, we can get B∗ and C∗ so that

0. B∗ 4 A∗ and B is countable;

1. B∗ 4 C∗ and |C| = ℵ1;

2. UB∗ = UC∗ .

Let ΓB(x) =
{
γa(x) | a ∈ UB∗

}
. Remember that UB∗ = UA∗ ∩ B and RB∗ = RA∗ ∩ (B × B)

and SB∗ = SA∗ ∩ (B ×B), all of these since B∗ is a substructure of A∗. Let D′ = D ∩B.
γa(x) has some fixed finite number of parameters. In our expanded signature we can say
γa(x) has exactly the right number of parameters:

∃y0 . . . yn−1 [¬y0 ≈ y1 ∧ · · · ∧ ¬yn−2 ≈ yn−1 ∧R(a, y0) ∧ · · · ∧R(a, yn−1)]

For any formula θ(x), if A∗ |= θ(a) and a ∈ B, then B∗ |= θ(a) since B∗ 4 A∗. So all the
parameters of γa(x) belong to D′. So |D′| < ℵ1.
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We need ΓB(x) to be compatible with 〈C, d〉d∈D′ and we need that ΓB(x) is not realized in
〈C, d〉d∈D′ . Some sentences:

∀x [S(a, x)↔ γa(x)] (?)
∀u0, . . . , un−1 [U(u0) ∧ · · · ∧ U(un−1)]→ ∃x [S(u0, x) ∧ · · · ∧ S(un−1, x)] (??)
¬∃x∀u [U(u)→ S(u, x)] (? ? ?)

In A∗ we have (?) for each a ∈ UA∗ , we have (??) for each n, and we have (? ? ?). We also
have (?) for each a ∈ UB∗ .
We know that (?) holds in B∗ for all a ∈ UB∗ . We have that (?) holds in C∗ for all a ∈ UB∗ .

We have that (??) holds in C∗ for all n. We have that (? ? ?) holds in C∗.
By (??), in C∗ we have by (?)

〈C, d〉∗d∈D′ |= ∃x
[
γa0(x) ∧ · · · ∧ γan−1

]
for any finite sequence a0, . . . , an−1 ∈ UB∗

so ΓB(x) is compatible with 〈C, d〉d∈D′ . (? ? ?) in addition tells us that ΓB(x) is not realized
in 〈C, d〉d∈D′ . So C is not saturated.

In this way, Morley’s Categoricity Theorem is established—except we need to prove the
Characterization Theorem for Categoricity of ω-Stable Theories, the First Modesty Theorem,
the Second Modesty Theorem, and Keisler’s Two Cardinal Theorem.

8.2 Keisler’s Two Cardinal Theorem

Keisler’s Two Cardinal Theorem. Let A be a structure of countable signature and θ(x)
be a formula of the signature. Suppose that

|A| > |θA(x)| ≥ ℵ0.

Then there are structures B and C so that

(a) B 4 A and B is countable;

(b) B 4 C and |C| = ℵ1;

(c) θB(x) = θC(x)

Proof. In view of the Downward Löwenheim-Skolem-Tarski Theorem, we can suppose, without
loss of generality, that |θA(x)| = λ and |A| = λ+, the smallest cardinal larger than λ.
We expand the signature by a new binary relation symbol ≤. We expand A to 〈A,≤∗〉 where
≤∗ is a well-ordering of A of order type λ+ such that θA(x) is an initial segment. Let ψ(x) be
a formula of the expanded signature . We will use ∃cfx ψ(x) to abbreviate

∀z∃x [z ≤ x ∧ ψ(x)]

This says there are arbitrarily large x’s so that ψ holds. Let ϕ(x, y) be a formula of the
expanded signature. We assert the following:

〈A,≤∗〉 |= ∃cfy ∃x [θ(x) ∧ ϕ(x, y)]→ ∃x
[
θ(x) ∧ ∃cfy ϕ(x, y)

]
(~)



8.2 Keisler’s Two Cardinal Theorem 85

To see this, For b ∈ θA(x), we can let Yb = {a | a ∈ A and 〈A,≤∗〉 |= ϕ(b, a)}. Then let

Y =
⋃

b∈θA(x)
Yb.

So Y is cofinal in A, so |Y | = λ+ = |⋃Yb|.
If |Yb| ≤ λ for all b ∈ θA(x), then λ+ ≤ |θA(x)| · λ = λ · λ = λ. This is impossible.
Hence one of the Yb has to be larger than λ, that is, λ < |Yb| for some b. So λ < |Yb| ≤ λ+.

But there’s only one cardinal in the interval (λ, λ+], so |Yb| = λ+ for some b ∈ θA(x). So Yb is
cofinal for some b ∈ θA(x). But that’s precisely what (~) says.
Let 〈B,≤◦〉 4 〈A,≤∗〉 so that |B| is countable. We can do that by the Downward Löweheim-

Skolem-Tarski Theorem.

Claim: Because 〈A,≤∗〉 ≡ 〈B,≤◦〉, then 〈B,≤◦〉 has a proper elemen-
tary extension 〈B′,≤′〉 which is countable and so that θB(x) = θB′(x).

We’ll see how the rest of the proof works given this claim, and then we’ll prove the claim.
Construct the following, using the claim recursively through ℵ1 steps:

〈B0,≤0〉 is 〈B,≤◦〉
	 	

〈B1,≤1〉 is 〈B′0,≤′0〉
	 	

〈B2,≤2) is 〈B′1,≤′1〉
	 	

...

〈Bω,≤ω〉 is
⋃
i∈ω
〈Bi,≤i〉

	 	
〈Bω+1,≤ω+1〉 is 〈B′ω,≤′ω〉

...

