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1. Structures and First-Order Languages 

 
 
A structure is a triple 

A = (A, {Ri: i ∈ I}, {ej: j ∈ J}), 
where A, the domain or universe of A, is a nonempty set, {Ri: i ∈ I} is an indexed family of 
relations on A and {ej: j ∈ J}) is an indexed set of elements —the designated elements of A. For 
each i ∈ I there is then a natural number λ(i) —the degree of Ri —such that Ri is a λ(i)-place 
relation on A, i.e., Ri  ⊆ Aλ(i). This λ may be regarded as a function from I to the set ω of natural 
numbers; the pair (λ, J) is called the type of A. Structures of the same type are said to be similar. 
 Note that since an n-place operation f: An → A can be regarded as an (n+1)-place relation 
on A, algebraic structures containing operations such as groups, rings, vector spaces, etc. may be 
construed as structures in the above sense. 
 The cardinality &A  of a structure A is defined to be the cardinality  
|A| of its domain A. 

The first-order language L of type (λ, J) has the following categories of basic symbols: 
  

(i) individual variables: a denumerable sequence v0, v1,...;  
 (ii) predicate symbols: for each i ∈ I, a predicate symbol Pi of degree λ(i); 
 (iii) individual constants: for each j ∈ J an individual constant cj; 
 (iv) equality symbol: the symbol =; 
 (v) logical operators: ¬ (negation), ∧ (conjunction); 
 (vi) existential quantifier symbol: ∃ ("there exists"); 
 (vii) punctuation symbols: e.g. ( ) , [ ]. 
 
Predicate and constant symbols are often called extralogical symbols; variables and constants are 
collectively known as terms: we shall use symbols t, u, possibly with subscripts, to denote 
arbitrary terms. 
 Atomic formulas of L  are finite strings of basic symbols of either of the forms Pit1...tλ(i) 
or t = u, where t1 ,..., tλ(i), t, u are terms. Formulas of L (or L -formulas) are finite strings of basic 
symbols defined in the following recursive manner: 
  

(a) any atomic formula is a formula; 
 (b) if ϕ, ψ are formulas, so also are ¬ϕ, ϕ ∧ ψ, and ∃xϕ, where x is any variable vn; 
 (c) a finite string of symbols is a formula exactly when it follows from finitely many 
applications of (a) and (b) that it is one. 
 
We write Form(L ) for the set of all formulas of L. The degree (of complexity) of a formula is 
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defined to be the number of occurrences of logical operators and quantifiers in it. 
The symbols ∨ (disjunction), → (implication) and ∀ (universal quantifier) are introduced 

as abbreviations:  
ϕ ∨ ψ    for  ¬(¬ϕ ∧ ¬ψ) 

ϕ → ψ  for ¬ϕ ∨ ψ 
ϕ ↔ ψ  for (ϕ → ψ) ∧ (ψ → ϕ) 

∀xϕ  for ¬∃x¬ϕ. 

We also write  
1

n

i
i=
ϕ  for ϕ1 ∧…∧ ϕn. 

 It will be assumed that the notions of free and bound occurrence of a variable in a 
formula are understood. We write ϕ(v0, ...,vn) to indicate that the free variables of ϕ are among 
v0,...,vn. We also write ϕ(x/t), or simply ϕ(t), for the result of substituting t at each free 
occurrence of x in ϕ. More generally, we write ϕ(t0, ..., tn) for the result of substituting ti at each 
occurrence of vi , for i = 0, ..., n, in ϕ(v0,...,vn). An L - sentence is an L - formula without free 
variables. We write Sent(L ) for the set of all L-sentences.  
 The cardinality &L & of L is defined to be the cardinality of its set of basic symbols. 
 
 Lemma.  &L & = |Form(L )|.  

 Proof. Let &L & = κ. Since κ is infinite and each formula is a finite string of symbols, 

|Form(L ) ≤ κ. The fact that κ is infinite also implies that either the set of terms or the set of 
predicate symbols of L (or both) must have cardinality κ. In either case the set of atomic 
formulas of the form Pit...t has cardinality κ, so that |Form(L )| ≥ κ. The Lemma follows.  
 
 For Σ ⊆ Sent(L) we define LΣ to be the language whose extralogical symbols are 
precisely those occurring in at least one sentence of Σ.  
 
 Lemma. &L Σ& = max(ℵ0, |Σ|). 

 Proof. If Σ is finite, evidently &L Σ& = ℵ0. Now suppose that|Σ| = κ ≥  ℵ0. We have |Σ| ≤ 

Form(L Σ)| = &L Σ&  by the previous lemma. For each σ ∈ Σ  let S(σ) be the set of  (L Σ-) symbols 
occurring in σ: then S(σ) is finite. Also the set K of terms of L Σ is included in the union of the 
sets S (σ) for σ ∈ Σ, so that  

|K| ≤ |∪{S(σ): σ ∈ Σ}| ≤ | ( )|S
σ∈Σ

σ∑  ≤ |Σ|.ℵ0 = |Σ|. 

Thus &L Σ& ≤ |K| + ℵ0 + ℵ0 ≤ |Σ|, and hence &L Σ& = |Σ| as required.   
 
 

2. Satisfaction, validity, and models. 
 
 
If L is a first-order language, a structure having the same type as that of L is called an L -
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structure. Let A = (A, {Ri: i ∈ I}, {ej: j  ∈ J}) be an L-structure, where L has type (λ, J), and let 
a = (a0,a1,...) be a countable sequence of elements of A (such a sequence will be referred to 
henceforth as an A-sequence). For any predicate symbol or term of L, we define its interpretation 
under (A,a) as follows: 

Pi
(A,a) = Ri    cj

(A,a) = ej    vn
(A,a) = an. 

Since Pi
(A,a) and cj

(A,a) depend only on A, we usually just write Pi
A and cj

A for these and call them 
the interpretations of Pi and cj, respectively, in A. 
 For n ∈ ω, b ∈ A we define 

[n|b]a = (a0, a1 ,..., an–1, b, an+1,...). 
 For ϕ ∈ Form(L ) we define the relation a satisfies ϕ in A, written 

A a ϕ, 
recursively on the degree of ϕ as follows: 
 
 1)  for terms t, u,  

A a t = u  ⇔  t(A,a) = u(A,a); 

 2)  for terms t1  ,..., tλ(i), 
A a Pit1...tλ(i)  ⇔  Ri(t1

(A,a), ..., t λ(i)
(A,a)); 

3)  A a ¬ϕ ⇔ not A a ϕ; 

4)  A a ϕ ∧ ψ ⇔ A a ϕ  and A aψ, 
5)  A a ∃vnϕ  ⇔ for some b ∈ A, A [n|b]a ϕ. 

