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The subdirect representation theorem

1. Direct products

Here is an attempt at a decomposition theorem using direct products:

Define an algebra A to be directly indecomposable if |A| > 1 and there are
no B, C with A ≡ B × C except with |B| = 1 or |C| = 1.

Here is the statement you might hope for: “Every algebra is the direct prod-
uct of directly indecomposable algebras (possibly infinitely many).” This is
certainly true for finite algebras, but is false in general. In fact, let A be
a vector space of countable dimension over the two-element field; observe
that any directly indecomposable vector space has dimension 1 by a basis
argument, but A has the wrong cardinality to be a direct product of either
finitely many or infinitely many two-element vector spaces1.

A modified concept, that of “subdirect products of subdirectly irreducible
algebras”, works much better.

Figure 1: A subdirect product, heuristically

2. Subdirect products

2.1 Definition. A subdirect product of B and C is a subalgebra A0 of B×C such
that the two coordinate projection maps carry A0 onto B and C respectively.
In other words, every element of B is used as a coordinate in A0 and so is
every element of C. A heuristic picture is given in Figure ??.

1Such a basis argument requires the Axiom of Choice, but there are similar examples
that do not. See Problem E-?? and Problem E-??.
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More generally, the same definition applies for a subalgebra of a direct prod-
uct over any index set: A ⊆ Πγ∈ΓBγ , projection onto each factor.

You can see one virtue of subdirect products: A is obtained from B and C,
but also you can get from A back to B and C by taking homomorphic images.

Often we say that A “is” a subdirect product of some other algebras when
we really mean that A is isomorphic to such a subdirect product.

3. Subdirect representations

Usually we want to use subdirect products “up to isomorphism”.

3.1 Definition. A subdirect representation of an algebra A is an embedding
A ↪→ ∏

γ∈Γ Bγ whose image is a subdirect product.

For example, a three-element chain (as a distributive lattice) has a subdirect
representation as a subdirect product of two two-element chains, as in Figure
??.

Figure 2: Subdirect representation of a 3-element chain

4. Subdirectly irreducible algebras

A subdirect product is said to be trivial if one of the coordinate projections
is one-to-one, so that it is an isomorphism from A0 onto one of the factors.

Similarly, a subdirect representation of A is said to be trivial if the image is a
trivial subdirect product of the factors. In that case, the factor is isomorphic
to A.

4.1 Definition. An algebra A is subdirectly irreducible (SI) if |A| > 1 and all
subdirect representations of A are trivial.

4.2 Theorem (Subdirect Representation Theorem) Every algebra is isomorphic
to a subdirect product of subdirectly irreducible algebras.

For example, every distributive lattice is a subdirect product of two-element
chains. (See Application ?? below.)
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5. The internal point of view

5.1 Observation. If A has two congruence relations θ1 and θ2 with θ1∩θ2 = 0,
then A has a subdirect representation A ↪→ A/θ1 ×A/θ2.

The reason is that the two natural homomorphisms of A onto A/θi (i = 1, 2)
give a homomorphism of A into the direct product with kernel θ1∩θ2 = 0, so
the homomorphism is an embedding. Composing with the projections gives
back the natural homomorphisms, so this is a subdirect product.

More generally, if A has congruence relations θγ , γ ∈ Γ with ∩γθγ = 0, then
A/ ∩γ∈Γ θγ ↪→ ∏

γ∈Γ A/θγ .

5.2 Observation. Up to isomorphism, any subdirect representation of A is
the same as an appropriate subdirect representation of the form given in
Observation ??.

The reason: Given a subdirect representation φ : A ↪→ ∏
γ∈Γ Bγ , let A′ =

φ(A), the image of φ. Then for each γ ∈ Γ, the coordinate projection πγ

takes A′ onto Bγ with some kernel θγ . The intersection of these kernels is the
0 congruence relation, since in any product two elements are equal when their
projections on all factors are the same. Moreover, by the first isomorphism
theorem, Bγ

∼= A′/θγ . The mappings

A ↪→ ∏
γ∈Γ Bγ

πγ→ Bγ

become

A′ ↪→ ∏
γ∈Γ A′/θγ

πγ→ A′/θγ, up to isomorphism.