By invoking Tarski’s Elementary Chain Theorem at the limit stages, we have that this makes
an elementary chain of length ω1. Let 〈C,≤∗〉 by the limit of this elementary chain. Then
〈B,≤◦〉 4 〈C,≤∗〉 by a last application of Tarski’s Elementary Chain Theorem.
Now b ∈ θC(x) if and only if b ∈ θBα(x) and b ∈ Bα for some ordinal α < ω1. This happens

if and only if b ∈ θB(x), as can be established by transfinite induction on α. This is what we
needed for Keisler’s Two Cardinal Theorem. But we still have the Claim to establish.
To prove the Claim, we start by adding constant symbols to name the elements of B and one

more constant c. Let T+ = Th〈B,≤◦, b〉b∈B ∪ {b < c | b ∈ B}. By the Compactness Theorem,
T+ has infinite models.
Let

Φ := {θ(x)} ∪ {¬x ≈ b | b ∈ θB(x)}.
We want a countable model of T+ which omits Φ.
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Subclaim: Let η(x) be a formula of newly expanded signature. Then

T+ |= η(c) if and only if 〈B,≤◦〉 |= ¬∃cf y [¬ η(y)]

Proof of the Subclaim: (⇐) Well,

〈B,≤◦〉 6|= ∃cf y [¬ η(y)] ⇐⇒ 〈B,≤◦〉 |= ∃ z ∀ y [z ≤ y → η(y)]
⇐⇒ Th〈B,≤◦, b〉b∈B |= ∀ y (b∗ ≤ y → η(y)) for some b∗ ∈ B

We know T+ |= b∗ < c. Then T+ |= ∀ y (b∗ < y → η(y)), so T ∗ |= b∗ < c → η(c), so
T+ |= η(c).

(⇒) Suppose T+ |= η(c). By the Compactness Theorem,

Th〈B,≤◦, b〉b∈B ∪ {b0 < c, . . . , bm−1 < c} |= η(c) for some b0, . . . , bm−1 ∈ B,

which is the same as

Th〈B,≤◦, b〉b∈B |= (b0 < c ∧ b1 < c ∧ · · · ∧ bm−1 < c)→ η(c).

Because the constant symbol c does not occur in Th〈B,≤◦, b〉b∈B, we have

Th〈B,≤◦, b〉b∈B |= ∀y [(b0 < y ∧ · · · ∧ bm−1 < y)→ η(y)] .

Now just pick b∗ to be bigger than each bi for i = 0, . . . ,m − 1; that is, b0, . . . , bm−1 ≤◦ b∗.
Since the bi are linearly ordered, we know b∗ dominates the biggest one. So we can conclude
Th(B,≤, b)b∈B |= ∀y [b∗ ≤ y → η(y)]. This finishes the proof of the Subclaim.
We’re going to use the Subclaim to find a countable model of T+ which omits Φ. According

to the Omitting Types Theorem, it is enough to show that Φ is an unsupported type. For a
contradiction, suppose ψ(x, c) supports Φ for T+. Then

T+ |= ∀x [ψ(x, c)→ ¬x ≈ b] for all b ∈ θB(x),
T+ |= ∀x [ψ(x, c)→ θ(x)] , and
T+ ∪ {∃x ψ(x, c)} has a model.

But the following three assertions are logically equivalent:

T+ |= ∀x [ψ(x, c)→ ¬x ≈ b]
T+ |= ∀x [x ≈ b→ ¬ψ(x, c)]
T+ |= ¬ψ(b, c)

By the Subclaim,
〈B,≤◦〉 |= ¬∃cfy ψ(b, y) for all b ∈ θB(x).

But this is the same as

〈B,≤◦〉 |= ∀x
[
θ(x)→ ¬∃cfy ψ(x, y)

]
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Then, as 〈B,≤◦〉 ≡ 〈A,≤∗〉, we see

〈A,≤∗〉 |= ∀x
[
θ(x)→ ¬∃cfy ψ(x, y)

]
or, equivalently,

〈A,≤∗〉 |= ¬∃x
[
θ(x) ∧ ∃cfy ψ(x, y)

]
Remember what (~) said:

〈A,≤∗〉 |= ∃cfy ∃x [θ(x) ∧ ϕ(x, y)]→ ∃x
[
θ(x) ∧ ∃cfy ϕ(x, y)

]
(~)

Applying the contrapositive of (~), we see that

〈A,≤∗〉 |= ¬∃cfy ∃x [θ(x) ∧ ψ(x, y)] .

As 〈B,≤◦〉 ≡ 〈A,≤◦〉,
〈B,≤◦〉 |= ¬∃cfy ∃x [θ(x) ∧ ψ(x, y)] .

By the Subclaim,

T+ |= ¬∃x [θ(x) ∧ ψ(x, c)]

which is the same as

T+ |= ∀x [ψ(x, c)→ ¬θ(x)] .

But our assumption that ψ(x, c) supports Φ gives us

T+ |= ∀x [ψ(x, c)→ θ(x)] .

Our assumption also yields that T+ ∪ {∃xψ(x, c)} has a model D. So there must be d ∈ D
such that d realizes both θ(x) and ¬θ(x). This is a contradiction. So the proof of Keisler’s
Two Cardinal Theorem is finished.

Keisler’s Two Cardinal Theorem is a relative of the Löwenheim-Skolem-Tarski Theorem, but
with two cardinal parameters rather than one. The first theorem of this kind was established
by Robert Vaught and was put to use by Morley in his proof. Another two cardinal theorem
was found by C. C. Chang. These two-cardinal theorems all have among their hypotheses a
structure A of some infinite cardinality κ with a subset θA(x) of infinite cardinality λ < κ,
and among their conclusions a structure B ≡ A where |B| = µ and |θB(x)| = ν, where
µ > ν ≥ ℵ0. At issue in these theorems is the relationship among the four cardinals. In the
most general setting, results of this kind require properties of cardinals that cannot be proved
in ZFC (provided, of course, that ZFC is consistent). On the other hand, restricting A in
some way (e.g. that Th A is ω-stable) can be fruitful. Over the last few decades there has
been a cottage industry in two-cardinal theorems.
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8.3 Order Indiscernibles and the First Modesty Theorem

We still have to prove the two modesty theorems. We also still have to convince ourselves that
if we have an ω-stable theory then it has models of every size.
Let A be a structure. Suppose D ⊆ A and D is strictly linearly ordered by <, where this

relation may be quite independent of the basic operations and relations of A. We say D is a
set of order indiscernibles for A provided for all natural numbers n, whenever ā and b̄ are
strictly <-increasing n-tuples of elements of D, then

A |= ϕ(x̄)[ā] if and only if A |= ϕ(x̄)[b̄]

for all formulas ϕ(x0, . . . , xn−1) of the signature.
Ehrenfeucht-Mostowski Theorem, [1956]. Let T be a theory with infinite models and
let 〈D,<〉 be any linearly ordered set. Then T has a model A in which D is a set of order
indiscernibles.