 
The following facts are then easily established: 

(a) A a ∀vnϕ ⇔ for all b ∈ A, A [n|b]a ϕ; 
 (b) suppose that a, b are A-sequences such that an = bn whenever vn occurs free in ϕ. 
Then  

A a ϕ ⇔ A b ϕ, 
In view of fact (b), the truth of A aϕ depends only on the interpretations under (A,a) of the free 
variables of ϕ, that is, if these are among v0, ...,vn, only on a0, ..., an. Accordingly, under these 
conditions we shall often write 

A aϕ[a0, ..., an]   for   A a ϕ. 
 We say that a formula ϕ is valid in A if A a ϕ for every A-sequence a and satisfiable in A 
if A a ϕ for some A-sequence a. It follows from (b) above that a sentence σ  is satisfiable in a 
given structure iff it is valid there. If σ is valid in A we write 

A a ϕ  
and say that A is a model of σ, or that σ holds in A. If Σ ⊆ Sent (L ), we say that A is a model of  
Σ, and write 

A  Σ , 
if A is a model of each member of Σ. If ϕ ∈ Form(L ), we say that Σ logically entails ϕ, and 
write 
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Σ  ϕ, 
if ϕ is valid in every model of Σ. In particular, we write 

 ϕ 
for ∅  ϕ; a formula ϕ satisfying this condition is then valid in every (L -) structure and is called 
universally valid. 
 Let L * be a language which is an extension of L, i.e. obtained from L  by adding a set 
{Pi: i ∈ I*} of new predicate symbols and a set {cj: j ∈ J*} of new constant symbols. Given an 
L*-structure   

A* = (A, {Ri: i  ∈ I ∪ I*}, {ej: j ∈ J ∪ J*}), 
the L -structure  

A = (A, {Ri: i ∈ I}, {ej: j ∈ J})  
is called the L -reduction of A*. Analogously, A* is called an L *-expansion of A. Notice that, 
while an L *-structure always has a unique L-reduction, an L-structure has in general more than 
one L *-expansion. We write A*|L for the L-reduction of A*. It is important to keep in mind the 
fact that expanding or reducing has no effect on the domain of a structure; these operations 
merely add or subtract relations and designated elements.  
 The following lemmas are routine. The first is proved by a straightforward induction on 
the degree of complexity of formulas, the second follows from the definition of  . 
 
 Expansion lemma. Let Σ ⊆ Sent(L ), let L* be any extension of L, let A be any L -
structure, and let A* be any L*-expansion of A. Then  

A  Σ  ⇔  A*  Σ .    
 Constants lemma. Let A be an L -structure, let ϕ(v0, ...,vn) ∈ Form(L ), and let        c0, ..., 
cn be constant symbols of L. Then 

A  ϕ(c0, ..., cn) ⇔  A  ϕ[c0
A, ..., cn

A].   
 
 
 

3. Review of first-order predicate logic. 
 
 
Let L be a first-order language of type (λ, J). We specify axioms and rules of inference  for L as 
follows. As axioms we take 
 1) all instances of propositional tautologies; 
 2) equality axioms: 
    t = t   t = u → u = t   t = u ∧  u = v → t = v 
    (t1 = u1 ∧…∧ tλ(i) = uλ(i)) →  [Pit1… tλ(i) → Piu1...uλ(i) ] 
 3) all formulas of the form 

 ( ) ( )     ( ) ( )         x x t t x x∀ ϕ → ϕ ϕ → ∃ ϕ  
where, if t is a variable, it does not occur bound in ϕ. 
 The rules of inference of L are: 
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1) modus ponens: 
ϕ   ϕ → ψ 

ψ 
2) quantifier rules: if x is not free in ϕ, 

 
                                       ϕ → ψ(x)                       ψ(x) → ϕ 
                                     ϕ → ∀xϕ(x)                   ∃xψ(x) → ϕ 
 
 A proof in L of ϕ from a set Σ ⊆ Sent(L ) is a finite sequence ψ1, ...,  ψn of L-formulas, 
with ψn = ϕ, each member of which is either an axiom, a member of Σ, or else follows from 
previous ψi by one of the rules of inference. We say that ϕ is provable from Σ, and write  

Σ  ϕ, 
if there is a proof of ϕ from Σ. Σ is said to be consistent (in L ) if for no L -formula ϕ do we have 
Σ  ϕ ∧ ¬ϕ.  If ∅  ϕ, we write  ϕ and say that ϕ is a theorem of L.  
 We now list a number of basic results concerning these notions. Throughout, Σ denotes 
an arbitrary set of L -sentences. 
  

Quantifier lemma. If x does not occur free in ϕ, then  
 Σ  ∃x(ϕ ∧ ψ) ↔ (ϕ ∧ ∃xψ)       Σ  ∃x(ϕ → ψ) ↔ (ϕ → ∃xψ).                   
 
Deduction theorem. If σ ∈ Sent(L ), then for any formula ϕ, 

Σ ∪ {σ}  ϕ  ⇔  Σ  ϕ → ψ.    
  

Finiteness theorem. If Σ  ϕ, then Σ0  ϕ for some finite subset Σ0 of Σ.   
  

Soundness theorem. If Σ  ϕ, then Σ  ϕ.   
  

Consistency lemma. (i) Σ is consistent iff Σ  ϕ not for some L-formula ϕ. (ii) Σ is 
consistent iff every finite subset of Σ is so. (iii) If σ ∈ Sent(L), Σ ∪ {σ} is consistent iff  Σ  ¬σ.  

  
 
Generalization lemma. If ϕ(v0, ...,vn) ∈ Form(L ), then 

Σ  ϕ  ⇒  Σ  ∀v0…∀vnϕ.       
 

  
4. The completeness and model existence theorems and some of their 

consequences. 
 

Let L  be a first-order language of type (λ, J). We make the following definitions. 
 1. An extension L * of L is called a simple extension of L if it is obtained by adding just 
new constant symbols.  



 

 

6

 2. Let Σ ⊆ Sent(L ) and let L * be a simple extension of L. A set Σ* ⊆ Sent(L *) is called 
an L-saturated extension of Σ in L * if Σ ⊆ Σ* and, for any L -formula ϕ with at most one free 
variable x, there is a constant symbol c of  L * such that  Σ*  ∃xϕ(x) → ϕ(c). 
  3. A set Σ ⊆ Sent(L ) is saturated if for any L -formula ϕ with at most one free variable x, 
there is a constant c of L  for which  

Σ  ∃xϕ(x) → ϕ(c). 
If Σ is saturated, then clearly:  

Σ  ∃xϕ(x)  ⇔  Σ  ϕ(c)  for some constant c of L. 
Notice also that if some set of L -sentences is saturated, then L contains at least one constant 
symbol. 
 
 Lemma 1. Suppose that Σ ⊆ Sent(L ) is consistent. Then there is a consistent L -saturated 
extension Σ* in a simple extension L * of L for which &L *& = &L &. 
 Proof. Let F be the set of L-formulas with at most one free variable (which we shall 
denote by x). For each ϕ ∈ F introduce a new constant symbol cϕ in such a way that, if ϕ and ψ 
are distinct formulas, then cϕ and cψ are distinct constants. In this way we obtain a simple 
extension L * of L: clearly &L * & = &L &. 

Now define   
Σ* = Σ ∪ {∃xϕ(x) → ϕ(cϕ): ϕ ∈ F}. 

Clearly Σ* is an L -saturated extension of Σ in L*. It remains to show that Σ* is consistent. 
 Suppose, on the contrary, that Σ* is inconsistent. Then by the consistency lemma there  is 
a finite subset {ϕ1,..., ϕn}of F such that, writing ci  for ϕi

c , Σ ∪ {∃xϕi → ϕi(ci): i = 1,.., n}  is 
inconsistent. It follows from the consistency lemma that  

(*) Σ  
1
[ ( )]

=
¬ ∃ ϕ →ϕ

n

i i i
i

x c  

Now choose n distinct variables x1,...,xn which do not occur in the proof from Σ of the 
sentence on the right hand side of the turnstile in (*). If in this proof we change ci at each of its 

occurrences to xi for i = 1,...,n, we obtain a proof of the formula 
1
[ ( )]

=
¬ ∃ ϕ →ϕ

n

i i i
i

x x  from Σ, 

whence  

Σ 
1
[ ( )]

=
¬ ∃ ϕ →ϕ

n

i i i
i

x x . 

