
Math 222A W03 A.

Algebras

We use the term “algebra” to mean an algebraic system—a set with
operations.

1. Examples

(1) A group 〈G; ·, −1, e〉.

(2) A ring 〈R; +, ·,−, 0〉; or a ring with 1 〈R; +, ·,−, 0, 1〉.

(3) A Boolean algebra 〈B;∨,∧, 0, 1,′ 〉.

(4) A lattice 〈L;∨,∧〉; the lattice 〈R; max, min〉.

(5) A vector space 〈V ; +,−, 0, mult by r for each r ∈ R〉 (if V is over the
reals).

(6) Perkins’ semigroup 〈S; ·〉, with elements[
0 0
0 0

]
,

[
1 0
0 1

]
,

[
1 0
0 0

]
,

[
0 0
0 1

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]
.

(7) The 1-unary algebra 〈A; f〉 with diagram

(8) The tournament 〈T ;∨,∧〉 with diagram

(9) The Heyting algebra 〈{0, a, 1};∨,∧,→, 0, 1〉.

(10) The Murskii 1-binary algebra 〈M ; ·〉 with table

0 a b
0 0 0 0
a 0 0 a
b 0 b b

(11) Tarski’s high-school-algebra algebra 〈ω; +, ·, ↑, 1〉.

(12) Shallon’s graph algebra 〈G ∪ {0}; ·〉, G =
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(13) The relation algebra 〈Pow(S × S);∪,∩, ∅, 1,′ , ◦, ∪, ∆〉 (S any set).

(14) The implication algebra 〈2;→〉.

(15) The lattice-ordered group 〈Z;∧,∨, +,−, 0〉.

(16) The set algebra 〈S; 〉 (set S with no operations).

(17) The 1-binary algebra 〈{0, 1, 2}; ·〉 with table

0 1 2
0 0 2 1
1 1 0 2
2 2 1 0

2. Some sets of laws

[1] Defining laws for groups: A group is an algebra . . . satisfying the laws . . .

[2] Defining laws for lattices: A lattice is an algebra . . . satisfying the laws
. . .

[3] Defining laws for relation algebras: A relation algebra is an algebra
〈R;∨,∧, 0, 1,′ , ◦, ∪, ∆〉 such that

(i) 〈R;∨,∧, 0, 1〉 is a Boolean algebra;

(ii) ◦ is associative;

(iii) ∆ ◦ x = x ◦ ∆ = x;

(iv) ∪ is a Boolean automorphism, x ∪ ∪ = x, and (x ◦ y) ∪ = y ∪ ◦ x ∪;

(v) (x ◦ y) ∧ z ≤ x ◦ (y ∧ (x ∪ ◦ z)).

[4] Defining laws for Heyting algebras: A Heyting algebra is an algebra
〈H ;∨,∧,→, 0〉 such that

(i) 〈H ;∨,∧, 0〉 is a lattice with 0;

(ii) x ∧ (x → y) = x ∧ y;

(iii) x ∧ (y → z) = x ∧ ((x ∧ y) → (x ∧ z));

(iv) z ∧ ((x ∧ y) → x) = z.

[5] Defining laws for implication algebras: An implication algebra is an alge-
bra 〈A;→〉 such that

(i) (x → y) → x = x;
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(ii) (x → y) → y = (y → x) → x;

(iii) x → (y → z) = y → (x → z).

[6] Tarski’s “high-school identity problem”: Do these laws imply all laws of
〈ω; x + y, xy, xy, 1〉? This was solved; the answer is negative.

x + y = y + x xy = yx x+(y+z) = (x+y)+z x(yz) = (xy)z
x(y + z) = xy + xz xy+z = xyxz (xy)z = xzyz (xy)z = x(yz)

x · 1 = x x1 = x 1x = 1

[7] Robbins’ Problem: Do these laws define Boolean algebras? The answer
is “yes”; the proof was found by computer in 1996.

(i) ∨ is commutative;

(ii) ∨ is associative;

(iii) ((x ∨ y)′ ∨ (x ∨ y′)′)′ = x.

Erratum: A different version of (iii) was quoted in Handout H; it was not
the one Robbins asked about.

3. Some definitions

3.1 A function f : An → A is an n-ary operation on A; n is its “arity.”

(For n = 0, 1, 2, 3 we say “nullary”, “unary”, “binary”, “ternary”.)

3.2 An algebra is a set A with a given family of operations fγ (γ ∈ Γ), called
the “basic operations” of A. Officially, the algebra is 〈A; fγ, γ ∈ Γ〉. Texts
often use a separate letter to distinguish the algebra from the set, but we’ll
follow the informal practice of group theory and use A for both.

3.3 The type of 〈A; fγ, γ ∈ Γ〉 is the function τ : Γ → ω given by τ(γ) = nγ ,
the arity of fγ. Two algebras of the same type are similar. In discussions
involving more than one algebra, we’ll normally assume that all the algebras
are similar. Usually Γ will be finite; if |Γ| = m, then it is simplest to choose
Γ = 0, . . . , m − 1 and write the nγ as a sequence.

For example, the type of a Boolean algebra 〈B;∨,∧, 0, 1,′ 〉 can be written
〈2, 2, 0, 0, 1〉.

3.4 The terms (formal expressions) in variable symbols x1, . . . , xn for type τ
are the strings of symbols obtained recursively from these conditions:

(a) Each xi is a term, and

(b) if t1, . . . , tnγ are terms, so is fγ(t1, . . . , tnγ ), where fγ and the commas and
parentheses are symbols and γ ∈ Γ.
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A term t in variable symbols x1, . . . , xn is often described by t(x1, . . . , xn). For
algebras with familiar notations we use those notations instead; for example,
a group term might be written as x1(x

−1
2 x3).

3.5 Evaluation: If t(x1, . . . , xn) is a term for type τ and A is an algebra of
type τ , and if a1, . . . , an ∈ A are given, t(x1, . . . , xn) can be regarded as a
recipe for calculating a value in A, called t(a1, . . . , an). Thus t induces a
function on An → A. The functions so induced are called the n-ary term
functions on A.

This is similar to the case of of polynomials over a commutative ring R,
where we distinguish between a formal polynomial f(X) and a polynomial
function. Indeed, if R is finite, there are only finitely many one-variable
polynomials functions on R, but R[X] is infinite.

3.6 A sentence (∀x1) . . . (∀xn)t(x1, . . . , xn) = u(x1, . . . , xn) is called a law or
identity in n variables. We often suppress ∀xi or even write t = u. Also, many
authors write t ≈ u, to distinguish this formal situation from actual equality
of two elements. If t(a1, . . . , an) = u(a1, . . . , an) for all a1, . . . , an ∈ A, then
t = u is satisfied by A (written A |= t = u), or holds in A, or that A is a
model of t = u.

3.7 A variety is a class of algebras definable by laws, i.e., the class of all
algebras that satisfy some particular set of laws. An equational theory is the
set of all laws satisfied by some one class of similar algebras.

Example of varieties are those of rings, of groups, of abelian groups, of
lattices, of distributive lattices, and of the other classes of algebras whose
defining laws are given in §??.

4. Problems

Problem A-1. For each of these algebras K, find (i) a 1-variable law of the
algebra that does not hold in all algebras of the same type, and (ii) (if you
can) a law in 2 or more variables that is not an obvious consequence of a
1-variable law of the algebra. No proofs are required.

(a) Perkins’ semigroup;

(b) Murskii’s 1-binary algebra;

(c) Shallon’s graph algebra [note: the operation is idempotent];

(d) the permutation group S3.