5.3 Proposition. The following conditions are equivalent:

(1) A is subdirectly irreducible;

(2) ∩γ∈Γθγ = 0 implies θγ = 0 for some γ ∈ Γ;

(3) 0 ∈ Con(A) is completely meet irreducible;

(4) Con(A) has a least element > 0 (the monolith of A).

This gives an internal description of subdirect irreducibility.

6. The proof of the subdirect representation theorem

6.1 Lemma. Given a 6= b in A, there exists a congruence relation θ maximal
with respect to the property a 6≡ b (θ).

Proof. Let S = {θ ∈ Con(A) : 〈a, b〉 6∈ θ}. Then S is not empty, since 0 ∈ S.
Suppose C is a chain of members of S, where each relation is regarded as a
subset of A×A. Then

⋃
θ∈C θ ∈ S, since all aspects of being in S (specifically,

being an equivalence relation, being compatible with the operations of A, and
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not containing 〈a, b〉) can be checked using finitely many elements at a time
and so can be checked inside just one member of C at a time. Then by Zorn’s
Lemma, S has a maximal member. �

Let θab be one such congruence relation maximal with respect to not iden-
tifying a and b. Here θab is in contrast to con(a, b), the smallest congruence
relation that identifies a and b. In fact, θab can be described as a θ maximal
with respect to the property θ 6≥ con(a, b).

6.2 Observation. For a 6= b in A, in Con(A) there is a least element > θab,
namely θab ∨ con(a, b).

6.3 Observation. A/θab is subdirectly irreducible. Indeed, by Observation 1
and the Correspondence Theorem, Con(A/θab) has a least element > 0 and
so is subdirectly irreducible.

6.4 Observation.
⋂

a6=b θab = 0 in Con(A), where a, b range over A.

Proof of the Representation Theorem. By Observation ?? we have A ↪→∏
a6=b A/θab, and by Observation ?? each A/θab is subdirectly irreducible.

7. An application

7.1 Application. It is easy to show that the only subdirectly irreducible
distributive lattice is 2. Consequences:

(i) Every distributive lattice is a subdirect product of copies of 2.

(ii) The variety of distributive lattices is the same as Var(2).

(iii) Every distributive lattice L can be represented as a lattice of subsets of
some set (perhaps not all subsets), with operations ∪,∩.

8. Problems

Problem E-1. Prove Proposition ??.

Problem E-2. Represent the 1-unary algebra 〈A; f〉 explicitly as a subdirect

product of SI algebras, where A has diagram

Problem E-3. Let L be a distributive lattice and let a ∈ L. Define φ∧a :
L → L by φ∧a(x) = x ∧ a and likewise φ∨a by φ∨a(x) = x ∨ a. As you know,
these are lattice homomorphisms.
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(a) Show that ker φ∧a ∩ ker φ∨a = 0. (Make a one-line proof based on the
absorption law for lattices.)

(b) What embedding does (a) give?

(c) Show that the only SI distributive lattice is 2. (Thus this fact is very
elementary. The subdirection representation theorem then says that every
distributive lattice is a subdirect product of copies of 2, a deeper fact that
depends on the Axiom of Choice.)

Problem E-4. Say how to represent the group FQ8(2) as a subdirect product
of subdirectly irreducible groups, using as few factors as possible, by referring
to the diagram of its normal subgroups.

Problem E-5. (a) Which finite abelian groups are SI? (Use any facts you
know about finite abelian groups and their subgroup diagrams. An SI abelian
group has a smallest proper subgroup.)

(b) Find all SI abelian groups, finite and infinite. (They can be described
as subgroups of the circle group—the multiplicative group of all complex
numbers of absolute value 1.)