By the generalization lemma,  

Σ  ∀v1…∀vn
1
[ ( )]

=
¬ ∃ ϕ →ϕ

n

i i i
i

x x  

so that                                    

(**)                                     Σ  ¬∃v1…∃vn
1
[ ( )]

=
∃ ϕ →ϕ

n

i i i
i

x x . 

Now the xi have been chosen in such a way that, if i ≠ j, then xi does not occur in ϕj(xi). So it 
follows from the quantifier lemma that the existential quantifiers on the right hand side of the 
turnstile in (**) may be moved across the conjunctions and implications to yield  
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Σ  ¬
1
[ ( )]

=
∃ ϕ → ∃ ϕ

n

i i i i
i

x x x . 

But since, clearly,  ( )∃ ϕ →∃ ϕi i i ix x x for each i, it follows that Σ is inconsistent, contradicting 
assumption. Accordingly Σ* is consistent and the lemma is proved.    
 
 A set Σ ⊆ Sent(L ) is said to be complete if, for any σ ∈ Sent(L ), we have Σ  σ  or        
Σ  ¬σ. 
 
 Lemma 2. Suppose that Σ ⊆ Sent(L ) is consistent. Then there is a complete consistent 
set Σ′ ⊆ Sent(L ) such that Σ ⊆ Σ′. 
 Proof. The family of consistent sets of sentences of L containing Σ, ordered by inclusion, 
is easily seen to be closed under unions of chains, and so by Zorn's lemma has a maximal 
member Σ′. If σ ∈ Sent(L ) and Σ′  σ, then Σ′ ∪ {¬σ} is consistent by the consistency lemma. 

Since Σ′ is maximal consistent, we must have Σ′ ∪ {¬σ} = Σ′, so a fortiori Σ′  ¬σ. Thus Σ′ is 
complete and meets the requirements of the lemma.   
 
 Theorem 1. Suppose that Σ ⊆ Sent(L ) is consistent. Then there is a simple extension  L + 
of L such that &L +& =  &L & and a complete saturated consistent set Σ+ ⊆ Sent(L +) such that Σ ⊆ 
Σ+. 
 Proof. We construct a sequence L0, L1,... of simple extensions of L and a sequence  Σ0, 
Σ1,... of consistent sets of sentences as follows. We begin by putting L0 = L and Σ0 = Σ. Suppose 
now that the consistent set Σn ⊆ Sent(Ln) has been defined. By Lemma 1 there is a simple 
extension Ln* such that &L n*& =  &Ln & and a consistent Ln-saturated extension Σn* of Σn in Ln*  

And by Lemma 2, there is a complete consistent extension Σn*′ of Σn in Ln*: clearly Σn*′ is Ln-

saturated also. We set Ln+1 = Ln*, Σn+1 = Σn*′ . Then Σn+1 is a complete, consistent Ln-saturated 
extension of Σn in Ln+1. 
 Now we define L + to be the union of all the languages Ln and Σ+ to be the union of all 
the sets Σn. Since &L n& =  &L 0& = &L & for all n, it follows that &L +& = &L &. Also,                    
Σ+ ⊆ Sent(L +), Σ ⊆ Σ+ and Σ+, as the union of the chain Σ0 ⊆ Σ1 ⊆... of consistent sets, is itself 
consistent. For if Σ+ is inconsistent, let Φ be the finite set of formulas of L+ in a proof P of a 
formula of the form ϕ ∧ ¬ϕ from Σ+. Then Φ ⊆ Form(Lm) for some m, and Σ+ ∩ Φ ⊆ Σn for 
some n. Writing q for the larger of m, n, P is then a proof of ϕ ∧ ¬ϕ from Σq in Lq, contradicting 
the consistency of Σq. 
 Moreover, Σ+ is complete. for, if σ ∈ Sent(L +), then σ ∈ Sent(L n), for some n, and so, 
since Σn is complete, either Σn  σ  or Σn  ¬σ   Since Σn ⊆ Σ+, it follows that Σ+

  σ  or Σ+
  ¬σ,   

proving the claim. 
 Finally, Σ+ is saturated. For let ϕ(x) be a formula of L + with one free variable x. Then 
ϕ(x) ∈ Form(L n) for some n. Since Σn+1 is an Ln-saturated extension of Σn in Ln+1, there is a 
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constant symbol c of L n+1 for which the sentence ∃xϕ(x) → ϕ(c)  is provable from Σn+1, and 
hence also, since Σn+1 ⊆ Σ+, from Σ+. Therefore the latter is saturated as claimed.   
 
 Now let Σ be a fixed consistent set of sentences of L. Let C be the set of constant symbols 
of L: we shall assume that this set is nonempty. We define the relation ≈ on C by 

c ≈ d  ⇔  Σ  c = d. 

It is easy to verify, using the equality axioms in L , that ≈ is an equivalence relation. For each  c 

∈ C write �c for the equivalence class of c with respect to ≈; thus 
�c  = {d ∈ C: Σ  c = d}. 

Let 
iC  = { �c : c ∈ C} 

be the set of all such equivalence classes. Corresponding to each predicate symbol Pi of L define 
the λ(i)- ary relation Ri on iC  by 

Ri( i k
1 ( ),..., λ ic c )  ⇔  Σ  Pic1...cλ(i). 

We can now frame the 
 
 Definition. The canonical structure determined by Σ is the L -structure 

AΣ = ( iC , {Ri:  i ∈ I}, { ijc : j ∈ J}). 

Observe that  &AΣ& ≤ |C|. 
 Theorem 2. Suppose that Σ is complete, consistent and saturated. Then AΣ is a model of 
Σ.  
 Proof. We show that, for any L-sentence σ, 
(*)                                                  AΣ  σ  ⇔  Σ  σ. 
That this holds for atomic sentences is an immediate consequence of the definition of AΣ . We 
now argue by induction on the degree of complexity of the sentence σ. 
 Suppose then that n > 0 and that (*) holds for all sentences of degree < n. Let σ have 
degree n; then σ  is either a conjunction or a negation of sentences of degree < n, or an 
existentialization of a formula of degree < n. Verifying (*) in the first two cases is routine (using 
the completeness of Σ in the negation case) and we omit the details. In the last case, σ is of the 
form ∃xϕ(x), where ϕ has degree < n. We then have  
                                                        AΣ  σ  ⇔  AΣ  ∃xϕ(x)  

⇔ AΣ  ϕ[ �c ] for some c ∈ C 
(by constants lemma)                            ⇔  AΣ  ϕ(c) for some c ∈ C 
(by (*))                                                          ⇔  Σ  ϕ(c)  for some c ∈ C 
(since  Σ is saturated)                                    ⇔  Σ  ∃xϕ(x) 
                                                        ⇔  Σ  σ.                                              
Therefore σ satisfies (*) and the proof is complete.    
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 These results have the following important corollaries. 
 