Proof. We have to make a model A of T . Let L be the signature of T . Expand the signature
by new constants to name elements of D. Let

∆ = {ϕ(c̄)↔ ϕ(d̄) | c̄ and d̄ name increasing tuples and ϕ(x̄) is a formula of signature L}
∪ {¬cr ≈ cs | r, s ∈ L and r 6= s}

What we need is a model of T ∪ ∆. To invoke the Compactness Theorem, let ∆′ ⊆ ∆ be
finite. We show T ∪ ∆′ has a model. Let ϕ0, . . . , ϕk−1 and c0, . . . , c`−1 and x0, . . . , xn−1 be
formulas, constants, and variables of ∆′. We construe each ϕj as a formula ϕ(x̄) with free
variables from the n-tuple x̄〈x0, . . . , xn−1〉. We also index the constant symbols to reflect the
order of the elements of D named by the constant symbols.
Let A be an infinite model of T . Let @ be an arbitrary strict linear ordering of A. We use(
A
n

)
to denote the collection of subsets of A of cardinality n. We represent a subset of A of

cardinality n has an n-tuple ā by ordering the subset with @. On
(
A
n

)
define an equivalence

relation ∼:
ā ∼ b̄ means A |= ϕj(ā)↔ ϕj(b̄) for all j < k.

We leave in the hands of the graduate students the duty to check that this is an equivalence
relation. How many equivalence classes are there? There are no more than 2k equivalence
classes. At this point we want Ramsey’s Theorem.

Ramsey’s Theorem
Let n be a natural number and A be an infinite set. However the collection of all
n-element subsets of A is partitioned into finitely many blocks, there is an infinite
H ⊆ A so that all the n-element subsets of H belong to the same block.

We supply a proof of Ramsey’s Theorem in an appendix.
By Ramsey’s Theorem, there is an infinite H ⊆ A so that all the n-element subsets of H are

included in a single equivalence class. Since H is infinite, pick

a0 @ a1 @ · · · @ a`−1
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from H. Then 〈A, a0, a1, . . . , a`−1〉 is a model of T ∪ ∆′. So by the Compactness Theorem
T ∪∆ has a model in which the elements named by the new constant symbols form a set of
order indiscernibles isomorphic to 〈D,<〉. This is enough to establish the theorem.

Skolemization
Consider ∃x ϕ(x, ȳ) → ϕ (F (ȳ), ȳ). If we had the use of operation symbols like F , we could
eliminate the quantifier ∃. We call F a Skolem function for ϕ. Each Skolem function is
associated with a Skolem Axiom:

∀ȳ [∃xϕ (x, ȳ)→ ϕ (Fϕ(ȳ), ȳ)]

Let L be a signature and let T be a set of L-sentences. Make L1 by adding all Skolem
functions for all ∃-formulas of L. Let Σ1 be the set of Skolem axioms that go along with these
new symbols. But this isn’t quite good enough because expanding our signature with all these
Skolem function symbols leads to formulas that we didn’t have before.
Repeating this process recursively through countably many stages will fix this.
Let L∗ be the resulting signature and let Σ =

⋃
i∈ω

Σi+1. Let T ∗ = T ∪ Σ.

Then the following are evident:

• T ∗ is a Skolem theory: it has Skolem axioms for all appropriate formulas.

• L and L∗ have the same number of formulas. In particular, if L is countable, so is L∗.

• Every model A |= T can be expanded to a model A∗ |= T ∗.

• For every formula ϕ(x̄), there is a quantifier-free formula ϕ∗ such that

T ∗ |= ∀x̄ (ϕ(x̄)↔ ϕ∗(x̄))

• If B |= T ∗ and C is a substructure of B, then C is an elementary substructure of B.

The idea of Skolemizing a theory traces back the Thoralf Skolem in 1920. He introduced this
technique to give a simple correct proof of the the Downward Löwenheim-Skolem Theorem.
At that time the notion of elementary substructure was not available, but had it been Skolem
could have easily reached a stronger conclusion.

The First Modesty Theorem
Recall that A is modest means 〈A, c〉c∈C realizes at most countably many complete 1-types
whenever C ⊆ A is countable.
The First Modesty Theorem. Let T be a theory of countable signature that has infinite
models. Then T has modest models of every infinite cardinality.

Proof. Let κ be an infinite cardinal. We will produce a modest model of T of cardinality κ.
Let Y be a set of cardinality κ and let < be a well-ordering of Y of order type κ.
Let T ∗ be a Skolemization of T . By the Ehrenfeucht-Mostowski Theorem, we can get a

model B∗ of T ∗ with Y a set of order indiscernibles in B∗. Let A∗ be the substructure of B∗
generated by Y . Then
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• |A∗| = |Y | = κ;

• A∗ 4 B∗.

We claim that A∗ is modest. (This is not quite our goal, but almost.)
Let C ⊆ A with C countable. For each c ∈ C pick a term t(x̄) and some increasing tuple d̄

of Y so that c = tA
∗(d̄). Let Z be the countable subset of Y consisting of all the entries in the

chosen d̄’s. Let n be a natural number. Define ln on collection of all increasing n-tuples of
Y by

ā ln b̄

means

Whenever W ⊆ Z is finite, then the strictly increasing tuple made from W and
the entries of ā is the same length as the strictly increasing tuple made from W
and the entries of b̄ and ai and bi occupy corresponding positions for all i < n.

The relation ln is an equivalence relation on the n-element subsets of Y . Let us estimate
the number of equivalence classes. Suppose a ∈ Y \ Z and there is z ∈ Z with a < z. In this
case, let da be the least such element of Z. In case a ∈ Y \ Z so that a is an upper bound on
Z, we give da the default value∞. Now observe that for any increasing n-tuples ā and b̄ from
Y we have

ā ln b̄

if and only if
dai = dbi for all i < n such that neither ai ∈ Z nor bi ∈ Z
and if ai ∈ Z, then ai = bi and if bi ∈ Z, then ai = bi.

Since Z∪{∞} is countable, we see that there are only countably many ln-equivalence classes.
We need to count the complete 1-types with parameters from C that are realized in 〈A∗, c〉c∈C .

Let ϕ(x, c̄) be a formula. Let t̄ and ¯̄d be the sequences of terms and tuple so that cj = tA
∗

j (d̄j),
according to the selections made above.
Let s be any term and let ā and b̄ be increasing n-tuples of elements of Y with ā ln b̄.

〈A∗, c〉c∈C |= ϕ (x, c̄) [sA∗(ā)]⇔ A∗ |= ϕ(s, t̄)[ā, ¯̄d]

⇔ A∗ |= ϕ(s, t̄)[b̄, ¯̄d] by indiscernibility
⇔ 〈A∗, c〉c∈C |= ϕ (x, c̄) [sA∗(b̄)].