(e) the tournament (8).

(A tournament is a directed graph in which every two vertices are joined
by a single edge oriented one way or the other. It can be envisioned as a
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record of who won each match in a “round-robin” tournament, where each
player has played every other player once—the arrow points towards the
player who won. A tournament can be made into an algebra by letting x∨ y
be the winner and x ∧ y the loser of the game between x and y.)

Problem A-2. For the 1-unary algebra 〈A; f〉 of Example (7), find its equa-
tional theory (the set of all laws that hold). You’ll need to consider the
possibilities fn(x) = fm(y) and fn(x) = fm(x) (m ≥ n ≥ 0). Sketch your
reasoning.

Problem A-3. For the two-element group C2 = {e, a}, invent a procedure for
telling whether a given group law holds in C2. (For example, ((xy)z−1)−1 =
x−1(zy)?)

Problem A-4. For each of the algebras of examples (4)(for R), (6), (7), (8),
(10), (12), (15), (16), (17) in §??, comment on its subalgebras. If there are
just a couple, say what they are; if there are many, either describe them all
or describe a typical one. No proofs are required.

Problem A-5. Of the binary operations involved in the examples from §??,
list those that are not commutative.
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Math 222A W03 B.

Concepts for algebras

1. Definitions

• A term t or t(x1, . . . , xn) of type τ is a formal expression as a string of
symbols, defined recursively as follows, starting from variable symbols
x1, . . . , xn for τ :

(a) Each xi is a term, and

(b) if t1, . . . , tnγ are terms, so is fγ(t1, . . . , tnγ ), where fγ and the commas
and parentheses are symbols and γ ∈ Γ.

• For elements a1, . . . , an of an algebra A, the value t(a1, . . . , an) is the
element of A obtained by using t(x1, . . . , xn) as a recipe.

• A term relation t1(a1, . . . , an) = t2(a1, . . . , an) is an equation holding
for a particular n-tuple of elements of A.

• A law is a formal equation t1 = t2 or t1(x1, . . . , xn) = t2(x1, . . . , xn),
with (∀x1) . . . (∀xn) understood. The law t1 = t2 holds in A when all
n-tuples a1, . . . , an from A satisfy the term relation t1(a1, . . . , an) =
t2(a1, . . . , an).

We also say A satisfies t1 = t2, or A is a model of t1 = t2, or write
A |= t1 = t2.

• A variety of algebras of a given type is the class of all models of some
set of laws. Examples are the varieties of all groups, of all abelian
groups, of all lattices, and of all distributive lattices.

If A is an algebra we write Var(A) for the variety determined by all
laws holding in A, which is the smallest variety containing A.

• A subalgebra of an algebra A is a subset S ⊆ A that is closed under all
the basic operations of A.

• An algebra A is said to be generated by its elements g1, . . . , gn if the
smallest subalgebra of A that contains all the gi is A itself.

• A homomorphism φ : A → B between similar algebras is a map com-
patible with the basic operations of A and B.

• The direct product of a family of similar algebras, A1×A2 or more gen-
erally

∏
γ∈Γ Aγ , is the set-theoretic cartesian product with operations

computed coordinatewise.
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• A congruence relation on A is an equivalence relation θ on A that is
compatible with the basic operations of A.

• For a congruence relation θ on A, the blocks of θ form an algebra A/θ of
the same type, with a natural surjective homomorphism η : A → A/θ.

2. Some theorems

Familiar theorems from group theory all generalize, except that in groups we
focus on normal subgroups, but for algebras in general we focus on congruence
relations, a generalization of the coset decomposition of a normal subgroup.
The reason is that in groups the whole coset decomposition is determined
by knowing the block containing the identity element, while for algebras in
general no one block determines the rest.

• The subalgebra of A generated by g1, . . . , gn is the set of elements of
the form t(g1, . . . , gn) for some term t in n variables.

• The image of a homomorphism is a subalgebra.

• The set Con(A) of all congruence relations on A is a lattice, the con-
gruence lattice of A.

• If φ : A → B is a homomorphism, then the equivalence relation on A
induced by φ is a congruence relation, which we call ker φ, the kernel
of φ.

Observe that if θ ∈ Con(A) and η : A → A/θ is the natural surjection,
then ker η = θ.

• If φ : A → B is a surjective homomorphism, then B ∼= A/ ker φ (the
first isomorphism theorem).

Thus we have an “internal description” of all the homomorphic images
of A, up to isomorphism.

• If φ : A → B is a surjective homomorphism, then the congruence
relations on B correspond one-to-one to the congruence relations on A
that contain ker φ (the correspondence theorem).

• For a direct product P =
∏

γ∈Γ Aγ, for each γ ∈ Γ the coordinate
projection πγ : P → Aγ is a surjective homomorphism.

B 2



Math 222A W03 C.

Free algebras

1. The concept

Definition. Let V be a variety. The algebra F is free in V on g1, . . . , gn if

(i) F ∈ V ,

(ii) F is generated by g1, . . . , gn, and

(iii) the only term relations holding between g1, . . . , gn are those that hold
for all n-tuples in all algebras in V , i.e., are the laws holding in V .

(In examples generators may also be labeled g, h, k or a, b, c, etc.)

2. Examples

#1. In a diagram of the free distributive lattice FDL(3) (Figure ??), if the
generators are g1, g2, g3 you can see that

(g1 ∨ g2) ∧ (g1 ∨ g3) ∧ (g2 ∨ g3) = (g1 ∧ g2) ∨ (g1 ∧ g3) ∨ (g2 ∧ g3).

Once it is known that this lattice is indeed a free distributive lattice on three
generators, then it follows that this law holds in all distributive lattices:

(x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x2 ∨ x3) = (x1 ∧ x2) ∨ (x1 ∧ x3) ∨ (x2 ∧ x3)

#2. The free Boolean algebra FBA(3), corresponding to a Venn diagram
with three circles. It has 8 atoms and 256 elements.

#3. The free modular lattice FML(3) shown in Figure ??. It has 28 ele-
ments.

#4. The free lattice FL(3) shown in Figure ??. It is infinite. Dashed lines
represent infinitely many elements not shown.

#5. The free abelian group on n generators is Zn.

#6. The free group FG(2) consists of all finite expressions such as g2h−3gh2,
with appropriate equalities.

#7. Every vector space is free, with generators being any basis.

#8. For a given type τ , the term algebra Tτ (n) is the set of all n-ary terms
of type τ , with operations being formal compositions. The generators are
the variable symbols x1, . . . , xn.
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Figure 1: FDL(3)

3. The universal mapping property

Proposition. If F is free in V on g1, . . . , gn and A is any algebra in V and
a1, . . . , an ∈ A, then there is a unique homomorphism φ : F → A with
f(gi) = ai for each i. (In other words, you can aim the generators of F at
any elements of any algebra in V and find a homomorphism that takes the
generators there.)

Corollary 1. Up to isomorphism, there is only one free algebra in V on n
generators.

Let us call this algebra FV (n).

Corollary 2. Every n-generated algebra of V is a homomorphic image of
FV (n).

Corollary 3. If FV (n) is finite, then it is the largest n-generated algebra in
V , and the only one of its size (up to isomorphism).
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Figure 2: FML(3)
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M−

M+

M− = (a ∧ b) ∨ (a ∧ c) ∨ (b ∧ c)

M+ = (a ∨ b) ∧ (a ∨ c) ∧ (b ∨ c)

a b c

Figure 3: FL(3)
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4. Existence of free algebras in V = Var(A)

Let the free algebra on n generators in Var(A) be denoted FA(n).