 Model Existence Theorem (Gödel-Henkin). Any consistent set Σ of first-order sentences 
has a model of cardinality at most max(ℵ0, |Σ|). 
 Proof. Let κ = max(ℵ0, |Σ|); then κ = &L Σ& by the lemma on p. 3. By Theorem 1 we can 

extend Σ to a complete consistent saturated set of sentences Φ in a simple extension L ′ of L Σ 

such that &L ′& = &L Σ& = κ. By Theorem 2, the canonical structure AΦ is a model of Φ and 

hence also of Σ. The expansion theorem implies that the L Σ -reduction A′ of AΦ is a model of Σ, 

and that any L-expansion A of A′ is likewise. Moreover, if C is the set of constant symbols of    

L ′, then &A&  = &AΦ&  ≤ |C| ≤ &L Σ& = κ. The proof is complete.   
 
 Completeness Theorem. If Σ ⊆  Sent(L ) and σ ∈ Sent(L ), then  

Σ  σ  ⇒ Σ  σ. 
 Proof. If Σ  σ , then, by the consistency theorem, Σ ∪ {σ} is consistent and so, by the 
model existence theorem, has a model A. Since A is a model of Σ but not of σ, it follows that      
Σ  σ.   
 
 Compactness Theorem. A set of first-order sentences Σ has a model iff every finite 
subset of Σ has a model. 
 Proof. One way round is trivial. If, conversely, every finite subset of Σ has a model, then 
every finite subset of Σ is consistent and so Σ itself is consistent by the consistency lemma. 
Therefore Σ has a model by the model existence theorem.   
 
 Invariance Theorem. Provability and consistency are invariant with respect to 
language. That is, if Σ ⊆  Sent(L ) and σ ∈ Sent(L ), and L * is an extension of L, then 
 (a) Σ  σ  in L  ⇔ Σ  σ in L * 
 (b) Σ  is consistent in L  ⇔ Σ is consistent in L *. 
 Proof.  We prove (a); (b) is an immediate consequence. Clearly Σ  σ  in L  ⇔ Σ  σ in 
L *.Conversely, if Σ  σ in L *, then Σ  σ  by the completeness theorem, that is, every              
L *-structure which is a model of Σ is also a model of σ. If A is any L -structure which is a 
model of Σ, it can be expanded to an L *-structure A* which, by the expansion lemma, is also a 
model of L. Then A* is a model of σ, and so, applying the expansion lemma again, A, as the L-
reduction of A*, is a model of σ. Therefore, by the completeness theorem, Σ  σ in L.   
 
 Löwenheim-Skolem Theorem. If a set Σ of first-order sentences has an infinite model, it 
has a model of any cardinality κ ≥ max(ℵ0, |Σ|). 
 Proof. For simplicity write L for LΣ. Let L * be the simple extension of L obtained by 
adding a set {dj: j ∈ J} of new constant symbols, where |J| = κ. Let 
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Σ* = Σ ∪ {¬(dj = dk): j, k ∈ J & j ≠ k}. 
If Σ0 is any finite subset of Σ*, only finitely many sentences of the form ¬(dj = dk) occur in Σ0; 
let dj1, ..., djn  be a list of all constant symbols occurring in such sentences in Σ0. If now A is an 
infinite model of Σ (which we may take to be an L-structure), choose n distinct elements      
a1,,..., an of its domain A. Let A* be the L*-expansion of A in which the interpretation of djp  is ap 
for p = 1,..., n and that of dj is an arbitrary element of A for j ∉ {j1, ..., jn}. Clearly A* is then a 
model of Σ0.  
 It follows that every finite subset of Σ* has a model. Thus every finite subset of Σ* is 
consistent and so Σ* is itself consistent. Clearly |Σ*| = κ, so the model existence theorem implies 
that Σ* has a model of cardinality ≤ κ. Since the interpretations of the dj in any model of Σ* 

must be distinct, any such model must have cardinality ≥ κ. So Σ* has a model of cardinality κ; 
its L -reduction is a model of Σ of cardinality κ.    
 
 Overspill Theorem. If a set of first-order sentences has arbitrarily large finite models, it 
has an infinite model. 
 Proof. For each n ∈ ω let σn be a sentence (formulable in any first-order language with 
equality) asserting that there at least n individuals. Given a set Σ of first-order sentences, let Σ* = 
Σ ∪ {σn: n ∈ ω}. If Σ has arbitrarily large finite models, then each finite subset of Σ* has a 
model, so by the compactness theorem Σ* has a model, which must evidently be an infinite 
model of Σ.   
 

5. Relations between structures. 
 

 
Let A = (A, {Ri: i ∈ I}, {ej: j  ∈ J}) and B = (B, {Si: i ∈ I}, {dj: j ∈ J}) be structures of the same 
type (λ,J). We say that A is a substructure of B, written A ⊆ B, if A ⊆ B, ej = dj for all j ∈ J, and 
Ri = Si ∩ Aλ(i) for all i ∈ I. If C is a nonempty subset of B containing all the designated elements 
of B, we define the substructure B|C of B by 

B|C = (C, {Si ∩ Cλ(i): i ∈ I}, {dj: j ∈ J}). 
 An embedding of a structure A into a structure B is an injective map f: A → B such that 
f(ej) = dj for all j ∈ J, and for all i ∈ I and a1, ..., aλ(i) ∈ A, we have 

Ri(a1, ..., aλ(i))  ⇔ Si(fa1 , ..., faλ(i)). 
If there exists an embedding of A into B, we say that A is embeddable into B and write  A  B. 

If f is an embedding of A into B, we write f[A] for the structure B|f[A]. A surjective embedding 
is called an isomorphism. If there exists an isomorphism between A and B, they are said to be 
isomorphic and we write A ≅ B. 
 Let L  be the first-order language of type (λ,J). We say that the L-structures A and B are 
elementarily equivalent, and write A ≡ B, if A  σ ⇔ B  σ for any L –sentence σ. It is easily 
shown that isomorphic structures are elementarily equivalent, but the Löwenheim-Skolem 
theorem implies that the converse fails. 
 The L -structure A is said to be an elementary substructure of the L -structure B, and B 
an elementary extension of A, if A ⊆ B and, for any L –formula ϕ(v0,...,vn) and any a0,..., an ∈ A, 
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we have 
A  ϕ[a0, ..., an]   ⇔  B  ϕ[a0, ..., an]. 

In this situation we write A  B. Evidently A  B  ⇒  A ≡ B, but the converse is easily seen to 
be false. 
 An embedding f of A into B is called an elementary embedding if for any L -formula   
ϕ(v0, ...,vn) and any a0, ..., an ∈A we have 

A  ϕ[a0, ..., an]  ⇔  B  [fa0, ... ,fan]. 

In this situation we write f: A  B. If such an f exists, we write A  B. Clearly A  B  ⇒          

A ≡ B. It is also easily shown that any isomorphism is an elementary embedding. 
 
 Tarski-Vaught Lemma. If A and B are L -structures, then A  B iff A ⊆ B and, for any 
L-formula ϕ(v0, ...,vn) and any a0, ..., an–1 ∈ A, 
 
(*) if B  ∃vn ϕ[a0, ..., an–1], then, for some a ∈ A, A  ϕ[a0, ..., an–1, a]. 
  