In the step above that uses indiscernibility, we must assemble the tuple of tuples indicated by
ā, ¯̄d into one strictly increasing tuple. We must also do the same with b̄, ¯̄d. It is the definition
of ln that ensures that the positions of the ai and bi in these extended increasing tuples match
up.
So we have

〈A∗, c〉c∈C |= ϕ (x, c̄) [sA∗(ā)]⇔ 〈A∗, c〉c∈C |= ϕ (x, c̄) [sA∗(b̄)].

What this means is that as long as ā ln b̄, we see that sA∗(ā) and sA∗(b̄) realize the same
complete 1-type with parameters from C. Since there are only countably many ln-equivalence
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classes there are only countably many complete 1-types realized in 〈A∗, c〉c∈C by elements
that can be represented using terms sA∗(x0, . . . , xn−1). By letting n run through the natural
numbers, we see that every element of A is represented. But since the union of countably many
countable sets is countable, we see that only countably many complete 1-types are realized in
〈A∗, c〉c∈C . So A∗ is modest.
It is evident that A |= T and that |A| = κ. To see that A is modest let C ⊆ A with C

countable. Let S∗ be the collection of complete 1-types realized in 〈A∗, c〉c∈C . Let S be the
collection of complete 1-types realized in 〈A, c〉c∈C . We have seen above that S∗ is countable.
Define F : S∗ → S by

F (Γ∗) = {ϕ(x) : ϕ(x) is an L-formula and ϕ(x) ∈ Γ∗}

It is easy to see F (Γ∗) ∈ S. Also easy to see that F is onto S. So S is countable and A is
modest.

8.4 Saturated Models of ω-Stable Theories

Let κ be an infinite cardinal. Recall that a structure A is κ-saturated provided whenever
D ⊆ A with |D| < κ and Γ(x) is a 1-type compatible with Th〈A, d〉d∈D, then Γ(x) is realized
in 〈A, d〉d∈D. We say that A is saturated if A is |A|-saturated. Recall also that a theory
T is κ-stable means that for every A |= T and every D ⊆ A with |D| ≤ κ, we have that
〈A, d〉d∈D realizes exactly κ complete 1-types.
Our aim here is to prove the following

The Characterization Theorem for Categoricity of ω-Stable Theories. Let T be a
complete ω-stable theory in a countable signature and let κ be any infinite cardinal. T is κ
categorical if and only if T has a model of cardinality κ and all models of T of cardinality κ
are saturated.
The proof of this theorem that will be given here depends on two other theorems. We deal

with these first.
The Stability Theorem. Let T be a theory of countable signature that has infinite models.
If T is ω-stable, then T is κ-stable for every infinite cardinal κ.

Proof. Suppose not. The pick an infinite cardinal κ, a model A of T , and a subset D ⊆ A with
|D| ≤ κ so that there are more than κ complete 1-types realized in 〈A, d〉d∈D. Call a formula
θ(x) large if it is a member of more than κ complete 1-types. The formula x ≈ x is an example
of a large formula. Suppose θ(x) is a large formula. Let Q be the collection of all complete
1-types Γ(x) such that there is formula ψ(x) so that θ(x)∧ψ(x) ∈ Γ(x) and θ(x)∧ψ(x) is not
large. Now to estimate the size of Q observe that there are only κ candidates for ψ(x) (since
the original signature is countable and there are only κ ≥ |D| additional constant symbols).
Now since θ(x)∧ψ(x) is not large, for each choice of ψ(x) there are at most κ choices for Γ(x)
that qualify for membership in Q. This means that |Q| ≤ κ2 = κ. So let Γ(x) and Ψ(x) be two
distinct complete 1-types to which θ(x) belongs but which do not lie in Q. Pick ϕ(x) ∈ Γ(x)
so that ϕ(x) /∈ Ψ(x). Since Ψ(x) is complete, we have that ¬ϕ(x) ∈ Ψ(x). Since neither
Γ(x) nor Ψ(x) belong to Q we deduce that both θ(x) ∧ ϕ(x) and θ(x) ∧ ¬ϕ(x) are large. Put
θ0(x) = θ(x) ∧ ϕ(x) and θ1(x) = θ(x) ∧ ¬ϕ(x).
So for each large formula θ(x) we have obtained two large formulas θ0(x) and θ1(x) such that
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1. 〈A, d〉d∈D |= ∀x[θ0(x)→ θ(x)],

2. 〈A, d〉d∈D |= ∀x[θ1(x)→ θ(x)], and

3. 〈A, d〉d∈D |= ∀x¬(θ0(x) ∧ θ1(x)).

This allows us do build a fully binary tree of large formulas, leading, as in a number of previous
arguments, to a violation of the ω-stability of T .

Theorem on Stability and Saturation. Let T be an ω-stable theory of countable signature
that has infinite models. Let κ and λ be cardinals such that ω ≤ λ < κ. Then T has a model
of cardinality κ which is λ+-saturated.

Proof. Let A |= T with |A| = κ. Invoke the Compactness Theorem to get a model 〈D, a〉a∈A |=
Th〈A, a〉a∈A in which every complete 1-type on Th〈A, a〉a∈A is realized. By the Stability
Theorem we know that T is κ-stable. So the number of complete 1-types realized in 〈D, a〉a∈A
is exactly κ. By the Downward Löwenheim-Skolem-Tarski Theorem, there is 〈A′, a〉a∈A with
cardinality κ and 〈A′, a〉a∈A 4 〈D, a〉a∈A. Notice all the complete 1-types of Th〈A, a〉a∈A are
realized in 〈A′, a〉a∈A. Observe that by Tarski’s Criterion for Elementary Substructures, we
have 〈A, a〉a∈A 4 〈A′, a〉a∈A. What we have accomplished is

Every model A of T of cardinality κ has an elementary extension A′, also of cardi-
nality κ, such that every complete 1-type of Th〈A, a〉a∈A is realized in 〈A′, a〉a∈A.

We iterate this process λ+ times to make an elementary chain

A = A0 4 A1 4 · · · 4 Aα 4 . . . where α is an ordinal and α ∈ λ+.

Let B = ⋃
α∈λ+ Aα. Then we know the following:

• Aα 4 B for all α ∈ λ+, by Tarski’s Elementary Chain Theorem and

• |B| = λ+ · κ = κ.