Theorem (Birkhoff) FA(n) can be constructed as follows:

Let ∆ be the set of all functions δ : {1, . . . n} → A, and let P = A∆.

For i = 1, . . . , n let gi ∈ P be the element whose δ-th coordinate is δ(i).

Let F be the subalgebra of P generated by g1, . . . , gn.

Then F = FA(n).

Example. To generate F2(3) (= FDL(3)), where 2 is the 2-element lattice,
proceed as shown in Figure ??.

Row coordinate values using expression
1: 0 1 0 1 0 1 0 1 gen g
2: 0 0 1 1 0 0 1 1 gen h
3: 0 0 0 0 1 1 1 1 gen k
4: 0 0 0 1 0 0 0 1 2 ∧ 1 g ∧ h
5: 0 1 1 1 0 1 1 1 2 ∨ 1 g ∨ h
6: 0 0 0 0 0 1 0 1 3 ∧ 1 g ∧ k
7: 0 1 0 1 1 1 1 1 3 ∨ 1 g ∨ k
8: 0 0 0 0 0 0 1 1 3 ∧ 2 h ∧ k
9: 0 0 1 1 1 1 1 1 3 ∨ 2 h ∨ k

10: 0 0 0 0 0 0 0 1 4 ∧ 3 g ∧ h ∧ k
11: 0 0 0 1 1 1 1 1 4 ∨ 3 (g ∧ h) ∨ k
12: 0 0 0 0 0 1 1 1 5 ∧ 3 (g ∨ h) ∧ k
13: 0 1 1 1 1 1 1 1 5 ∨ 3 g ∨ h ∨ k
14: 0 0 1 1 0 1 1 1 6 ∨ 2 (g ∧ k) ∨ h
15: 0 0 0 1 0 1 0 1 6 ∨ 4 (g ∧ h) ∨ (g ∧ k)
16: 0 0 0 1 0 0 1 1 7 ∧ 2 (g ∨ k) ∧ h
17: 0 1 0 1 0 1 1 1 7 ∧ 5 (g ∨ h) ∧ (g ∨ k)
18: 0 0 0 1 0 1 1 1 11 ∧ 5 ((g ∧ h) ∨ k) ∧ (g ∨ h)

Figure 4: Construction of FDL(3) as F2(3)

As another example, Figure ?? shows the table obtain for A = Z3 under
subtraction and for n = 2:

The rows form the free algebra FA(2) inside A9. Of course, this example is
really a disguised version of an additive group.
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row 9-tuple from? expr
R1 0 1 2 0 1 2 0 1 2 gen g
R2 0 0 0 1 1 1 2 2 2 gen h
R3 0 0 0 0 0 0 0 0 0 R1–R1 g − g
R4 0 1 2 2 0 1 1 2 0 R1–R2 g − h
R5 0 2 1 1 0 2 2 1 0 R2–R1 h − g
R6 0 2 1 2 1 0 1 0 2 R1–R5 g − (h − g)
R7 0 2 1 0 2 1 0 2 1 R3–R1 (g − g) − g
R8 0 0 0 2 2 2 1 1 1 R3–R2 (g − g) − h
R9 0 1 2 1 2 0 2 0 1 R4–R2 (g − h) − h

Figure 5: Construction of FZ3
(2) under subtraction

5. Existence of free algebras in arbitrary varieties

Proposition. For every variety V and every n there exists a free algebra in V
with n generators. In other words, FV (n) always exists.

Outline of proof #1: The method of saving term relations in common.

This is a generalization of the “table” method (above) for a single algebra:
We start by considering all functions δ : {1, . . . , n} → A where A runs
through all algebras in V . Since V is too large to be a set, there are also too
many δ’s, so we restrict our attention to cases where the image of δ generates
A, and we remark that up to isomorphism there is only a set (rather than a
class) of ways in which an image of such a δ can sit inside the A it generates.
Let ∆ consist of one δ from each isomorphism class. Then inside A∆, for
i = 1, . . . n let gi be the element whose δ-th coordinate is δ(i), and let F be
the subalgebra of A∆ generated by g1, . . . , gn. Then we remark that F has
the Universal Mapping Property (UMP), so is free. I call this the method
of “saving relations in common”, because the only relations t = u between
the gi are those true in every factor, and the factors account for all ways
that n elements of an algebra in V can be related. As you see, there are
two elements in this proof: choosing the isomorphism types and taking the
subalgebra of a product.

Outline of proof #2: The method of overshooting.

For T = Tτ (n) (the algebra of all terms in n variables), let FV (n) = T/θ0,
where θ0 = ∩{θ ∈ Con(T ) : T/θ ∈ V }. Here θ0 is the least congruence
relation θ on t such that T/θ ∈ V . One can show that FV (n) inherits the
UMP from T , which is free in the variety of all algebras of type τ . I call
this the “overshooting” method: Since T is free but much too big, you have
overshot, and you must trim T down to where it fits in V , by taking T modulo
a congruence relation.
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6. Infinite generating sets

Everything discussed above works for the case of infinite generating sets
gi, i ∈ α, where α represents any cardinal number. For example, we can
make FV (ℵ0). Even for infinitely many generators, though, every term t still
involves only finitely many of the variables.

7. Application to construction of varieties

For a class K of similar algebras, let S(K), P(K), and H(K) denote the
classes constructed from K by taking respectively subalgebras, products, and
homomorphic images of members of K.

Theorem (G. Birkhoff) A class V of similar algebras is a variety if and only
if V is closed under S, P, and H.

Corollary (Birkhoff-Tarski) For any class K of similar algebras, Var(K) (the
smallest variety containing K) is obtainable as Var(K) = HSP(K), meaning
H(S(P(K))).

8. The free 2-generated group in the quaternion group
variety (to be discussed in lecture)

Let F = FV (2) for V = Var(D8) = Var(Q8).

Laws determining V are x4 = e, x2y = yx2.

Let a, b be generators of F and let c = (ab)−1.

Every element of F has the form aibja2kb2`c2m, where 0 ≤ i, j, k, `, m ≤ 1.

F is the semidirect product of Z2×Z4 by Z4 via powers of σ(u, v) = (u+v, v).

See Figure ??.

9. Problems

(Some of these problems depend on additional material from lectures.)

Problem C-1. Describe (a) the free 1-unary algebra on n generators;

(b) FV (2), where V is the variety of 1-unary algebras with f 3(x) = f 5(x);

(c) the free 2-unary algebra on 1 generator;

(d) FS(3), where S = 〈2,∨〉, using the table method. (Here S is a semilattice—
a set with a single binary operation that is associative, commutative, and
idempotent. A semilattice can also be defined as a set with a partial order
such that any two elements have a least upper bound. Thus one way to
obtain a semilattice is to take a lattice and ignore the meet operation, as has
been done to make S.)
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〈e〉

〈b2c2〉 〈a2〉 〈a2c2〉 〈a2b2c2〉 〈b2〉 〈c2〉 〈a2b2〉

〈a2, b2c2〉 〈a2, b2〉 〈a2b2, a2c2〉 〈b2, a2c2〉 〈a2, c2〉 〈b2, c2〉 〈c2, a2b2〉

〈a, b2c2〉 〈ab2, b2c2〉 〈b, a2c2〉 〈a2, b2, c2〉 〈a2b, a2c2〉 〈a2c, a2b2〉 〈c, a2b2〉

〈a, b2, c2〉 〈a2, b, c2〉 〈a2, b2, c〉

〈F 〉

Figure 6: Con(F ), the lattice of normal subgroups of F

C 8



Problem C-2. Theorem. In a group G, every commutator a−1b−1ab is a
product of squares.