Proof. One direction is trivial. Conversely, suppose that (*) holds. We prove by induction on the 
degree of ϕ that, for any n, any L –formula ϕ(v0, ...,vn) and any a0, ..., an ∈ A,  
(**)                        A  ϕ[a0, ..., an]  ⇔  B  ϕ[a0, ..., an]. 
That (**) holds for atomic formulas is obvious, as are the induction steps for ¬ and ∧. It remains 
to show that, if it holds for ϕ, it also holds for ∃vk ϕ. Without loss of generality we may assume 
that n is greater than the index of every variable (free or bound) occurring in ϕ, and then, by 
making a suitable change of variable in ϕ (i.e., by substituting vn for vk), that k = n. 
 If A  ∃vnϕ[a0, ..., an–1], then  A  ϕ[a0, ..., an-1, a]  for some a ∈ A, and it follows from 
(**) for ϕ that  B  ϕ[a0, ..., an-1, a], whence B  ∃vnϕ[a0, ..., an–1]. Conversely, if                      
B  ∃vnϕ[a0, ..., an–1], then, by (*), B  ϕ[a0, ..., an-1, a] for some a ∈ A, whence                        
A  ϕ[a0, ..., an-1, a] by (**), so that A  ∃vnϕ[a0, ..., an–1]. This completes the induction step and 
the proof.    

 
Corollary. Write Q and \ for the sets of rational and real numbers. Then  

(Q, ≤)    (\, ≤). 
 Proof. We show that the Tarski-Vaught lemma applies. Suppose that, for a formula   
ϕ(v0, ...,vn)      of       the    appropriate   language,      and        a0 < ... < an-1 ∈ Q,   we have      
(\, ≤)  ∃vnϕ[a0, ..., an-1]. Then there is b ∈ \ such that (\, ≤)  ϕ[a0, ..., an-1, b]. Say              
ai < b < ai+1  (the cases b < or > all ai being similar). Choose a to be any rational such that          
ai < a < ai+1.   It   is   easy   to  construct  an   isomorphism   f: \ → \   such   that  f(aj) = aj  for   

0 ≤ j ≤ n –1 and  f(b) = a. This f  is   also    an   elementary  embedding. Hence  (\, ≤)      

ϕ[fa0, ...,fan-1, b], i.e. (\, ≤)  ϕ[a0, ..., an-1, a]. Since a ∈ Q, the Tarski-Vaught lemma applies to 
yield the required conclusion.    
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 Given a set X, let LX be the simple extension of L obtained by adding a set {cx: x ∈ X} of 
distinct new constant symbols indexed by X. If A is an L -structure and X is a subset of its 
domain A, we write (A, X) for the LX -expansion of A in which the interpretation of each cx is x. 
If f is a mapping of X into the domain B of an L -structure B, we write (B, f[X]) for the LX-
expansion of B in which the interpretation of each cx is f(x).   
 The diagram of A, ∆(A), is the set of atomic and negated atomic sentences that hold in 
(A, A). The complete diagram of A, Γ(A), is the set of all sentences of LA that hold in (A, A). The 
proof of the following lemma is then straightforward. 
 
 Diagram lemma. Let A and B be L -structures. Then: 
 (i) A  B iff B can be expanded to a model of ∆(A); 

 (ii) A  B iff B can be expanded to a model of Γ(A); 

 (iii) if A ⊆ B, then A  B iff (B, A)  Γ(A); 
 (iv) an embedding f of A into B is an elementary embedding iff (A, A) ≡ (B, f[A]).   
 
 We now show that infinite structures have elementary substructures and extensions of 
most cardinalities. 
 
 Theorem.  Let A be an infinite L -structure. 
 (i) If X ⊆ A, then for any cardinal satisfying max(|X|,&L &) ≤ κ ≤ |A|, there is an 
elementary substructure B of A such that |B| = κ and X ⊆ B. 
 (ii) A has an elementary extension of any cardinality ≥ max(|X|,&L &). 
 Proof. (i) Let < be some fixed well-ordering of A. We define a sequence B0, B1,... of 
subsets of A recursively as follows. Choose B0 to be any subset of A such that |B0| = κ and  X  
⊆ B0. If Bn has been defined, put 
  
Bn+1 = {b: for some L -formula ϕ(v0, ...,  vm) and some b0, ..., bm-1 ∈ Bn, b is the <-least   
 element of A such that A  ϕ[b0,...,bm-1, b]}. 
 
It is easy to check that Bn ⊆ Bn+1 and that |Bn+1| = κ. Now define B to be the union of the Bn and 
B = A|B. Then B is a substructure of A of cardinality κ and it is easy to apply the Tarski-
Vaught lemma to conclude that B  A.  
 (ii) Let Γ be the complete diagram of A. Then |Γ| = max(|X|,&L &). Since Γ is evidently 

consistent, the model existence theorem implies that it has a model of any cardinality κ ≥ |Γ| = 

max(|A|,&L &). The result now follows from the diagram lemma.    
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6.  Ultraproducts 
 
 
A filter over a set I is a family F  of subsets of I such that (i) X, Y ∈ F  ⇔ X ∩ Y ∈ F, (ii) ∅ ∉ F.  
It follows immediately from (i) that any filter F over I satisfies; X ∈ F and  X ⊆ Y ∈ F ⇒ Y ∈ F. 
An ultrafilter over I is a filter U  over I satisfying the condition: for any X ∈ U, either X ∈ U  or 
I –X ∈ U . In particular, for any i ∈ I, Ui  = {X ⊆ I : i ∈ X} is an ultrafilter over I called the 
principal ultrafilter generated by i.   It is easily shown that an ultrafilter is precisely a filter that is 
maximal in the sense that it is included in no filter apart from itself. A straightforward 
application of Zorn’s Lemma shows that a family A  of subsets of I is included in an ultrafilter 
over I if and only if it has the finite intersection property: that is, for any finite subfamily B  of A  
we have ∩B  ≠ ∅.   
 For ease of exposition we confine our attention throughout this section to structures 
consisting of a nonempty set and a single binary relation on that set. The appropriate language L  
for such structures thus has a single predicate symbol of degree 2, say P0. The type of these 
structures,a nd of L, is then ((0, 2), ∅). It should be clear that everything we do can be extended 
to arbitrary structures merely by complicating the notation. 
 Now let I be some arbitrary fixed index set, and for each i ∈ I let Ai = (Ai, Ri) be an   L - 
structure. Let ΠAi  be the Cartesian product of the sets Ai: we use letters f, g, h, f′, g′, h′ to denote 
elements of ΠAi .   
 Given a family F of subsets of I, we define the relation ∼F  on ΠAi  by  

f  ∼F  g  ⇔  {i ∈ I : f(i) = g(i)} ∈ F. 
It is easily shown that, if F is a filter over I, then ∼F  is an equivalence relation on  ΠAi . From 
here on we shall suppose that F is a filter over I. For each f∈ ΠAi we write f /F for the              
∼F  -equivalence class of f , and we define 

ΠAi /F  =  {f /F : f ∈ ΠAi}. 
 We define the relation R on ΠAi  by: 

(f, g) ∈ R ⇔ {i ∈ I : (f(i), g(i)) ∈ Ri} ∈ F. 
It is not difficult to show that R is compatible with ∼F  in the sense that, if f  ∼F  f′ and g∼F  g′, then  

fRg ⇒ f′Rg′.  That being the case, the relation R on ΠAi induces the relation RF on ΠAi /F  given 
by 