So it remains to show that B is λ+ saturated.
To this end, let D ⊆ B = ⋃

α∈λ+ Aα with |D| < λ+. For each d ∈ D pick δd ∈ λ+ so that
d ∈ Aδd . In this way no more than λ ordinals δd have been selected. Each such ordinal is a
set of cardinality at most λ. So |⋃d∈D δd| ≤ λ · λ = λ < λ+. So pick β ∈ λ+ so that δd < β
for all d ∈ D. This implies that D ⊆ Aβ. Now let Γ(x) be any 1-type of Th〈B, d〉d∈D. Then
Γ(x) is also a 1-type of Th〈Aβ, d〉d∈D, since Aβ 4 B. By our construction, Γ(x) is realized in
〈Aβ+1, d〉d∈D and hence also in 〈B, d〉d∈D. This means B is λ+ saturated, as desired.

Proof of the Characterization of Categoricity for ω-Stable Theories. First notice that if κ =
ω, then we can appeal the the ω-Categoricity Theorem. So from this point on, we take κ to
be uncountable.
The implication from right to left results from the familiar back-and-forth argument we

already saw for countable saturated structures. The eager graduate student should take up
the task of figuring out how to lift the back-and-forth method into the transfinite. After all,
what is the break between semester for anyway.
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To see the implication in the other direction suppose that T is κ categorical. By the corollary
to the Fist Modesty Theory we know that T is ω-stable. We also know that T has a model of
the uncountable cardinality κ. By the Theorem on Stability and Saturation for each infinite
λ < κ, the theory T has a model of cardinality κ which is λ+-saturated. Since all models of T
of cardinality κ are isomorphic with each other, we see that the (essentially unique) model A of
T of cardinality κ must be λ+-saturated for each infinite λ < κ. To see that A is κ-saturated,
let D ⊆ A with |D| < κ. Put λ = |D|. Let Γ(x) be a complete 1-type for Th〈A, d〉d∈D. Since
A is λ+-saturated and |D| < λ+, then Γ(x) is realized in 〈A, d〉d∈D. Hence A is saturated, as
desired.

8.5 The Second Modesty Theorem

Recall that an L-structure B is a modest extension of the structure A provided

• A 4 B;

• Every 1-type realized in 〈B, c〉c∈C is realized in 〈A, a〉c∈C whenever C is a countable
subset of A.

A theory T is stable in power α provided for every A |= T and every set D ⊆ A with
|D| ≤ α, there are exactly α complete 1-types realized in 〈A, d〉d∈D.
The Second Modesty Theorem. Let T be an ω-stable theory of countable signature, let
A be an uncountable model of T , and let κ be a cardinal no smaller than |A|. Then A has a
modest extension of cardinality κ.

Proof. Let λ = |A|. The idea of the proof is to first see how to get a proper modest extension
of A which still has cardinality λ. We then iterate this construction κ times, forming an
elementary chain. At the successor stages we employ the proper extension method and at
limit stages we just take the union, invoking Tarski’s Elementary Chain Theorem. In the end
we form the union one last time to complete the construction.
Let LA be the signature of the elementary diagram of A. That is LA is obtained by adding

new constants to name the elements of A.
Lemma 8.5.1. There is an LA-formula θ(x) such that

• The subset of A defined by θ(x) is uncountable.

• For each LA-formula ϕ(x) at least one of the sets

{b | 〈A, a〉a∈A |= θ(b) ∧ ϕ(b)} and {b | 〈A, a〉a∈A |= θ(b) ∧ ¬ϕ(b)}

is only countable.

Proof. Suppose not. Then for every θ(x) such that θA(x) is uncountable we can find ϕ(x) so
that both θ(x) ∧ ϕ(x) and θ(x) ∧ ¬ϕ(x) define uncountable subsets of A. Put θ0(x) equal to
θ(x) ∧ ϕ(x) and put θ1(x) equal to θ(x) ∧ ¬ϕ(x). Then

• Both θ0(x) and θ1(x) define uncountable subsets of A.
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• 〈A, a〉a∈A |= ∀x[θ0(x)→ θ(x)] and 〈A, a〉a∈A |= ∀x[θ1(x)→ θ(x)].

• 〈A, a〉a∈A |= ∀x¬[θ0(x) ∧ θ1(x)].

We can repeat this construction to obtain θ00(x) and θ01(x) and likewise θ10(x) and θ11(x). In
this way we get a binary tree whose first few levels are displayed below.

θ(x)

θ0(x)

θ1(x)

θ00(x)

θ01(x)

θ10(x)

θ11(x)

This tree has 2ω branches, each associated with some simply infinite 0, 1-sequence. On the
other hand there are only finitely many formulas on any level and only countably many levels.
So only countably many formulas appear in this tree. Let C be the set of constants occurring
in these formulas. C is countable. The construction ensures that any finite initial segment
of any branch is realized in 〈A, a〉a∈A. Thus each branch is included in a complete 1-type of
Th〈A, c〉c∈C by the Compactness Theorem. But different branches are incompatible. So there
are uncountably many complete 1-types of Th〈A, c〉c∈C . By the Compactness Theorem there
is a structure in which they are all realized. This violates the ω-stability of T , finishing the
proof of the Lemma.

Now expand the signature by a new constant symbol c. Let

∆ = {ϕ(c) | θ(x) ∧ ϕ(x) defines an uncountable set in 〈A, a〉a∈A}.

Observe that ∆ is itself a complete theory and that Th〈A, a〉a∈A ⊆ ∆. Now let E be a model
of ∆ and let E′ be the reduct of E to the original signature. Let F be the set of elements
of E named by the constants added to the original signature. So E looks like 〈E′, f, c′)f∈F .
According to the Atomic Model Theorem for ω-Stable Theories (proved just below), since
T is ω-stable and E′ |= T , then Th〈E′, f〉f∈F has an atomic model 〈B, a, c〉a∈A. Because
Th〈A, a〉a∈A ⊆ ∆, we have that A 4 B. Moreover, B is a proper extension of A since
∆ |= ¬c ≈ a for all a ∈ A.
Now suppose Γ(x) is a countable set of formulas of LA which is realized in 〈B, a〉a∈A. To show

that B is a modest extension of A we only need to show that Γ(x) is realized in 〈A, a〉a∈A.
Pick b ∈ B that realizes Γ(x). Because 〈B, a, c〉a∈A is atomic there is a complete formula
ϕ(c, x) such that 〈B, a, c〉a∈A |= ϕ(c, b). Since ∆ is a complete theory, we have

∆ |= ∃xϕ(c, x) and ∆ |= ∀x[ϕ(c, x)→ ψ(x)] (?)

for all ψ(x) ∈ Γ(x). Since Γ(x) is countable, using the Compactness Theorem we can extract
a countable ∆0 ⊆ ∆ so that (?) holds with ∆0 in place of ∆. Now for each δ(x) so that
δ(c) ∈ ∆0, we have that δ(x) is satisfied by all but countably many elements of A. Since ∆0
is countable there must be an element c∗ ∈ A such that 〈A, a, c∗〉a∈A |= ∆0. But then there is
d ∈ A so that 〈A, a, c∗〉a∈A |= ϕ(c∗, d). By the second part of (?), we see that d realizes Γ(x).
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So B is a proper modest extension of A. By using the Downward Löwenheim-Skolem-Tarski
Thoerem if necessary we can have |B| = |A| as well.
This completes the proof of the Second Modesty Theorem—except we need to prove the

Atomic Model Theorem for ω-Stable Theories.