Proof #1. Let S = {products of squares}. Observe that S is a normal
subgroup. Moreover, G/S satisfies x2 = e and so is abelian. Then in G/S,

a−1b
−1

ab = e. This is the same as saying that in G, a−1b−1ab ∈ S.

This proof was indirect. A more direct proof would be to exhibit a law
x−1y−1xy = (. . . )2(. . . )2 . . . (. . . )2 true in all groups, where each (. . . ) con-
tains some expression in x, y.

(a) Before attempting to give such a proof, explain why there must exist
a direct proof of this form.

(b) Somehow or other, find the direct proof.

Problem C-3. For Murskii’s algebra M , suppose you want to compute
FM(2), using the table method. (a) Show what generating rows you would
use. (b) Compute new rows in some reasonable order, labeling each row with
the expression in the generators that produced it, until you generate a row
that is already there. What law have you found? (c) If your law was in one
variable, continue further until you get a law involving two variables. (d)
Actually, FM(2) has 11 elements. How many multiplications of rows would
be involved in computing the whole free algebra and verifying that you are
done?

Problem C-4. Two proofs of the existence of the free algebra FV (n) are
described in §6 above. They sound very different. Nevertheless, they are
essentially the same. The problem: Explain why, by analyzing how the two
elements of the first one are really present in the second.

Problem C-5. (a) Suppose that an algebra F has a given set of generators
g1, . . . , gn. Show that if F has the universal mapping property for maps
into itself, then F is free in some variety V . (Thus being free is in effect an
absolute property of an algebra, without having to name a variety containing
it.)

(b) An achievement of recent years was the solution of the restricted Burnside
problem: For any k and n, there is a largest finite group with n generators
that obeys xk = 1. (There could also be infinite groups fitting this descrip-
tion; it’s just that there is a largest finite one.) Is this largest finite group
necessarily free? (Discuss.)

Problem C-6. Let V be the variety of idempotent semigroups: 1-binary
algebras whose operation is associative and obeys the law x2 = x.

C 9



By experimenting with expressions, make a conjecture as to whether FV (3)
is finite or infinite. Explain briefly how you arrived at your answer.

Problem C-7. The term algebra Tτ (n) is described in §3 above; in §6 it is
used in the second proof of the existence of free algebras in a variety.

For the variety V of 1-unary algebras obeying the law f 3(x) = f 5(x) and for
n = 1, explicitly describe Tτ (1) and all θ ∈ Con(Tτ (1)) giving a quotient in
V . (Here τ = 〈1〉.)

Problem C-8. Consider the “constructions” H,S,P on classes of algebras.

(a) Say which containment relations between pairs of constructions must
hold, e.g., SH(K) ⊆ HS(K). (All the valid relations have easy proofs, but it
is not required to write them down. Interpret H,S,P up to isomorphism.)

(b) For one such potential relation that does not hold, find a counterexample,
with brief proof.

Problem C-9. Let F = FQ8(2). Refer to Figure ??. (a) Find a normal
subgroup N of F such that F/N ∼= Z2 ×Z4. (b) Find a normal subgroup N
such that F/N ∼= D8. Find a normal subgroup N such that F/N ∼= Q8. Find
the commutator subgroup F ′ of F . (Determine the order of each subgroup.
Recall the Correspondence Theorem, which says that the subgroups of F
that contain N form the same diagram as the subgroups of F/N ; the same
is true if just normal subgroups are considered. From the previous problem
you know that for abelian 2-groups (groups whose order is a power of 2),
the group can be identified from the subgroup diagram. Recall that F ′ is
contained in every N for which F/N is abelian.)

Problem C-10. Figure ?? shows homomorphisms of FML(3) onto FDL(3)
and M3, determined by mapping generators to generators.

On a copy of Figure ??, indicate ker α and ker β. (You will need to decide
which elements go to which, but you need not write this information down.
A congruence relation on a finite lattice is best diagrammed simply by dark-
ening the coverings that are “collapsed”, i.e., coverings between elements in
the same block. Use different coloring or markings for the two congruence
relations involved.)

Note. If there are surjections A → B and A → C whose kernels have
intersection 0, then A is embeddable in B×C, as we’ll discuss in class. Since
this is the case in Figure ??, you have shown the interesting fact that FML(3)
is embeddable in the direct product of FDL(3) and a single copy of M3.
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α

β

Figure 7: Two homomorphisms
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Problem C-11. For the free algebra from the table shown in Figure ??:

(a) Whenever we subtract two rows we get a relation between generators,
which is then a law, usually nontrivial. What relation between generators,
and so what law, comes from the computation R8-R9 = 0 2 1 1 0 2 2 1 0 =
R5, where R8 means row 8, etc.?

(b) Suppose we want to use the universal mapping property to map F to A
with g 7→ 2, h 7→ 1. Which column of the table gives the projection that
achieves this, and what is the homomorphism on F ?
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Congruence relations

1. The concept

Let’s start with a familiar case: congruence mod n on the ring Z of integers.
Just to be specific, let’s use n = 6. This congruence is an equivalence relation
that is compatible with the ring operations, in the following sense:

a ≡ b
a′ ≡ b′

⇒ a + a′ ≡ b + b′

a ≡ b
a′ ≡ b′

⇒ aa′ ≡ bb′

a ≡ b
⇒ −a ≡ −b

and of course 0 ≡ 0.

The same definition works for algebraic systems in general:

1.1 Definition. A congruence relation on an algebra A = 〈A; f1, . . . , fm〉 is an
equivalence relation ≡ that is compatible with the operations, in the sense
that for each basis operation fi, if fi is ni-ary we have

a1 ≡ b1, . . . , ani
≡ bni

⇒ fi(a1, . . . , ani
) ≡ fi(b1, . . . , bni

).

Terminology. Often we name a congruence relation θ, say, and write either
aθb or a ≡ b (θ). Also, we may say “congruence” instead of “congruence
relation”. Just as for equivalence relations in general, we can speak of the
blocks of a congruence relation (or “classes”, but that usage is somewhat old).
For a ∈ A, the block of a is often called ā.

2. Examples

(1) In Z, a congruence relation is the same as congruence mod n for some
n. The case n = 0 is allowed, giving the equality relation.

(2) In a group, a congruence relation is the same thing as the coset decom-
position for a normal subgroup.

(3) In a commutative ring, a congruence relation is the same thing as the
coset decomposition for an ideal.

(4) In a finite chain C, a congruence relation is any decomposition into
intervals, as in Figure ??(a).

(5) Lattices in general can have congruence relations, as in Figure ??(b).
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(6) For a homomorphism ϕ : A → B, the kernel of ϕ is a congruence
relation.

Here the kernel of a homomorphism means the equivalence relation that
ϕ induces on its domain: a ≡ a′ ⇔ ϕ(a) = ϕ(a′). This is a contrast
with the specific cases of groups and rings, where the kernel is a normal
subgroup. However, Example (??) shows that the two definitions are
equivalent.

(a) (b)

Figure 1: Congruence relations on lattices

3. The congruence lattice of an algebra

It is easy to see that an intersection of congruence relations on A is again a
congruence relation. Therefore the congruence relations on A form a com-
plete lattice, Con(A). In fact, Con(A) is simply a sublattice of Equiv(A).
Some examples:

(a) For a group G, the lattice Con(G) is essentially the same thing as the
lattice of normal subgroups, Normal(G).

(b) For a commutative ring R, the lattice Con(R) is essentially the same
thing as the lattice of ideals of R.