(f /F, g/F) ∈ RF ⇔ fRg. 
 The L -structure ΠAi /F  = (ΠAi /F , RF) is called the reduced product of the family {Ai: i 
∈ I} over the filter F: if F is an ultrafilter, the reduced product over F is called an ultraproduct. 
If, for each i∈ I, Ai is a fixed structure A, the reduced product is denoted by     AI

 /F  and is called 
the reduced power of A over F. When F is an ultrafilter the reduced power is called an 
ultrapower.  
 Observe that if F is the filter {I}, the reduced power ΠAi /F  is isomorphic to (ΠAi, R), 
and that, for k ∈ I, the ultraproduct ΠAi /Uk is isomorphic to Ak. 
 If f = (f0, f1,…) is a sequence of elements of  ΠAi, that is, if f ∈ (ΠAi)ω, we write f(i) for 
the sequence  (f0(i),  f1(i),…) ∈ Ai

ω and, if U is an ultrafilter over I, f /U  for the sequence     
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(f0/U, f1/U,…) ∈ (ΠAi/U)ω.  
We now prove the fundamental theorem on ultraproducts, viz., 
 
Łoś’s Theorem. If U is an ultrafilter over I, ϕ a formula of L and f a sequence of 

elements of ΠAi, then 
(*)                                  ΠAi /U  f/U  ϕ  ⇔  {i ∈ I: Ai f(i) ϕ} ∈ U. 

Proof.  The proof goes by induction on the complexity of ϕ.  That (*) holds for atomic ϕ 
is a straightforward consequence of the definitions of ∼F  and RF. The induction steps for ∧ and ¬ 
follow easily from the defining properties of ultrafilters. Now suppose that (*) holds for ϕ (and 
arbitrary f); we show that it holds for ∃vnϕ. 

Define  
D = {i ∈ I: Ai f(i) ∃vnϕ}. 

We have to show that 
            ΠAi /U  f/U  ∃vnϕ  ⇔  D ∈U. 

Suppose that ΠAi /U  f/U  ∃vnϕ. Then there is some b ∈ ΠAi for which ΠAi /U  [n|b]f/U  ϕ. Let E 
= {i ∈ I: Ai ([n|b]f)(i) ϕ}. Then by the induction hypothesis E ∈ F. And since ([n|b]f)(i) = 
[n|b(i)]f(i), it follows that E ⊆ D, and so because U  is a filter, D ∈ U.  
 Conversely suppose that D ∈ U. If i ∈ D, then there is some bi ∈ Ai such that  

[ / ] ( )ii n b i ϕA f . By the axiom of choice there is c ∈ ΠAi for which c(i) = bi  for every i ∈ D, and is 
an arbitrary element of Ai otherwise. Defining 

C = {i ∈ I: ([ | ] )( )i n c i ϕA f }, 
we have D ⊆ C so that C ∈ U. It now follows from the induction hypothesis that                

ΠAi /U  ([n|c]f)/U  ϕ, 
i.e., since ([n|c]f)/U  = [n|c/U] f/U ,   

ΠAi /U  [n|c/U] f/U ϕ. 
Therefore 

ΠAi /U  f/U  ∃vnϕ, 
completing the proof of the theorem.   
 

As an immediate consequence we have the  
 
Corollary.  For any L – sentence σ we have 

ΠAi /U    σ  ⇔  {i ∈ I: Ai  σ} ∈ U.     
 

 Let A be a structure and let U be an ultrafilter on the set I. For each a ∈ A let �a  ∈ AI  be 
the function given by �( )a i a=  for all i ∈ I. The canonical embedding of A  into AI

 /U  is the map 

d: A → AI/U  defined by  d(a) = � /a U . It is a straightforward consequence of Łoś’s theorem that 
d is an elementary embedding. 
 Łoś’s theorem may also be used to provide a simple direct proof of the compactness 
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theorem, avoiding the use of the completeness theorem. To wit, suppose that each finite subset ∆ 
of a given set Σ of sentences has a model A∆; for simplicity write I for the family of all finite 
subsets of Σ. For each ∆ ∈ I let i∆= {Φ ∈ I: ∆ ⊆ Φ}. For any members ∆1, …, ∆n of I, we have 

, 
 

and so the collection { i∆ : ∆ ∈ I} has the finite intersection property. It can therefore be extended 
to an ultrafilter U over I. The ultraproduct  /

I
∆

∆∈
∏A U is then a model of Σ. For if  

σ ∈ Σ, then {σ} ∈ ∆, and A{σ}  σ; moreover, A∆  σ whenever σ ∈ ∆. Hence 
j{ } { : } { : }I I ∆σ = ∆∈ σ∈∆ ⊆ ∆∈ σA . 

Since j{ }σ ∈ U, { : }I ∆∆∈ σA ∈ U and therefore, by Łoś’s theorem, /
I

∆
∆∈
∏A U  σ. The proof 

is complete. 
 
 

 
7.  Completeness and categoricity 

 
 
 For simplicity, throughout this section we let L  be a countable first-order language. By a 
theory in L  we shall mean a set Σ of L -sentences which is closed under provability, i.e such 
that, for each L –sentence σ, if Σ  σ, then σ ∈ Σ. A subset Γ of a theory Σ is called a set of 
postulates for Σ if Γ  σ for every σ ∈ Σ. Clearly each set Γ of L -sentences is a set of postulates 

for a unique theory Σ, namely Σ = {σ ∈ Sent(L ): Γ  σ}. For each L -structure A let Θ(A), the 

theory of A, be the set of all L -sentences holding in A. Clearly Θ(A) is a complete theory. 
 The following lemma is a straightforward consequence of the completeness theorem.  
 
 Lemma. The following conditions on a consistent theory Σ in L are equivalent: 
 (i) Σ is complete; 
 (ii) any pair of models of Σ are elementarily equivalent; 
 (iii) Σ = Θ(A) for some L -structure A.   
 
 Let κ be an infinite cardinal. A theory Σ is said to be κ-categorical if any pair of models 
of Σ of cardinality κ are isomorphic. 
 Examples. (i) Let L have no extralogical symbols and let Σ be the set of all L -sentences 
which hold in every L -structure. Then Σ is κ-categorical for every infinite κ. 
 (ii) Let L have just one unary predicate symbol P and let Σ be the set of L -sentences 
which hold in every L -structure. Then Σ is not κ-categorical for any infinite κ. 
 (iii) Let L  be as in (ii) and for each matural number m let σm be the first-order sentence 
which asserts that there are at least m individuals having the property P and at least m individuals 
not having P. Let Σ be the theory with the set of all σm as postulates. Then Σ is ℵ0-categorical 

j j
1 1... ...n n∆ ∪ ∪∆ ∈∆ ∩ ∩∆
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but not κ-categorical for any κ > ℵ0. 
 (iv) Let L be the language whose sole extralogical symbols are countably many constants 
c0, c1,... and let Σ be the theory with postulates {¬(cm = cn): m ≠ n}. Then Σ is κ-categorical for 
every κ > ℵ0 but not ℵ0 -categorical. 
 
 One of the deepest results in model theory is Morley's theorem (whose proof is too 
difficult to be included here) which asserts that the four possibilities above are exhaustive, that is, 
if a theory in a countable language is κ-categorical for some κ > ℵ0, it is κ-categorical for all     
κ > ℵ0. 
 The next result provides a simple, but useful, sufficient condition for completeness.  
 