The Atomic Model Theorem for ω-Stable Theories. Let T be an ω-stable theory of
countable signature, let A |= T , and let A′ ⊆ A. Then Th〈A, a〉a∈A′ has an atomic model.

Proof. First we argue that every formula is completeable with respect to Th〈A, a〉a∈A′ , when-
ever A and A′ are chosen as described.
Suppose not. Pick n as small as possible so that some formula ψ(x0, . . . , xn−1) in not com-

pleteable. Were n > 1 then ∃x0[ψ(x0, x1, . . . , xn−1)] could be completed by, say ϕ(x1, . . . , xn−1).
Add new constants c1, . . . , cn−1, let c̄ denote 〈c1, . . . , cn−1〉 and put T ′ = Th〈A, a〉a∈A′∪{ϕ(c̄)}.
Because ϕ(x1, . . . , xn−1) is a complete formula with respect to Th〈A, a〉a∈A′ , we see that T ′ is
a complete theory in the expanded language. We contend that ψ(x0, c̄) is not completeable
with respect to T ′. For assume θ(x0, c̄) completed ψ(x0, c̄) with respect to T ′. Then we would
get

Th〈A, a〉a∈A′ ∪ {ϕ(c̄)} |= ∀x0[θ(x0, c1, . . . , cn−1)→ ψ(x0, c̄)]
Th〉A, a〉a∈A′ |= ∀x0[ϕ(c̄) ∧ θ(x0, c̄)→ ψ(x0, c̄)]
Th〈A, a〉a∈A′ |= ∀x0, . . . , xn−1[ϕ(x1, . . . , xn−1) ∧ θ(x0, . . . , xn−1)→ ψ(x0, . . . , xn−1)]

But then ϕ(x1, . . . , xn−1)∧ θ(x0, . . . , xn−1) would complete ψ(x0, . . . , xn−1). So the contention
that ψ(x0, c̄) is not completeable with respect to T ′ holds. Let B′ be any model of T ′ and let
Y be the set of elements named by the constants in A′ ∪ {c1, . . . , cn−1}. Let B be the reduct
of B′ to the original signature. Then B′ = 〈B, y〉y∈Y . Now since T ′ is complete, we see that
ψ(x0, c1, . . . , cn−1) is not completeable with respect to Th〈B, y〉y∈Y . So since n was as small
as possible, we see that n = 1.
So now suppose that ψ(x) is compatible with Th〈A, a〉a∈A′ but not completeable with respect

to Th〈A, a〉a∈A′ . So ψ(x) is not complete. Pick ϕ(x) so that both 〈A, a〉a∈A′ |= ψ(x)→ ϕ(x)
and 〈A, a〉a∈A′ |= ψ(x) → ¬ϕ(x) fail. Put ψ0 = ψ(x) ∧ ϕ(x) and ψ1 = ψ(x) ∧ ¬ϕ(x). Then
〈A, a〉a∈A′ |= ψ0 → ψ(x) and 〈A, a〉a∈A′ |= ψ1 → ψ(x) and 〈A, a〉a∈A′ |= ¬(ψ0 ∧ψ1). Also both
ψ0 and ψ1 are compatible with Th〈A, a〉a∈A′ . So once more we can grow a full binary tree and
obtain a violation of ω-stability.
So at this point we know that every formula is completeable with respect to Th〈A, a〉a∈A′ .
We will extract an elementary substructure of 〈A, a〉a∈A′ which is atomic. Let α be the

number of formulas in the signature of 〈A, a〉a∈A′ . We let α · ω be the ordinal that looks like
countably many copies of α arranged one after the other in a sequence of order type ω. We
are going to construct a sequence a0, a1, . . . , aβ, . . . where β ranges through α ·ω that has the
following properties:

(1) aβ realizes a complete formula with respect to Th〈A, a, aγ〉γ<β,a∈A′ , for each β < α · ω.

(2) For all n < ω and every formula ϕ(x) that is complete with respect to Th〈A, a, aγ〉γ<α·n,a∈A′ ,
there is δ < α · (n+ 1) such that aδ realizes ϕ(x).

We build this sequence recursively. That is, having built an initial segment of our sequence
we describe how to get the next bit of it.
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So suppose m < ω and we have built all the aβ’s where β < α ·m so that (1) holds for all
β < α ·m and (2) holds for all n < m. Now let ϕδ(x) where δ < α enumerates all the formulas
complete with respect to Th〈A, a, aγ〉γ<α·m,a∈A′ . For aα·m pick an element of A which satisfies
ϕ0(x). Now observe that ϕ1(x) is completeable with respect to Th〈A, a, aγ〉γ<α·m+1,a∈A′ . Let
ϕ′1(x) complete ϕ1(x). For aα·m+1 pick an element of A that satisfies ϕ′1(x) and hence also
ϕ1(x). We continue in this way to obtain aα·m+δ for all δ < α so that (1) holds for all
β < α · (m + 1) and (2) holds for n = m. In this way the recursive construction proceeds to
completion.
Now let 〈B, a〉a∈A′ be the substructure of 〈A, a〉a∈A′ with domain B = {aβ | β < α · ω}. We

note that this set is closed with respect to any basic operation of 〈A, a〉a∈A′ . For example,
suppose ? is a two-place operation and aβ, aγ ∈ B. Then the formula aβ ?aγ = x is compatible
with Th〈A, a, aδ〉δ<η,a∈A′ for some sufficiently large η. Hence the formula is completeable by
some ϕ(x). So one of the members of B must satisfy it. This means aβ ? aγ ∈ B.
Claim. 〈B, a〉a∈A′ 4 〈A, a〉a∈A′ .
To see this claim, let ψ(x, aβ0 , . . . , aβn−1) be a formula which is satisfied in 〈A, a〉a∈A′ . Us-

ing Tarski’s Criterion for elementary substructures, it is enough to show it is satisfied in
〈B, a〉a∈A′ . Evidently this formula is completeable by ϕ(x) with respect to Th〈A, a, aγ〉γ<η,a∈A′
for some sufficiently large η. By (2) this will be satisfied by some member of B. So will
ψ(x, aβ0 , . . . , aβn−1). Hence 〈B, a〉a∈A′ 4 〈A, a〉a∈A, as claimed.
Finally,