(c) The congruence lattice of a four-element chain is the Boolean lattice 23.

4. Factor algebras

For a group G with normal subgroup H , we can form G/H. For a commu-
tative ring R with ideal I, we can form R/I. In general:

4.1 Definition. For an algebra A = 〈A; f1, . . . , fm〉 and θ ∈ Con(A), let A/θ
be the algebra whose elements are the blocks of θ and whose operations are
defined as follows: For each basic operation fi on A, define a corresponding
operation fi on A/θ by

fi(ā1, . . . , āni
) = f i(a1, . . . , ani

).
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This operation is well defined, since by the definition of a congruence relation
the result does not depend on which representatives are chosen for the blocks.
Just as for groups or rings, A/θ is called a “factor algebra” or “quotient
algebra” obtained by “factoring out θ”. Don’t confuse this with the concept
of a “field of quotients”.

4.2 Definition. The natural map of A onto A/θ is π : A → A/θ given by
π(a) = ā.

4.3 Proposition. The natural map of A onto A/θ is a surjective homomor-
phism with kernel θ.

This natural map can also be called the natural homomorphism or natural
surjection. See Figure ??.

A/θ
θ on A

π

Figure 2: The natural homomorphism

4.4 Corollary. Every congruence relation is the kernel of some homomor-
phism.

4.5 Note. If θ1 ⊆ θ2, then there is a natural surjection A/θ1 → A/θ2. To
remember the direction of this map, think of A/θ1 as bigger than A/θ2, since
in A/θ1, less has been factored out.

5. The first isomorphism theorem

For groups, recall the “first isomorphism theorem”: If ϕ : G → H , then
im ϕ ∼= G/kerϕ. Or equivalently, if ϕ : G → H is a surjection with kernel
K, then H ∼= G/K.

This theorem is useful in examples. It also shows that the homomorphic im-
ages of a group G are determined up to isomorphism by information internal
to G. In particular, if G is finite then up to isomorphism G has only finitely
many homomorphic images.

For algebras in general, the situation is the same:

5.1 Theorem (first isomorphism theorem). Let ϕ : A → B be a homo-
morphism. Then im ϕ ∼= A/ker ϕ. Equivalently, if ϕ : A → B is a surjective
homomorphism with kernel θ, then B ∼= A/θ.
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5.2 Corollary. The possible homomorphic images of A are determined up to
isomorphism by the internal structure of A.

6. The correspondence theorem

One version for groups: If ϕ : G → H is a surjective homomorphism, then
there is a one-to-one correspondence between the normal subgroups of H and
the normal subgroups of G that contain ker ϕ. In fact, the subgroup of G
corresponding to a normal subgroup K of H is simply ϕ−1(K).

The generalization to algebras is this:

6.1 Theorem (correspondence theorem). If ϕ : A → B is a surjective ho-
momorphism, then there is a one-to-one correspondence between congruence
relations on B and the congruence relations on A that contain ker ϕ.

6.2 Note. Using the first isomorphism theorem, equivalent versions can be
given for the natural maps G → G/N (where N / G) or A → A/θ (where
θ ∈ Con(A)).

6.3 Note. For groups, one can also say that there is a one-to-one correspon-
dence between all subgroups of H , normal or not, and those subgroups of G
that contain ker ϕ. For algebras in general, this becomes a statement about
subalgebras rather than about congruence relations.

7. Intersections of congruence relations

Suppose θ1, θ2 ∈ Con(A). Let π1 : A → A/θ1 and π2 : A → A/θ2 be
the natural homomorphisms. Combining these, we get a a homomorphism
π1 × π2 : A → A/θ1 ×A/θ2 (not necessarily onto). What is its kernel? By
considering when a, a′ ∈ A have equal images, we see that the kernel is θ1∩θ2.
From this and the first isomorphism theorem we get this fact:

7.1 Theorem (subdirect embedding theorem). For an algebra A and
θ1, θ2 ∈ Con(A), there is a natural embedding of A/(θ1∩θ2) ↪→ A/θ1×A/θ2.

(“Subdirect” means that the image of the embedding inside the product is
large enough to map onto each factor. This will be important later.)

7.2 Corollary. If A has congruence relations θ1, θ2 with θ1 ∩ θ2 = 0 (the
equality relation), then A ↪→ A/θ1 ×A/θ2 (an embedding).

8. Congruence relations on lattices

8.1 Principles For θ ∈ Con(A):
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(1) If a ≡ b(mod θ), then a ∧ b ≡ a ∨ b(mod θ).

(2) If a ≤ t ≤ b and a ≡ b(mod θ), then t ≡ a ≡ b (mod θ).

(3) If a ∧ b ≡ a(mod θ), then b ≡ a ∨ b(mod θ), and dually.

(4) If a ≡ b(mod θ) and b ≡ c(mod θ), then a ≡ c(mod θ).

8.2 Theorems

(A) A nonempty relation θ on a lattice is a congruence relation if and only
if θ satisfies (1) through (4).

(B) For elements a0, b0 of a lattice L, con(a0, b0), the smallest congruence
relation on L that identifies a0 and b0, can be constructed by applying (1)
(unless a0 ≤ b0 already), then (2) and (3) repeatedly, and then (4) repeatedly.
This is the principal congruence relation con(a, b) (lower-case c).

For examples to try, see Figure ??. Congruence relations can be indicated
by darkening each covering between two elements in the same block.

(i)

b0

a0

(ii)

b0

a0

(iii)

a0

b0

a0

b0

a0

b0

a0

b0

a0 = b0

a0

b0

(iv)

Figure 3: Some lattices for which to find congruence lattices

9. Problems

Problem D-1. Verify that any congruence relation on a group is simply the
coset decomposition determined by some normal subgroup.
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Problem D-2. For general algebras, prove (a) the first isomorphism theorem
(Theorem ??); (b) the correspondence theorem (Theorem ??).

Problem D-3. (a) Any function f : X → Y on sets induces an equivalence
relation on its domain X, where x ∼ x′ means f(x) = f(x′). Show that for
groups G and H , if ϕ : G → H is a homomorphism then any single block
of the equivalence relation it induces determines all the blocks. (This is why
the “kernel” of ϕ is defined to be a single block, the one containing e.)

(b) Give an example of two algebras and two homomorphisms ϕ, ϕ′ between
them such that ϕ and ϕ′ give different equivalence relations that do have
at least one block in common. (This is why the “kernel” of ϕ is defined to
be the whole equivalence relation rather than a single block, for algebras in
general.)

Problem D-4. Explain how the congruence lattice of A is a sublattice of
the partition lattice of A as a set.

Problem D-5. State and prove a version of Theorem ?? that refers to
two surjective homomorphisms ϕi : A → Bi (i = 1, 2), rather than to two
congruence relations on A.

Problem D-6. If ϕ : A → B is a surjective homomorphism, show that
there is a lattice embedding of Con(B) into Con(A), with the image being
an interval.

Problem D-7. Invent a correspondence theorem (like Theorem ??) for a
surjective homomorphism ϕ : A → B that relates subalgebras of B to certain
subalgebras of A. Somehow describe which ones. (No proof is required.)

Problem D-8. Show that the subdirect embedding theorem (??) holds for
the intersection of a possibly infinite family of congruence relations.

Problem D-9. For the case A = Z, the ring of integers, give (a) an example
of the subdirect embedding theorem in which the two congruence relations
come from prime ideals, and (b) an example where neither comes from a
prime ideal. In each case, say what the embedding does to each element.