Problem E-6. (a) Show that an SI 1-unary algebra has no “fork”, i.e.,
distinct elements a, b, c with c = f(a) = f(b).

(Method: Let 〈a〉 denote the subalgebra generated by a, and similarly for
b. For a subalgebra S of A let θS mean the congruence relation obtained by
collapsing S to a point. Show that θ〈a〉∩θ〈b〉 ∩ con(a, b) = 0 if a, b give a fork.
You may use the fact that con(a, b) is obtained by first identifying f i(a) with
f i(b) for each i and then seeing what equivalence relation that generates.)

(b) Using (a), try to find all finite SI 1-unary algebras whose diagram is
connected.

(A useful observation: In an n-cycle, you get exactly the same congruences as
for the abelian group Zn, so the congruence lattice of an n-cycle is isomorphic
to Subgroup(Zn).)

Problem E-7. Show that the finite SI 1-unary algebras are

(i) The algebra consisting of two fixed points,

(ii) the “cyclic” 1-unary algebras Cpk of prime power order (with k ≥ 1),

(iii) the algebras Dk, f where Dk = {0, . . . , k} and f(0) = 0, f(i) = i− 1 for
i > 0.
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(iv) the two-component algebras where one component is a fixed point and
the other is of kind (ii).

(In (ii), it is handy to make this observation, which you may justify very
briefly: The congruence relations on an n-cycle regarded as a 1-unary algebra
are exactly the same as those on the cycle regarded as the group or ring Zn.
In all parts, you may justify briefly why these are SI; it is most important to
explain why any finite SI must be of one of these forms.)

Problem E-8. Consider the ring A = Z2 ⊕ Z2 ⊕ . . ., the “direct sum”
of countably many copies of the ring Z2, or in other words, the subring of
Z2×Z2× . . . consisting of the sequences that have only finitely many nonzero
entries.

(a) Index the direct sum using ω = {0, 1, 2 . . .}. Show that the ideals of A
correspond to subsets of ω.

(b) Show that if A ≡ B×C, then at least one of B and C is isomorphic to A.
(Method: A would be the internal direct sum of corresponding ideals I, J ,
so that I ∩ J = (0) and I + J = A.)

(c) Show that A is not the direct product of directly indecomposable algebras.
(Use a cardinality argument.)

Problem E-9. (a) Show that direct-product decompositions of a commuta-
tive ring with 1 into two factors correspond to idempotents (elements e with
e2 = e).

(b) Let R be the ring of all ω-indexed sequences of zeros and ones that
are “eventually constant”, with sequences added and multiplied using the
operations of Z2 as a ring. Find all direct-product decompositions of R.

(c) In (b), does R have a direct decomposition into directly indecomposable
factors? (Why or why not?)

(d) What about the Boolean algebra Powfin(X) for countably infinite X?

Problem E-10. Suppose that A is a finite algebra. An interesting question
is whether Var(A) contains finite SI algebras larger than A, or even contains
an infinite SI algebra. If A is a lattice, for example, there are no larger SI’s;
if A is a nonabelian p-group, the answer is that there are arbitrarily large
finite SI’s and also infinite ones. An easy case:

(a) Show that Shallon’s algebra is SI, and in fact is simple. (Method: Think
about con(r, s) for different possible distinct elements r, s.)

More generally, Let An be the graph algebra based on a graph like Shallon’s
but with n nodes, so that An has n+1 elements and Shallon’s algebra is A3.
Show that An is SI.
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(b) Show that An ∈ Var(A3). (Suggestion: Write A3 = {a1, a2, a3, 0}. Inside
An

3 , let B be the subalgebra generated by elements whose entries are a1’s
(zero or more), then one a2, and then the rest a3’s. Let θ on B be the
equivalence relation obtained by identifying all elements of B that have an
entry of 0 and letting other blocks be singletons. Show that θ is a congruence
relation on B. Then B/θ ∼= . . ..)

(c) Can you find an infinite SI in Var(A3)?
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