Claim. 〈B, a〉a∈A′ is atomic.
That is we claim that any n-tuple of elements of B satisfies a formula which is complete with

respect to Th〈B, a〉a∈A′(= Th〈A, a〉a∈A′).
To accomplish this we will argue by transfinite induction on β < α · ω that

The n-tuple aδ0 , . . . , aδn−1 satisfies a complete formula with respect to Th〈A, a〉a∈A′ ,
whenever each δi < β and n is a natural number.

Suppose that the statement above holds for all β < γ. If γ is a limit ordinal, then it is easy
to see that the statement hold when β = γ. So consider the case when γ = η + 1. What
we have to do is to show that any finite tuple of aδ’s, with each δ ≤ η and one actually
η itself, satisfies a complete formula with respect to Th〈A, a〉a∈A′ . So let aδ0 , . . . , aδn−1 , aδη
be such a tuple. Now according to (1) we know that aη satisfies a complete formula ϕ(x)
with respect to Th〈A, a, aβ〉β<η,a∈A′ . Let aλ0 , . . . , aλm−1 be the elements of B that appear as
constants in ϕ(x). So we have the formula ϕ(x, u0, . . . , um−1) of the signature of 〈A, a〉a∈A′ so
that ϕ(x) = ϕ(x, aλ0 , . . . , aλm−1).
Now, according to our induction hypothesis, the n + m tuple aδ0 , . . . , aδn−1 , aλ0 , . . . , aλm−1

satisfies a complete formula θ(x0, . . . , xn−1, u0, . . . , um−1) with respect to Th〈A, a〉a∈A′ .
For any formula ψ(x) of 〈A, a, aβ〉β<η,a∈A′ one of the formulas

∀x[ϕ(x)→ ψ(x)] and ∀x[ϕ(x)→ ψ(x)]

holds in the model. This entails that for any formula ψ(x, x0, . . . , xn−1, u0, . . . , um−1) of LA′
either

〈A, a〉a∈A′ |= θ(x0, . . . , xn−1, u0, . . . , um−1)→ ∀x[ϕ(x, u0, . . . , um−1)→ ψ]
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or else

〈A, a〉a∈A′ |= θ(x0, . . . , xn−1, u0, . . . , um−1)→ ∀x[ϕ(x, u0, . . . , um−1)→ ¬ψ]

Using a bit of logical rearranging we find that either

〈A, a〉a∈A′ |= ∀x, x̄, ū[θ(x̄, ū) ∧ ϕ(x, ū)→ ψ(x, x̄, ū)]

or else
〈A, a〉a∈A′ |= ∀x, x̄, ū[θ(x̄, ū) ∧ ϕ(x, ū)→ ¬ψ(x, x̄, ū)]

This means that the formula θ(x̄, ū) ∧ ϕ(x, ū) is complete with respect to Th〈A, a〉a∈A′ . It
follows that the formula ∃ūθ(x̄, ū) ∧ ϕ(x, ū) is complete with respect to Th〈A, a〉a∈A′ as well.
But this formula is satisfied by the tuple aδ0 , . . . , aδn−1 , aη, as desired. Hence, 〈B, a〉a∈A′ is
atomic.

Morley’s Categoricity Theorem became a turning point in the development of model theory.
On the one hand, it’s proof is an extended application of many of the concepts and tools
developed in model theory up to 1960. On the other hand, the new notions involved in its
various proofs led to the flowering of model theory. It also held out the possibility that the ideas
and methods of model theory could be used to open a way forward in parts of mathematics
that have close connections to algebraically closed fields. Indeed, just such an enterprise has
gotten well under way since the 1990’s.
While many mathematicians have made spectacular contributions in the flowering of model

theory in the decades following Morley’s work, there is one who has been the driving force
and who has been a real fountain of ideas, beginning with his extension of Morley’s Theorem
in uncountable signatures. Just as Alfred Tarski was the first mathematician named in these
notes, it is entirely suitable that this man who has led the way forward since 1970 should be
the last one named: Saharon Shelah.



APPENDIX A
Ramsey’s Theorem

In 1928 Frank P. Ramsey, then 25 years old, found an algorithm for determining whether
a universal sentence without operation symbols has a model. His reasoning was based on a
combinatorial result that Ramsey realized was of independent interest. This result, Ramsey’s
Theorem, has indeed become a central result in combinatorics. Ramsey died of liver failure
before his paper was published in 1930.
Ramsey’s Theorem has many proofs has well as many generalizations—there is the whole

mathematical field of partition relations, for example. The proof given here traces its her-
itage back to Stephen Simpson in 1970, then a graduate student at MIT working under the
supervision of Gerald Sacks.
Ramsey’s Theorem, Infinite Form. For any positive natural numbers n and k and any
infinite set X, if the collection of all n-element subsets of X is partitioned into k blocks, then
there is an infinite Y ⊆ X so that every n-element subset of Y belongs to a single block of the
partition.

Proof. Every infinite set has a countably infinite subset, so it is clear that Ramsey’s Theorem
would follow once we establish it is the special case when X = ω. We demonstrate this special
case.
The proof is by induction on n.