Problem D-10. Prove that the congruence lattice of a chain of length n (as
an algebra with lattice operations) is the Boolean lattice 2n. (The length of
a chain is the number of jumps, so a chain of length n has n + 1 elements.)
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Problem D-11. Let D be a distributive lattice and consider any d ∈ D.
Define maps f∨d : D → D and f∧d : D → D by f∨d(x) = d ∨ x and
f∧d(x) = d ∧ x. (a) Show that f∨d and f∧d are homomorphisms. (b) Show
that the intersection of their kernels is 0 (i.e., equality). (c) Use Theorems
?? and ?? to show that D ↪→ (d] × [d).

Problem D-12. Compute all the principal congruence relations in Figure
??. Indicate blocks by darkening coverings between two elements in the same
block. You may omit examples already done in lecture.
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The subdirect representation theorem

1. Direct products

Here is an attempt at a decomposition theorem using direct products:

Define an algebra A to be directly indecomposable if |A| > 1 and there are
no B, C with A ≡ B × C except with |B| = 1 or |C| = 1.

Here is the statement you might hope for: “Every algebra is the direct prod-
uct of directly indecomposable algebras (possibly infinitely many).” This is
certainly true for finite algebras, but is false in general. In fact, let A be
a vector space of countable dimension over the two-element field; observe
that any directly indecomposable vector space has dimension 1 by a basis
argument, but A has the wrong cardinality to be a direct product of either
finitely many or infinitely many two-element vector spaces1.

A modified concept, that of “subdirect products of subdirectly irreducible
algebras”, works much better.

Figure 1: A subdirect product, heuristically

2. Subdirect products

2.1 Definition. A subdirect product of B and C is a subalgebra A0 of B×C such
that the two coordinate projection maps carry A0 onto B and C respectively.
In other words, every element of B is used as a coordinate in A0 and so is
every element of C. A heuristic picture is given in Figure ??.

1Such a basis argument requires the Axiom of Choice, but there are similar examples
that do not. See Problem E-?? and Problem E-??.
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More generally, the same definition applies for a subalgebra of a direct prod-
uct over any index set: A ⊆ Πγ∈ΓBγ , projection onto each factor.

You can see one virtue of subdirect products: A is obtained from B and C,
but also you can get from A back to B and C by taking homomorphic images.

Often we say that A “is” a subdirect product of some other algebras when
we really mean that A is isomorphic to such a subdirect product.

3. Subdirect representations

Usually we want to use subdirect products “up to isomorphism”.

3.1 Definition. A subdirect representation of an algebra A is an embedding
A ↪→ ∏

γ∈Γ Bγ whose image is a subdirect product.

For example, a three-element chain (as a distributive lattice) has a subdirect
representation as a subdirect product of two two-element chains, as in Figure
??.

Figure 2: Subdirect representation of a 3-element chain

4. Subdirectly irreducible algebras

A subdirect product is said to be trivial if one of the coordinate projections
is one-to-one, so that it is an isomorphism from A0 onto one of the factors.

Similarly, a subdirect representation of A is said to be trivial if the image is a
trivial subdirect product of the factors. In that case, the factor is isomorphic
to A.

4.1 Definition. An algebra A is subdirectly irreducible (SI) if |A| > 1 and all
subdirect representations of A are trivial.

4.2 Theorem (Subdirect Representation Theorem) Every algebra is isomorphic
to a subdirect product of subdirectly irreducible algebras.

For example, every distributive lattice is a subdirect product of two-element
chains. (See Application ?? below.)
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5. The internal point of view

5.1 Observation. If A has two congruence relations θ1 and θ2 with θ1∩θ2 = 0,
then A has a subdirect representation A ↪→ A/θ1 ×A/θ2.

The reason is that the two natural homomorphisms of A onto A/θi (i = 1, 2)
give a homomorphism of A into the direct product with kernel θ1∩θ2 = 0, so
the homomorphism is an embedding. Composing with the projections gives
back the natural homomorphisms, so this is a subdirect product.

More generally, if A has congruence relations θγ , γ ∈ Γ with ∩γθγ = 0, then
A/ ∩γ∈Γ θγ ↪→ ∏

γ∈Γ A/θγ .

5.2 Observation. Up to isomorphism, any subdirect representation of A is
the same as an appropriate subdirect representation of the form given in
Observation ??.

The reason: Given a subdirect representation φ : A ↪→ ∏
γ∈Γ Bγ , let A′ =

φ(A), the image of φ. Then for each γ ∈ Γ, the coordinate projection πγ

takes A′ onto Bγ with some kernel θγ . The intersection of these kernels is the
0 congruence relation, since in any product two elements are equal when their
projections on all factors are the same. Moreover, by the first isomorphism
theorem, Bγ

∼= A′/θγ . The mappings

A ↪→ ∏
γ∈Γ Bγ

πγ→ Bγ

become

A′ ↪→ ∏
γ∈Γ A′/θγ

πγ→ A′/θγ, up to isomorphism.

5.3 Proposition. The following conditions are equivalent:

(1) A is subdirectly irreducible;

(2) ∩γ∈Γθγ = 0 implies θγ = 0 for some γ ∈ Γ;

(3) 0 ∈ Con(A) is completely meet irreducible;

(4) Con(A) has a least element > 0 (the monolith of A).

This gives an internal description of subdirect irreducibility.

6. The proof of the subdirect representation theorem

6.1 Lemma. Given a 6= b in A, there exists a congruence relation θ maximal
with respect to the property a 6≡ b (θ).

Proof. Let S = {θ ∈ Con(A) : 〈a, b〉 6∈ θ}. Then S is not empty, since 0 ∈ S.
Suppose C is a chain of members of S, where each relation is regarded as a
subset of A×A. Then

⋃
θ∈C θ ∈ S, since all aspects of being in S (specifically,

being an equivalence relation, being compatible with the operations of A, and
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not containing 〈a, b〉) can be checked using finitely many elements at a time
and so can be checked inside just one member of C at a time. Then by Zorn’s
Lemma, S has a maximal member. �

Let θab be one such congruence relation maximal with respect to not iden-
tifying a and b. Here θab is in contrast to con(a, b), the smallest congruence
relation that identifies a and b. In fact, θab can be described as a θ maximal
with respect to the property θ 6≥ con(a, b).

6.2 Observation. For a 6= b in A, in Con(A) there is a least element > θab,
namely θab ∨ con(a, b).

6.3 Observation. A/θab is subdirectly irreducible. Indeed, by Observation 1
and the Correspondence Theorem, Con(A/θab) has a least element > 0 and
so is subdirectly irreducible.

6.4 Observation.
⋂

a6=b θab = 0 in Con(A), where a, b range over A.

Proof of the Representation Theorem. By Observation ?? we have A ↪→∏
a6=b A/θab, and by Observation ?? each A/θab is subdirectly irreducible.

7. An application

7.1 Application. It is easy to show that the only subdirectly irreducible
distributive lattice is 2. Consequences:

(i) Every distributive lattice is a subdirect product of copies of 2.

(ii) The variety of distributive lattices is the same as Var(2).

(iii) Every distributive lattice L can be represented as a lattice of subsets of
some set (perhaps not all subsets), with operations ∪,∩.

8. Problems

Problem E-1. Prove Proposition ??.

Problem E-2. Represent the 1-unary algebra 〈A; f〉 explicitly as a subdirect

product of SI algebras, where A has diagram

Problem E-3. Let L be a distributive lattice and let a ∈ L. Define φ∧a :
L → L by φ∧a(x) = x ∧ a and likewise φ∨a by φ∨a(x) = x ∨ a. As you know,
these are lattice homomorphisms.
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(a) Show that ker φ∧a ∩ ker φ∨a = 0. (Make a one-line proof based on the
absorption law for lattices.)