 Theorem. (Vaught's test.) Let Σ be a consistent theory with no finite models and which is 
κ-categorical for some infinite κ. Then Σ is complete.  
 Proof. If Σ is not complete, then there is a sentence σ such that neither σ nor ¬σ are 
provable from Σ. So both Σ ∪ {σ} and Σ ∪ {¬σ} are consistent and hence have models, which 
must be infinite since Σ was assumed to have no finite models. Therefore, by Löwenheim-
Skolem, both Σ ∪ {σ} and Σ ∪ {¬σ} have models of cardinality κ. Since σ holds in one of these 
models but not in the other, Σ is not κ-categorical.   
 
 This theorem may be applied to establish the completeness of various theories. 
 
 UDO — the theory of unbounded dense linear orderings — is formulated in a language 
with just one binary  predicate  symbol  R  and  has the following  postulates (where we write     
x ≠ y for ¬ (x = y)): 
 (i)   ∀xRxx ∧ ∀x∀y[Rxy ∧ Ryx → x = y] ∧ ∀x∀y∀z[Rxy ∧ Ryz → Rxz]  
                                                     ∧ ∀x∀y[Rxy ∨ Ryx] 
 (ii) ∀x∀y[Rxy ∧ x ≠ y → ∃x[x ≠ z ∧ y ∧ z ∧ Rxz ∧ Rzy]] 
 (iii) ∀x∃y∃z[x ≠ y ∧ x ≠  z ∧ Ryx ∧ Rxz] 
Postulate (i) asserts that R is a linear ordering, (ii) that it is dense, and (iii) that it is unbounded 
below and above. Natural examples of models of UDO are (Q, ≤) and (\, ≤).  
 
 Theorem. UDO is ℵ0-categorical and so, by Vaught's test, complete. 
 Proof. Let (A, ≤) and (B, ≤) be denumerable models of UDO. Thus each is an 
unbounded dense linearly ordered set. Let A = {an: n ∈ ω} and B = {bn: n ∈ ω}. We define two 
new sequences {an*: n ∈ ω} and {bn*: n ∈ ω} as follows. First, put a0* = a0 and b0* = b0. Now 
suppose k > 0; we consider two cases. 
 (i) k = 2m is even. In this case we put ak* = am. If, for some j < k, ak* = aj*, we put      
bk* = bj*. Otherwise we let bk* be   some   element   of B   bearing the   same order relations to  
b0*, ...,bk-1* as does ak* to a0*, ..., ak-1*; that is, for each j < k, if ak* > or < aj*, then bk* > or      
< bj*. Since (B, ≤) is a dense unbounded linearly ordered set, it is clear that such an element can 
always be found.   
 (ii) k = 2m + 1 is odd. In this case we put bk* = bm. If  bk* = bj for some j < k, put        
ak* = aj*. Otherwise we choose ak* to  be  some  element  of  A  bearing the same order relations 
to  a0*, ..., ak-1* as does bk* to b0*, ..., bk-1*. Again such an element can always be found. 
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 This completes our recursive definition. We now define h: A → B by putting h(an*) = bn* 
for each n ∈ ω. Clearly h is an isomorphism between (A, ≤) and (B, ≤).   
 
 The theory we consider next is most naturally formulated in a language with operation 
symbols: all our previous results extend naturally to theories in such languages. 
 The language F for fields is a first-order language with constant symbols 0, 1 and binary 
operation symbols +, ⋅ . The theory FT of fields has the following postulates (where we write xy 
for x ⋅ y): 
     
 
                                                ∀x∀y[(x + y) + z = x + (y + z)] 
    ∀x [x + 0 = x] 
    ∀x∀y[x + y = y + x] 
    ∀x∃y[x + y = 0] 
    ∀x∀y∀z[(xy)z = x(yz)] 
    ∀x[1x = x] 
    ∀x∀y[xy = yx] 
    ∀x∀y∀x[(y + z) = xy + xz] 
    ¬(0 = 1). 
For p ∈ ω, write p1 for 1 + 1 + ... + 1 with p summands. If to the postulates of FT we add the 
infinite set of sentences 

{¬(p1 = 0): p∈ ω},  
we get the theory FT0 of fields of characteristic 0. (Natural examples are the fields of rationals 
and reals.) 
 We now write xn for the expression ( (... ( )...)⋅ ⋅ ⋅ ⋅x x x x  with n factors. The infinite list of 
sentences, for n ≥ 1,  

∀x0...∀xn[¬(xn = 0)  → ∃y(xnyn + xn-1yn-1 + ... + x1y + x0 = 0)] 
 
when added to the postulates of FT0, yields the theory ACF0 of algebraically closed fields of 
characteristic 0. Each new postulate asserts that all polynomials of a given degree n has a zero. 
 We observe that ACF0 is not ℵ0-categorical. For the field F of algebraic numbers and the 
algebraic closure of the field F[π] obtained by adjoining the transcendental π to F are countable 
nonisomorphic models of ACF0. On the other hand, a classical theorem of Steinitz asserts that 
ACF0 is κ -categorical for any uncountable κ, so we conclude from Vaught's test that  ACF0 is 
complete Since the field ^  of complex numbers is a model of ACF0, it follows that ACF0 is a 
set of postulates for the theory of ^ .  

 
 

8. The elementary chain theorem and some of its consequences. 
 
 Let A0 ⊆ A1 ⊆ ... be a chain of L -structures: in particular the Ai all have the same 
designated elements. The union of the chain is the structure A = n

n∈ω
∪A  defined as follows. The 
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domain of A is the set A = n
n

A
∈ω
∪ . For i ∈  I, the ith relation Ri of A is the union of the 

corresponding ith relations of the An. The designated elements of A are the designated elements of 
the An. Clearly each An is a substructure of A. 
 A chain of structures A0 ⊆ A1 ⊆ ... in which each An is an elementary substructure of An+1 
is called an elementary chain. In this case we write A0  A1  ... .  
 
 Elementary Chain Theorem. Each member of an elementary chain of structures is an 
elementary substructure of the union of the chain. 
 Proof. Let A0  A1  ... be an elementary chain, and let A be its union. We prove the 
following assertion by induction on the degree of a formula: for any L –formula ϕ(v0, ..., vn), any 
n ∈ ω and any a0, ..., am  ∈ An, 
(*)                       An  ϕ[a0, ..., am]  ⇔  A  ϕ[a0, ..., am].   
The proof is routine for atomic formulas, and the induction steps for ¬ and ∧ are easy. Now 
suppose that ϕ is existential; without loss of generality we may assume that ϕ is ∃vnψ, and that ψ 
satisfies (*). 
 If a0, ..., am-1 ∈ An and  An  ϕ[a0, ..., am–1], then for some a ∈ An we have                        
An  ψ[a0, ..., am–1, a]. So by (*) A  ψ[a0, ..., am-1, a]  whence A  ϕ[a0, ..., am–1]. 
 Conversely, suppose that A  ϕ[a0, ..., am–1]. Then A  ψ[a0, ..., am-1, a]  for some      a ∈ 
A. For some k, a ∈ Ak. Let l be the larger of k and n. Then a0, ..., am-1, a ∈ Al and so, by (*), Al  

ψ[a0, ..., am-1, a], whence Al  ϕ[a0, ..., am–1]. But n ≤ l  and so, since An  Al, we conclude that 
An  ϕ[a0, ..., am–1].   
 