Base Step: n = 1
Suppose we have partitioned the singleton subsets of ω into k blocks. Because the union of
k finite sets is finite but the collection of singletons in countably infinite, on of the blocks is
infinite. Forming the union of the singletons in this infinite block produces the desired set Y .
Inductive Step: n = m+ 1
Our inductive hypothesis is that Ramsey’s Theorem holds with m in place of n.
Let us try to express the hypotheses of Ramsey’s Theorem with elementary sentences. Know-

ing the connection between partitions and functions, we provide ourselves with an n-place
operation QA : ωn → ω so that the values produced by QA are 0, 1, . . . , k − 1 and the blocks
of the partition are the sets {〈a0, . . . , an−1〉 | a0, . . . , an−1 ∈ ω and QA(a0, . . . , an−1) = j}, for
j = 0, . . . , k − 1. There is a small trouble with this idea: the n-tuple 〈a0, . . . , an−1〉 is not the
set {a0, . . . , an−1}, and even if it were, this set might have fewer than n elements. To handle
this difficulty, we employ the usual ordering of the natural numbers. A set of size n can the
associated with the strictly increasing n-tuple made by arranging its elements in strictly as-
cending order. Since we want QA to be defined for all n-tuples, we use k as a default value
by insisting that QA(ā) = k whenever ā is an n-tuple that is not strictly increasing.
Using this device, we can take any partition of the n-element subsets of ω and construct

a structure A = 〈ω,QA, <, `〉`∈ω from which the partition can be recovered. The signature
of this structure provides one n-place operation symbol Q, one 2-place relation symbol @ to
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name <, and a countably infinite list c0, c1, c2, . . . of constant symbols to name the elements
of ω.
We can express, with elementary sentences, all of the following

• @ is a linear ordering.

• The constant symbols are ordered in the expected way.

• The predecessors of the constants are as expected: e.g.

∀x [x @ cr → (x ≈ c0 ∨ · · · ∨ x ≈ cr−1)]

• The values produced by Q are as expected. We have to express three things: all k of
the desired values are achieved (so no block of the partition is empty), all n-tuples that
are not strictly increasing are assigned to default value, and that no other values are
assigned.

The details of how to express these things with elementary sentences are left in the sure hands
of the graduate students.
Since A is infinite, it has a proper elementary extension B, as a by now routine use of the

Compactness Theorem shows. Pick b ∈ B so that b /∈ A. Because the constant symbols name
the elements of ω and we have insisted that predecessors of named elements are also named,
we see that in B the element b must lie above all the elements of ω.
We are going to construct an infinite set W ⊆ ω so that

QB(w0, . . . , wm−1, wm) = QB(w0, . . . , wm−1, b), (})

for any w0 < · · · < wm ∈ W . We construct W is stages, adding one element to get to the
next stage each time. To begin, let W0 = {0, . . . ,m − 1}. Suppose Wr has been constructed
so that (}) holds for elements drawn from Wr.
For any increasing m-tuple w̄ from Wr, let c̄w̄ denote the corresponding m-tuple of constant

symbol and let dw̄ be the constant symbol denoting QB(w̄, b). Then (}) can be rendered as

B |=
(
Qc̄w̄x ≈ dw̄

)
[wm]. (�)

Let ϕ(x) be the conjunction of the following formulas:

cm @ x for all m ∈ Wr

Qc̄w̄x ≈ dw̄ for all increasing m-tuples w̄ of elements of Wr

Evidently B |= ϕ(x)[b]. So B |= ∃xϕ(x). But then A |= ∃xϕ(x). Let w ∈ ω satisfy ϕ(x) in
A. Put Wr+1 = Wr ∪ {w}. So (}) holds for Wr+1.
Now just let W = ⋃

r∈ωWr. Because QB(w0, . . . , wm−1, wm) = QA(w0, . . . , wm−1, wm), we
see from (}), that on increasing n-tuples from W , the value of QA does not depend on the
last entry in the n-tuple. Recalling that n = m+ 1 we see that QA induces a partition on the
increasing m-tuple of elements of W into finitely many (no more than k) blocks. According to
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our inductive hypothesis there is an infinite subset Y ⊆ W ⊆ X so that all the increasing m-
tuples of elements of Y belong to a single block of the partition. Because QA(y0, . . . , ym−1, ym)
does not depend on ym as long as y0 < y1 < · · · < ym and yj ∈ Y for j < m + 1 = n, we
conclude that all the increasing n-tuples of elements of Y belong to a single block of our
original partition. This finishes the inductive step and the proof.

Here is one way to construe the infinite version of Ramsey’s Theorem in the case n = 2. Think
of the infinite set X as a set of vertices and the two-elements subsets of X as potential edges.
Any given graph on the vertex set X amounts to a partition of the two-element subsets of X
into two blocks: those two-element sets that are actually edges of the given graph belong to
one block and those two-element sets that are not edges of the graph belong to the other block.
Then Ramsey’s Theorem says that either the graph an infinite complete induced subgraph
(an infinite clique) or the graph has an infinite independent set of vertices.
Ramsey needed a finite version of his theorem to obtain the algorithm he sought. Here is

the finite version.
Ramsey’s Theorem, Finite Form. For any positive natural numbers n, k and ` there is a
positive natural number r such that for any set X of cardinality at least r, if the collection of
all n-element subsets of X is partitioned into k blocks, then there is a Y ⊆ X, with |Y | ≥ `,
so that every n-element subset of Y belongs to a single block of the partition.

Proof. Our idea is to use the Compactness Theorem as a link between the finite and the
infinite.
Fix the positive natural numbers n, k, and `. Were the Finite Form of Ramsey’s Theorem

to fail for this choice of n, k, and `, it would mean that for arbitrarily large finite sets X the
n-element subsets of X can be partitioned into k blocks in such a way that if Y ⊆ X and all
the n-element subsets of Y belong to the same block of the partition, then |Y | < `. We can
express this by a set Γ of elementary sentences of suitable signature.
As in the proof of the Infinite Form, we employ a signature supplied with an n-place operation

symbol Q, a binary relation symbol @. We also need k + 1 constant symbols c0, . . . , ck. The
set Γ should contain sentences asserting each of the following:

(a) That @ is a linear order;

(b) That Q sends each nonincreasing n-tuple to the default value denoted by ck;

(c) That Q sends each increasing n-tuple to one of the values denoted by c0, . . . , ck−1;

(d) That among any given ` distinct elements one can find two increasing n-tuples that Q
sends to different values.

The sentences required by (d) did not arise in the proof of the Infinite Form. To see how
they might be devised, consider the case when n = 3 and ` = 5. The sentence we want is

∀x0, . . . , x4 [(x0 @ x1 ∧ · · · ∧ x3 @ x4)→ θ]

where θ is the disjunction of all formulas of the form ¬Qy0y1y2 ≈ Qz0z1z2 where y0, y1, y2 are
selected, in order from x0, . . . , x4 and the same applies to z0, z1, z2.
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According to the Infinite Form of Ramsey’s Theorem, Γ cannot have an infinite model. By
a corollary of the Compactness Theorem, Γ cannot have arbitrarily large finite models. This
means that there is a natural number r so that any model of (a)–(c) of cardinality at least r,
the sentence (d) must fail. This is the Finite Form of Ramsey’s Theorem.
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