(b) What embedding does (a) give?

(c) Show that the only SI distributive lattice is 2. (Thus this fact is very
elementary. The subdirection representation theorem then says that every
distributive lattice is a subdirect product of copies of 2, a deeper fact that
depends on the Axiom of Choice.)

Problem E-4. Say how to represent the group FQ8(2) as a subdirect product
of subdirectly irreducible groups, using as few factors as possible, by referring
to the diagram of its normal subgroups.

Problem E-5. (a) Which finite abelian groups are SI? (Use any facts you
know about finite abelian groups and their subgroup diagrams. An SI abelian
group has a smallest proper subgroup.)

(b) Find all SI abelian groups, finite and infinite. (They can be described
as subgroups of the circle group—the multiplicative group of all complex
numbers of absolute value 1.)

Problem E-6. (a) Show that an SI 1-unary algebra has no “fork”, i.e.,
distinct elements a, b, c with c = f(a) = f(b).

(Method: Let 〈a〉 denote the subalgebra generated by a, and similarly for
b. For a subalgebra S of A let θS mean the congruence relation obtained by
collapsing S to a point. Show that θ〈a〉∩θ〈b〉 ∩ con(a, b) = 0 if a, b give a fork.
You may use the fact that con(a, b) is obtained by first identifying f i(a) with
f i(b) for each i and then seeing what equivalence relation that generates.)

(b) Using (a), try to find all finite SI 1-unary algebras whose diagram is
connected.

(A useful observation: In an n-cycle, you get exactly the same congruences as
for the abelian group Zn, so the congruence lattice of an n-cycle is isomorphic
to Subgroup(Zn).)

Problem E-7. Show that the finite SI 1-unary algebras are

(i) The algebra consisting of two fixed points,

(ii) the “cyclic” 1-unary algebras Cpk of prime power order (with k ≥ 1),

(iii) the algebras Dk, f where Dk = {0, . . . , k} and f(0) = 0, f(i) = i− 1 for
i > 0.
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(iv) the two-component algebras where one component is a fixed point and
the other is of kind (ii).

(In (ii), it is handy to make this observation, which you may justify very
briefly: The congruence relations on an n-cycle regarded as a 1-unary algebra
are exactly the same as those on the cycle regarded as the group or ring Zn.
In all parts, you may justify briefly why these are SI; it is most important to
explain why any finite SI must be of one of these forms.)

Problem E-8. Consider the ring A = Z2 ⊕ Z2 ⊕ . . ., the “direct sum”
of countably many copies of the ring Z2, or in other words, the subring of
Z2×Z2× . . . consisting of the sequences that have only finitely many nonzero
entries.

(a) Index the direct sum using ω = {0, 1, 2 . . .}. Show that the ideals of A
correspond to subsets of ω.

(b) Show that if A ≡ B×C, then at least one of B and C is isomorphic to A.
(Method: A would be the internal direct sum of corresponding ideals I, J ,
so that I ∩ J = (0) and I + J = A.)

(c) Show that A is not the direct product of directly indecomposable algebras.
(Use a cardinality argument.)

Problem E-9. (a) Show that direct-product decompositions of a commuta-
tive ring with 1 into two factors correspond to idempotents (elements e with
e2 = e).

(b) Let R be the ring of all ω-indexed sequences of zeros and ones that
are “eventually constant”, with sequences added and multiplied using the
operations of Z2 as a ring. Find all direct-product decompositions of R.

(c) In (b), does R have a direct decomposition into directly indecomposable
factors? (Why or why not?)

(d) What about the Boolean algebra Powfin(X) for countably infinite X?

Problem E-10. Suppose that A is a finite algebra. An interesting question
is whether Var(A) contains finite SI algebras larger than A, or even contains
an infinite SI algebra. If A is a lattice, for example, there are no larger SI’s;
if A is a nonabelian p-group, the answer is that there are arbitrarily large
finite SI’s and also infinite ones. An easy case:

(a) Show that Shallon’s algebra is SI, and in fact is simple. (Method: Think
about con(r, s) for different possible distinct elements r, s.)

More generally, Let An be the graph algebra based on a graph like Shallon’s
but with n nodes, so that An has n+1 elements and Shallon’s algebra is A3.
Show that An is SI.
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(b) Show that An ∈ Var(A3). (Suggestion: Write A3 = {a1, a2, a3, 0}. Inside
An

3 , let B be the subalgebra generated by elements whose entries are a1’s
(zero or more), then one a2, and then the rest a3’s. Let θ on B be the
equivalence relation obtained by identifying all elements of B that have an
entry of 0 and letting other blocks be singletons. Show that θ is a congruence
relation on B. Then B/θ ∼= . . ..)

(c) Can you find an infinite SI in Var(A3)?
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Mal’tsev conditions

1. The idea

Based on a theorem of Mal’tsev discussed below, a “Mal’tsev condition” is
any condition on a variety that is can be characterized using the existence of
terms obeying laws of some sort1. Some typical examples are

• V is congruence-permutable. In other words, for any A ∈ V and any
θ, ψ ∈ Con(A), we have θψ = ψθ.

Examples: The variety of all groups; the variety of all rings.

• V is congruence-distributive. In other words, for any A ∈ V , Con(A)
is a distributive lattice.

Example: The variety of all lattices; the variety of all Boolean algebras.

• V is congruence-modular. In other words, for any A ∈ V , Con(A) is a
modular lattice.

Since the distributive law implies the modular law, any congruence-
distributive variety is also congruence-modular. Also, we have:

Proposition. Any congruence-permutable variety is congruence-modular.

• V is arithmetic (“arithmet′ic”). This means that V is both congruence-
permutable and congruence-distributive.

Example: The variety of rings generated by a finite field.

A relevant kind of term: A ternary term m(x, y, z) is said to be a majority
term for a variety V if V has the laws

m(x, x, y) = x, m(x, y, x) = x, m(y, x, x) = x.

2. Some theorems showing Mal’tsev conditions

2.1 Theorem (Mal’tsev) For a variety V , the following are equivalent:

(a) V is congruence-permutable (i.e., θφ = φθ in congruence lattices of alge-
bras in V );

(b) there is a term p(x, y, z) such that in V these laws hold:

p(x, x, z) = z,

p(x, z, z) = x.

1Mal’tsev, also transliterated Mal’cev, was a famous Russian algebraist.
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2.2 Theorem (Pixley) For a variety V , the following are equivalent:

(a) V is arithmetic;

(b) there are terms p(x, y, z) and m(x, y, z) such that in V , p obeys Mal’tsev’s
laws of (1b) and m is a majority term;

(c) there is a term q(x, y, z) such that in V ,

q(x, x, z) = z (minority),

q(x, z, z) = x (minority),

q(x, y, x) = x (majority).

2.3 Theorem (Jónsson) For a variety V , the following are equivalent:

(a) V is congruence-distributive;

(b) for some n ≥ 2, there are terms t0, . . . , tn in x, y, z such that in V ,

(i) t0(x, y, z) = x, tn(x, y, z) = z;

(ii) ti(x, y, x) = x, for all i;

(iii) ti(x, x, z) = ti+1(x, x, z) for i even, ti(x, z, z) = ti+1(x, z, z) for i odd.

(Notice that the case n = 2 is equivalent to the existence of a majority term.)