 We use this in the proof of the 
 
 Joint Consistency Theorem. Let Σ and Π be theories in L, and let E be the language 
whose extralogical symbols are those common to LΣ and LΠ. Then the following are equivalent: 
 (i) Σ ∪ Π is consistent.; 
 (ii) for no E –sentence σ do we have Σ  σ and Π  ¬σ; 
 (iii) for some complete (consistent) theory ∆ in E, both Σ ∪ ∆ and Π ∪ ∆ are consistent; 
 (iv) there is an E -structure which can be expanded both to a model of Σ and to a model of 
Π. 
 Proof. (i) ⇒ (ii) is obvious.  
 (ii) ⇒ (iii). Assume (ii) and let Σ* = {σ  ∈ Sent(E): Σ  σ}. It follows easily from (ii) 
that Π ∪ Σ* is consistent and so has a model A. Let ∆ be the theory of the E -structure A|E. 
Since A  Π ∪ ∆, Π ∪ ∆ is consistent. If Σ ∪ ∆ is inconsistent, there is σ ∈ ∆ such that Σ  ¬σ, 
i.e. ¬σ ∈ Σ*. But then A  ¬σ, whence ¬σ ∈ ∆, a contradiction. Hence Σ ∪ ∆ is consistent.  
 (iii) ⇒ (iv). Assume (iii), and let A0 and B0 be models of Σ ∪ ∆ and Π ∪ ∆, respectively. 
Then since A0|E and B0|E are both models of the complete theory ∆, they are elementarily 
equivalent. It follows easily from this that the union Γ of the complete diagram Γ* of A0|E  with 
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the complete diagram Γ** of B0 is consistent. (Observe that each finite subset of Γ* is 
interpretable in B0.) Let B* be a model of Γ and let B1 be its L -reduction. Then since B* is a 
model of both Γ* and Γ** it follows from the diagram lemma that A0|E   B1|E  and B0  B1. 

Identifying B0 with its image in B1 makes the former an elementary substructure of the latter. 
Let f1 be an elementary embedding of A0|E  into B1|E . 
 Passing to the extended language

0AE , the diagram lemma  implies  that the structures  
(A0|E, A0) = (A0, A0)|

0AE  and (B1|E, f1[A0]) = (B1, f1[A0]) are elementarily equivalent. 
Repeating the above construction in the other direction, this time with the 

0AL -structures (A0, A0) 
and (B1, f1[A0]) in place of A0, B0, respectively, we obtain an elementary extension A1 of A0 and 
an elementary embedding g1 of (B1, f1[A0])|

0AE into (A1, A0)|
0AE  Then g  f1 is the identity on A0, 

so that f1 ⊆ g1
-1.  

 Iterating this construction yields a diagram 
 

  A0        A1        A2      ... 
                                                                      f1      g1           f2    g2 

  B0        B1       B2      ... 
 
such that, for each m, fm is an elementary embedding of Am–1|E  into Bm|E , gm is an elementary 
embedding of Bm|E into Am|E , and fm ⊆ gm

-1 ⊆ fm+1. Let A and B be the unions of the 
elementary chains A0  A1  ... and B0  B1  ... respectively. Then, by the elementary chain 
theorem, A is a model of Σ and B is a model of Π. Moreover, m

m

f
∈ϖ
∪  is an isomorphism of A|E 

and B|E  (since, by construction, it has inverse m
m

g
∈ϖ
∪ . It follows that B is isomorphic to a 

structure B′ such that A|E  = B′|E . Accordingly the E -structure A|E  can be expanded both to 

the model A of Σ and to the model B′ of Π. 
 (iv) ⇒ (i). Let A be an E-structure expandable both to a model B of Σ and to a model C 
of Π. Define the L -structure D as follows: the domain of D is that of A; if s is any extralogical 
symbol of L , then 
    sA  if  s ∈ E 
              sD=      sB   if  s ∈ L  – LΠ  
                                    sC   if  s ∈ LΠ 
Clearly D|LΣ = B, so D  Σ. Also, D|LΠ = C, so D  Π. Therefore D is a model of Σ ∪ Π, so 
the latter is consistent.    
 
 From this we deduce 
 
 Craig's Interpolation Theorem. Suppose σ, τ are L -sentences and  σ → τ. Then there 
is a sentence θ such that  σ → θ,   θ → τ, and every extralogical symbol occurring in θ occurs 
in both σ and τ.  
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 Proof. Let E be the language whose extralogical symbols are exactly those occurring in 
both σ and τ. If  σ → τ, then {σ, ¬τ} is inconsistent, so by (ii) of the joint consistency theorem 
there is an E –sentence θ such that σ  θ and ¬τ  ¬θ. The result now follows immediately.   
 
 Suppose that Σ ⊆ Sent(L ) contains the n-ary predicate symbol P. P is said to be explicitly 
definable from Σ if there is an L -formula ϕ(x1, ..., xn), in which P does not occur, such that   

Σ  ∀x1...∀xn[Px1...xn ↔ ϕ]. 
Now let P* be an n-ary predicate symbol not belonging to L , and let Σ* be the set of sentences 
obtained from Σ by replacing all occurrences of P by P*. Then P is said to be implicitly definable 
from Σ if 

Σ ∪ Σ*  ∀x1...∀xn[Px1...xn ↔ P*x1...xn]. 
Semantically speaking, this means that any pair of L -structures which are both models of Σ, 
have the same domain and agree on the interpretation of all extralogical symbols apart possibly 
from P, must also agree on the interpretation of P. 
 Clearly, if P is explicitly definable from Σ, it is implicitly definable from Σ. Conversely, 
we have  
 
 Beth's Definability Theorem. If P is implicitly definable from Σ, it is explicitly 
definable from Σ. 
 Proof. Suppose P is implicitly definable from Σ. Without loss of generality we may 
assume Σ to be finite, and we can then replace Σ by the conjunction of all its sentences. So we 
may assume that Σ consists of a single sentence σ. Let σ* be the result of replacing each 
occurrence of P in σ by P*. Then we have  
(1)                                {σ, σ*}  ∀x1...∀xn[Px1...xn → P*x1...xn]. 
 Now add new constant symbols c1,...,cn to L. Then, by (1),  

{σ, σ*}  Pc1...cn → P*c1...cn. 
So 

 σ ∧ Pc1...cn → (σ* → P*c1...cn). 
By Craig's theorem, there is a sentence θ whose extralogical symbols are common to both          
σ ∧ Pc1...cn and σ* → P*c1...cn, hence, in particular, not containing P or P* such that                  

 σ ∧ Pc1...cn → θ  and  θ → (σ* → P*c1...cn). 
 Therefore 
(2)                                                 σ   Pc1...cn → θ   
and  
(3)                                                 σ*   θ → P*c1...cn. 
If we replace P* by P in (3), σ* becomes σ and θ is unchanged. So 
(4)                                           σ  θ → Pc1...cn. 
(2) and (4) now give 
(5)                                        Σ  θ ↔ Pc1...cn. 
But θ is ϕ(c1,...cn) for some L –formula ϕ(x1, ..., xn) in which P does not occur. Since c1, ..., cn 
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are not in L , the result of replacing ci by xi (i = 1, ..., n) in the proof from Σ of  θ ↔ Pc1...cn 
yields a proof from Σ of ϕ ↔ Px1...xn. Applying the generalization lemma gives                           

Σ  ∀x1…∀xn[ϕ ↔ Px1...xn] 
 and so P is explicitly definable from Σ.  