2.4 Theorem (Day, Gumm) For a variety V , the following are equivalent:

(a) V is congruence-modular;

(b) for some n ≥ 0, there are terms t0, . . . , tn and p in x, y, z such that in V ,

(i) t0(x, y, z) = x

(ii) ti(x, y, x) = x, for all i;

(iii) ti(x, z, z) = ti+1(x, z, z) for i even, ti(x, x, z) = ti+1(x, x, z) for i odd.

(iv) tn(x, z, z) = p(x, z, z),

(v) p(x, x, z) = z.

3. Problems

Problem F-1. Prove Mal’tsev’s theorem.

Problem F-2. Prove Pixley’s theorem.

Problem F-3. (a) Another Mal’tsev condition: Show that the following are
equivalent for a variety V :

• V has a majority term;

• meets of congruences distribute over composition: α∩(βγ) = (α∩β)(α∩γ).
(b) Use (a) to show that a variety with a majority term is congruence-
distributive (the case n = 2 of Jónsson’s theorem).
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Jónsson’s Lemma

1. A finite version

Theorem. (Foster) Let A be a finite algebra such that Var(A) is congruence-
distributive. Let B ∈ Var(A) be finite and subdirectly irreducible. Then
B ∈ HS(A).

Corollary. Under the same hypotheses, |B| ≤ |A|, and if |B| = |A| then
B ∼= A.

Example. Each of the lattices M3, N5 satisfies a law that fails in the other.

Proof of the theorem: Var(A) = HSP(A), so represent B as a homomorphic
image of a subalgebra C of A × · · · × A: C ⊆ A × · · · × A and φ : C → B
(a surjection). Here we know a finite product will do since B is the image
of a free algebra VarA(n), where n = |B|, and such a free algebra can be
constructed by the table method. See the left-hand side of Figure ??.

φ

C ⊆ A× · · · ×A

B A A

π1 πn gives ψ

Si0 ⊆ A

B

Figure 1: Mappings for the Theorem of §1.

Focus on Con(C). One of its elements is ker φ, which by the Correspondence
Theorem is meet-irreducible. Some other elements are the kernels of the
coordinate projections restricted to C: ker(πi|C). Of course πi|C may not
map C onto A; its image is some subalgebra Si of A.

Observe that

∩i ker(πi|C) = 0 ≤ ker φ.

Recall that in a distributive lattice, a meet-irreducible element is meet-prime.
Therefore ker(πi0 |C) ≤ kerφ for some i0. This says that πi0(a) = πi0(a

′) ⇒
φ(a) = φ(a′). Therefore a well defined map ψ of the image of Si0 onto B is
obtained by setting ψ(πi0(a)) = φ(a). This map is the desired homomorphism
showing that B ∈ HS(A). See the right-hand side of Figure ??. �
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2. Ultrafilters

Consider the set I = ω = {0, 1, 2, . . .}, the lattice Pow(I), and its ideals and
dual ideals (filters). A principal ideal consists of the family of all subsets of
some given set. Some examples to think about:

• The principal ideal generated by I \ {k} is maximal, for each k.

• Its complement is the principal dual ideal (“principal ultrafilter”) con-
sisting of all subsets containing {k}.

• The ideal I0 of all finite subsets is not principal.

• However, the ideal I0 of all finite subsets is the intersection of maximal
ideals (as is any ideal). These are the nonprincipal maximal ideals.
There are 22ℵ0 of them, but it is impossible to give even one explicitly!

Given a maximal ideal, we think of its members as “small” subsets of I.
What is a “large” subset? There are two possible definitions:

(1) A large subset is a subset that is not small;

(2) a large subset is the complement of a small subset.

But these two definitions are equivalent! Recall that for a maximal ideal of
a Boolean lattice, for each x exactly one of x or x′ is in the ideal.

Question. For the principal maximal ideal generated by I\{k}, which subsets
of I are small and which large? (It is as if only k counts for largeness.)

To summarize,

1. Every subset of I is either large or small (not both).

2. The empty set is small. In fact, if the maximal ideal is nonprincipal,
then any finite subset is small.

3. I itself is large.

4. The union of two small subsets is small.

5. The intersection of two large subsets is large.

6. A subset of a small subset is small.

7. A superset of a large subset is large.

8. The small sets form a maximal ideal.

9. The large sets form an ultrafilter.
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3. Ultraproducts

An “ultraproduct” of algebras is their direct product modulo an congruence
relation constructed from a nonprincipal ultrafilter. The congruence relation
tends to collapse the product down to something that looks like a “generic”
copy of the individual algebras, reflecting whatever features they have in
common.

The construction is set-theoretic and actually works for sets with relations
as well as for algebras. In detail:

Definition. Let I be an infinite index set. Let algebras Ai, i ∈ I be given.
Choose a nonprincipal ultrafilter U on I. On the direct product

∏
i∈I Ai,

define an relation ≡ by saying a ≡ b when a and b agree on a large set of
indices. The ultraproduct of the Ai is the direct product modulo ≡:

A∗ = (
∏

i∈I Ai)/ ≡, or more simply A∗ =
∏

i∈I Ai/U .

There are several things to consider here:

• Does the phrase “agree on a large set of indices” mean that there is
some large set J ⊆ I of indices such that aj = bj for all j ∈ J , or that
the set of all i ∈ I with ai = bi is large? By the properties of large sets,
it doesn’t matter; the meanings are the same.

• It must be checked that ≡ is an equivalence relation. This follows from
the properties of large sets.

• We say “the” ultraproduct even though the result does depend on the
choice of U .

Ultraproducts have some startling properties:

1. Any n-ary relation common to the Ai has a reasonable definition on
their ultraproduct.

2. Any first-order sentence true in the Ai is true in their ultraproduct.
(This extends to first-order formulas.)

3. An ultraproduct of fields is a field. (Why?)

4. The ultraproduct is unchanged if finitely many factors are omitted.
(Why?)

5. If all the Ai are finite and isomorphic, then A∗ is a copy of the same
algebra. (Why?)
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Examples.

(a) The ultraproduct of countably many copies of the field R of reals is the
field R∗ of “nonstandard reals”. It is possible to do calculus using “infinites-
imals” in R∗.

(b) The ultraproduct of countably many copies of the ring Z of integers is
the ring Z∗ of “nonstandard integers”. Some of them are “infinite”.

(c) The ultraproduct Z2 × Z3 × Z5 × · · · /U is a field of characteristic 0.

(d) The ultraproduct of chains 1×2×3×· · · /U is an infinite chain. (What
does it look like?)

4. Jónsson’s Lemma

“Jónsson’s Lemma” would be called a theorem by most people, but it was
called a lemma in the original paper and the name has stuck.

For a class K of similar algebras, let U(K) denote the class of algebras iso-
morphic to ultraproducts of algebras in K 1.

Theorem. (Jónsson’s Lemma) Let K be a class of similar algebras such that
Var(K) is congruence-distributive. If B ∈ Var(K) is subdirectly irreducible,
then B ∈ HSU(K).

Corollary. For a finite algebra A, if Var(A) is congruence-distributive, then
for each subdirectly irreducible algebra B ∈ Var(A) we have B ∈ HS(A).

Notice that this Corollary is a little stronger than the Theorem of §1, since
it is not assumed to start with that B is finite. The conclusion is the same.

5. Problems

Problem G-1. How can we be sure that an ultraproduct of chains is a chain?

Problem G-2. Prove the Corollary of §?? from Jónsson’s Lemma.

Problem G-3. Let F4 be the Galois field of 4 elements. Find all the SI
members of Var(F4), up to isomorphism.

1Most authors write PU , following Jónsson, and some omit the use of isomorphic copies.
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